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A STRONG CONVERGENCE THEOREM FOR SOLVING THE
SPLIT COMMON FIXED POINT PROBLEM IN TWO BANACH
SPACES AND APPLICATIONS

WATARU TAKAHASHI

ABSTRACT. In this paper, we deal with the split common fixed point problem in
two Banach spaces. We prove a strong convergence theorem of Halpern’s type
iteration for finding a solution of the split common fixed point problem in two
Banach spaces. It seems that such a theorem of Halpern’s type iteration is first
outside Hilbert spaces. Using this result, we obtain well-known and new strong
convergence theorems which are connected with the feasibility problem, the split
common null point problem and the split common fixed point problem in Hilbert
spaces and in Banach spaces.

1. INTRODUCTION

Let Hy and Hy be two real Hilbert spaces. Let D and Q be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : Hy — Hy be a bounded
linear operator. Then the split feasibility problem [8] is to find z € H; such that
z € DN A7'Q. Byrne, Censor, Gibali and Reich [7] considered the following
problem: Given set-valued mappings B : H; — 291 and G : Hy — 252 respectively,
and a bounded linear operator A : Hy — Ho, the split common null point problem
[7] is to find a point z € Hy such that

ze BlonA (G710,

where B~10 and G~'0 are null point sets of B and G, respectively. Given nonlinear
mappings 1" : Hy — H; and U : Hy — Hs, respectively, and a bounded linear
operator A : Hy — Hay, the split common fixed point problem [9, 24] is to find a
point z € Hj such that z € F(T)NA~YF(U), where F(T) and F(U) are fixed point
sets of T and U, respectively. If D N A~'Q is nonempty, then z € DN A~'Q is
equivalent to

(1.1) » = Pp(I — MNA*(I — Po)A)z,
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where A > 0 and Pp is the metric projection of H; onto D. Furthermore, if
B~'0N A71(G~10) is nonempty, then z € B~10N A~1(G710) is equivalent to

(1.2) 2= I~ AT~ Q) A)z,

where A\, u > 0 and v > 0, and J) and @), are the resolvents of B and G, respectively.
Using such results regarding nonlinear operators and fixed points, many authors
have studied the feasibility peoblem and generalized feasibility peoblems including
the split common null point problem in Hilbert spaces; see, for instance, [2, 7,
9, 24, 42]. However, it is difficult to solve such problems outside Hilbert spaces.
Takahashi [32, 33, 34] and Hojo and Takahashi [11] extended the results of (1.1)
and (1.2) in Hilbert spaces to Banach spaces. By using the hybrid method of
[25, 26, 27], Takahashi [36] also proved a strong convergence theorem for solving
the split common fixed point problem in two Banach spaces. Furthermore, by using
the shrinking projection method [40], Takahashi [37] proved a strong convergence
theorem for solving such a problem in two Banach spaces.

On the other hand, we know the following iteration process introduced by Mann
[21] in 1953: Let C be a nonempty, closed and convex subset of a Banach space
E and let T : C — C be a nonexpansivemapping, that is, ||Tz — Tyl < ||z — y|
for all z,y € C. For an initial guess z1 € C, an iteration process {x,} is defined
recursively by

T+l = QpTn + (1 - Oén)T.%'n, Vn € N,

where {a,} is a sequence in [0,1]. Furthermore, in 1967, Halpern [10] gave the
following iteration process: Take zg,x; € C arbitrarily and define {z,} recursively
by

Tpt1 = anxo+ (1 — ap)Tx,, VneN,

where {a,,} is a sequence in [0,1]. There are many investigations for these two
iterative processes in Hilbert spaces and in Banach spaces. However, we can not
find the results under these two processes for solving the split common fixed point
problem in two Banach spaces. Very recently, Takahashi [39] partially proved a
weak convergence theorem of Mann’s type iteration for solving the split common
fixed point problem in two Banach space; see also [38]. It is natural to consider the
strong convergence of Halpern’s type iteration for solving the split common fixed
point problem in two Banach spaces

In this paper, we prove a strong convergence theorem of Halpern’s type itera-
tion for finding a solution of the split common fixed point problem in two Banach
spaces. It seems that such a theorem of Halpern’s type iteration is first outside
Hilbert spaces. Using this result, we obtain well-known and new strong conver-
gence theorems which are connected with the feasibility problem, the split common
null point problem and the split common fixed point problem in Hilbert spaces and
in Banach spaces.
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2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R
the set of real numbers. Let H be a real Hilbert space with inner product (-,-)
and norm || - ||, respectively. Let C' be a nonempty, closed and convex subset of
a Hilbert space H. The nearest point projection of H onto C is denoted by P,
that is, ||[x — Poz|| < |Jz —y| for all x € H and y € C. Such P¢ is called the
metric projection of H onto C. We know that the metric projection P is firmly
nonexpansive, i.e.,

(2.1) |Pca — Peyl||” < (Pox — Poy,x — y)

for all x,y € H. Furthermore (x — Pox,y — Pox) < 0 holds for allx € H and y € C;
see [30].

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {x,} is a sequence
in E, we denote the strong convergence of {z,} to z € E by x,, — x and the weak
convergence by x, — x. The modulus dg of convexity of F is defined by

. r+y
o) = int {1 2oy < 1 gyl < 1o -0l 2

for every € with 0 < ¢ < 2 and.the smoothness pg of E is defined by

. 1
pitt) = int {5 (Lt ol + o= ol) = L+ ol =1, 1ol =]

for every ¢ > 0. A Banach space E is said to be uniformly convex if dg(e) > 0
for every € > 0. A uniformly convex Banach space is strictly convex and reflexive.
Let p,q > 1 be real numbers. A Banach space F is said to be p-uniformly convex
if there is a constant ¢ > 0 such that dg(e) > ceP for every € with 0 < e < 2. A
Banach space FE is said to be g-uniformly smooth if there is a constant ¢ > 0 such
that pp(t) < ct? for every t > 0. The duality mapping .J from E into 27" is defined
by
Jr={z* € B*: (z,2%) = |lz|* = [l2"]|*}

for every x € E. Let U = {z € E : ||z|]| = 1}. The norm of F is said to be Géateaux
differentiable if for each x,y € U, the limit
) e+ iyl ]

t—0 t
exists. In the case, F is called smooth. We know that F is smooth if and only if
J is a single-valued mapping of E into E*. The norm of E is said to be Fréchet
differentiable if for each x € U, the limit (2.2) is attained uniformly for y € U. The
norm of E is said to be uniformly smooth if the limit (2.2) is attained uniformly for
x,y € U. If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E. We also know that F is reflexive if and only if J
is surjective, and F is strictly convex if and only if J is one-to-one. Therefore,
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if F is a smooth, strictly convex and reflexive Banach space, then J is a single-
valued bijection and in this case, the inverse mapping J ! coincides with the duality
mapping J, on E*. For more details, see [28, 29]. The following result is in Xu [44].

Lemma 2.1 ([44]). Let E be a smooth Banach space. Then the following statements
are equivalent:
(1) E is 2-uniformly smooth;
(2) there is a constant ¢ > 0 such that for every x,y € E there holds the following
equality
2+ yl* < ll2]® + 2{y, Ja) + c|lyl*.
A Hilbert space H is 2-uniformly smooth and L? for p > 1 is 2-uniformly smooth;
see [44]. We know the following result.

Lemma 2.2 ([28]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x —y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convezr and (x —y,Jxr — Jy) =0, then x = y.

Let E be a smooth Banach space. The function ¢: E' X E — (—00, 00) is defined
by

(2.3) ¢z, y) = ll|® = 2(z, Jy) + |y

for x,y € E, where J is the duality mapping of F; see [1, 14]. We have from the
definition of ¢ that

(24) qzb(x,y) :gb(x,z)+¢(z,y)+2<a:—z, JZ—Jy>

for all z,y,2 € E. From (||z| — |ly|])? < ¢(z,y) for all x,y € E, we can see that
¢(x,y) > 0. Furthermore, we can obtain the following equality:

(2.5) 2z —y,Jz = Jw) = ¢(z,w) + ¢y, 2) — ¢(,2) — oy, w)

for z,y,z,w € E. If E is additionally assumed to be strictly convex, then from
Lemma 2.2 we have

(2.6) d(z,y) =0<=xz=y.
The following lemma which was by Kamimura and Takahashi [14] is well-known.

Lemma 2.3 ([14]). Let E be a smooth and uniformly convexr Banach space and
let {x,} and {y,} be sequences in E such that either {x,} or {y,} is bounded. If
lim, 00 ¢(Tp, yn) = 0, then lim, o ||z, — yn|| = 0.

The following lemmas are in Xu [45] and Kamimura and Takahashi [14].

Lemma 2.4 ([45]). Let E be a uniformly convexr Banach space and let v > 0. Then
there ezists a strictly increasing, continuous and convex function g : [0,00) — [0, 00)

such that g(0) = 0 and
Az 4+ (1 = Nyll> < Allz)l* + (1= Mlyll> = M1 = Ng(llz — yl)
for all x,y € B, and A\ with 0 < X\ <1, where B, ={z € E: |z|| <r}.
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Lemma 2.5 ([14]). Let E be a smooth and uniformly convex Banach space and
let > 0. Then there exists a strictly increasing, continuous and convezr function

g :[0,2r] = R such that g(0) =0 and

g(lz = yl) < é(z,y)
for all x,y € By, where B, = {z € E : ||z]| < r}.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any z € E, there exists a unique element
z € C such that ||z — z|| < ||lx — y]| for all y € C. Putting 2 = Pox, we call Po the
metric projection of E onto C.

Lemma 2.6 ([28]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convexr subset of E and let x € E and z € C.
Then, the following conditions are equivalent:

(1) z = Pox;

(2) (z—y,J(x—2)) >0, VyeC.

For any = € E, we also know that there exists a unique element z € C' such that
Z,r) = min , ).
6(z.) = min 6(y, 2

The mapping Ilg : E — C defined by z = [Iox is called the generalized projection
of F onto C'. We know the following result.

Lemma 2.7 ([1, 14]). Let E be a smooth, strictly convex and reflexive Banach
space. Let C be a nonempty, closed and conver subset of E and let x € E and
z € C. Then, the following conditions are equivalent:

(1) z=1Ilcw;

(2) (z—y,Jr—Jz) >0, VyeC.

Let E be a Banach space and let B be a mapping of of F into 2F". A multi-valued
mapping B on E is said to be monotone if (x — y,u* —v*) > 0 for all u* € Bz,
and v* € By. A monotone operator B on F is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [5]; see also [29, Theorem 3.5.4].

Theorem 2.8 ([5]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let B be a monotone operator of E into
2E"  Then B is mazimal if and only if for any r > 0,
R(J +rB) = E*,
where R(J + rB) is the range of J + rB.
Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let B be a maximal monotone operator of E into 2¢”. The set of null points

of B is defined by B™10 = {# € E : 0 € Bz}. We know that B~'0 is closed and
convex; see [29]. For all € E and r > 0, we consider the following equation

0 € J(z, — x) + rBax,.
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This equation has a unique solution z,.. We define J,. by x, = J,x. Such J,,r > 0 is
called the metric resolvent of B. For r > 0, the Yosida approximation A4, : £ — E*
is defined by

J(x — Jyx)

Ag=""""" wreFE
T

Lemma 2.9 ([29]). Let E be a uniformly conver and smooth Banach space and
let B C E x E* be a maximal monotone operator. Let v > 0 and let J,. and A,

be the metric resolvent and the Yosida approximation of B, respectively. Then, the
following hold:

(1) (Jrx —u,J(x — Jyx)) >0, Ve E, ueB10;
(2) (Jyx,Ax) € B, Yz € E;
(3) F(J,) = B~10.

For all x € E and r > 0, we also consider the following equation
Jx € Jx, + rBzx,.

This equation has a unique solution z,; see [18]. We define @, by z, = Q,z. Such
a (), is called the generalized resolvent of B. For r > 0, the Yosida approximation
B, : E — E* is defined by

_Jr—JQx

Byx = , Vrxek.
r

When the Banach space is a Hilbert space, we have that J, = @, for all » > 0. Such
a J, is called the resolvent of B simply. We also know the following result.

Lemma 2.10 ([18]). Let E be a uniformly convex and smooth Banach space and
let B C E x E* be a maximal monotone operator. Let r > 0 and let Q. and B,
be the generalized resolvent and the Yosida approximation of B, respectively. Then,
the following hold:

(1) ¢(u, Qrx) + ¢(Qrz,z) < p(u,x), Vr e E,uc B_10;
(2) (Qrz,Byx) e B, Vxek;
(3) F(Qr) = B~ 10.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty, closed and convex subset of E. Let ) be a real number with n € (—o0, 1).
Then a mapping U : C — E with F(U) # 0 is called n-demimetric [37] if, for any
x € Candqe F(U),

1—
(¢~ q.J(@ = Ux)) = —" o — Ual]”,
where F(U) is the set of fixed points of U.

Examples We know examples of n-demimetric mappings from [37, 36].

(1) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. Let k be a real number with 0 < k < 1. A mapping U : C' — H is called a
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k-strict pseudo-contraction [6] if
Uz = Uyl? < ||z = ylI* + kllz = Uz — (y - Uy)|?

for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # (), then U is
k-demimetric; see [37].

(2) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C — H is called generalized hybrid [15] if there exist «, 5 € R
such that

a|lUz — Uyl® + (1 - a)l|lz — Uyl]* < BllUz — y|* + (1 = )|z — y|?

for all x,y € C. Such a mapping U is called («, [3)-generalized hybrid. Notice that
the class of («, 5)-generalized hybrid mappings covers several well-known mappings.
For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[18, 19] for « =2 and § =1, i.e,,

2|Uz = Uy|? < Uz —y|* + ||Uy — z|?, Va,y€C.
It is also hybrid [31] for a = % and 8 = %, ie.,
3|Uz — Uyl]® < |z — y|* + Uz — y|* + |Uy — 2|, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [13]. If U is
generalized hybrid and F(U) # 0, then U is 0-demimetric; see [37].

(3) Let E be a strictly convex, reflexive and smooth Banach space and let C' be
a nonempty, closed and convex subset of E. Let Po be the metric projection of F
onto C. Then P¢ is (—1)-demimetric; see [37].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B~10 # (). Let A > 0. Then the metric resolvent
Jy is (—1)-demimetric; see [37].

The following lemma was proved by Takahashi [37].

Lemma 2.11 ([37]). Let E be a smooth, strictly convex and reflexive Banach space
and let C' be a nonempty, closed and convex subset of E. Let n be a real number
with n € (—o0,1). Let U be an n-demimetric mapping of C' into E. Then F(U) is
closed and convez.

We also know the following lemmas:

Lemma 2.12 ([3], [45]). Let {sn} be a sequence of nonnegative real numbers, let
{an} be a sequence in [0,1] with Y 7 | an = 00, let {B,} be a sequence of nonneg-
ative real numbers with Yo" | B < 00, and let {v,} be a sequence of real numbers
with limsup,,_,.. 7n < 0. Suppose that

Sp+1 < (1 - an>3n + anyn + Bn

foralln=1,2,.... Then lim,_, s, = 0.



480 WATARU TAKAHASHI

Lemma 2.13 ([20]). Let {I},} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I7,,} of {I,} which satisfies
I, < In,41 for alli € N. Define the sequence {T(n)}n>n, of integers as follows:

T(n) =max{k <n: I} < Ik},
where ng € N satisfies {k < ng: [ < Ixy1} # 0. Then, the following hold:

(i) 7(no) < 7(no+1) < -+ and 7(n) — oo;
(ii) Ff(n) < Ff(n)Jrl and I, < Ff(n)Jrl, Vn > ng-

Let E be a smooth, strictly convex and reflexive Banach space. We make use
of the following mapping V' studied in Alber [1], Ibaraki and Takahashi [12] and
Kohsaka and Takahashi [16, 17]:

(2.7) V(z,2") = [la|® = 2(z,27) + [|l2*||?

for all x € E and z* € E*. Kohsaka and Takahashi [17] proved the following lemma
by using this mapping V. For the sake of completeness, we give the proof.

Lemma 2.14 ([17]). Let E be a smooth, strictly convex and reflexive Banach space
and let V be as in (2.7). Then

V(z,z*) = 2(J ta* —x,y*) < V(z,z* —y*)
for allx € E and x*,y* € E*.
Proof. We have that
Ve, 2" —y*) — Ve, ") +2(J 1a* — 2, y%)
= ll2]? = 20z, 2 — ") + 27 — 7
—Jlel? + 20,2 — 2 + 200 10", y7)

= [la* =y |1 = [l + 2(T " a", y)

> 2(J ta*, —y*) 4+ 2(T T )

=0.
This completes the proof. O

3. STRONG CONVERGENCE THEOREM

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for solving the split common fixed point problem in two Banach spaces. Let E be a
Banach space and let D be a nonempty, closed and convex subset of £. A mapping
U:D — FE is called demiclosed if for a sequence {x,} in D such that z,, — p and
T — Uxy, — 0, p= Up holds. The following lemma was proved by Matsushita and
Takahashi [23].

Lemma 3.1 ([23]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let T : C — FE be a
mapping satisfying the following;

o(2,Tx) < ¢(z,2), Vel z¢e F(T).
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Then F(T) is closed and convex.

Let C' be a nonempty, closed and convex subset of a smooth Banach space F.
A mapping T : C — FE is called relatively nonexpansive (23] if F(T) # 0, T is
demiclosed and it satisfies the following:

o(z,Tx) < ¢(z,z), VYrel, zec F(T).

The following is our main result.

Theorem 3.2. Let E be a uniformly convexr and uniformly smooth Banach space
which E* is 2-uniformly smooth and it has the best smoothness number ¢ > 0. Let F'
be a smooth, strictly convex and reflexive Banach space. Let Jg and Jp be the duality
mappings on E and F, respectively and let n be a real number with n € (—oo,1).
Let T : E — FE be a relatively nonexpansive mapping and let U : F — F be an
n-demimetric and demiclosed mapping with F(U) # 0. Let A : E — F be a bounded
linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose

that
F(T)NnAT'F(U) # 0.

Foru,x1 =z € E, let {z,} C E be a sequence generated by
Yn = ng (JExn —rp A Jp(Ax, — UA:cn)),
zn = Jp (anJpu+ (1 — an) JETyy),
Tnt1 =I5 (Bndprn + (1 — Bn)JEzn), Vn €N,

where a,b,8,7 € R, {r,} C (0,00), {an} C (0,1) and {Bn} C (0,1) satisfy the
following:

oo
lim o, =0, g Qy = 00,
n—o0

n=1

1—n
0<d<rp<y<-—>=
" c[| A2

Then the sequence {x,} converges strongly to a point zg € F(T)N A~ F(U), where

and 0<a<p,<b<l1l, VneN.

z0 = Upmyna-1r)u-

Proof. Since T is relatively nonexpansive, F'(T') is closed and convex. We also have
from Lemma 2.11 that F(U) is closed and convex. Let z € F(T)N A~'F(U). Then
z=Tzand Az —UAz=0. Put

yn = Ji' (Jpzn — rnA*Jp(Az, — UAzy,))
for all n € N. We have that
O(2,yn) = ¢(2, T (Jpzn — 1 A* Jp(Azy, — UAxy,)))
= ||2]1? = 2z, Jpxn — rnA* Jp(Az, — UAzy,))
+ || Jpzn — rnA*Jp(Ax, — UAz,)|?
< |12]1? = 2(z, Jpxn) + 2z, A*Jp(Az, — UAxy))
+ ||zl = 2rp(zn, A* Jp(Az, — UAz,))
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+ c||rpA* Jp(Ax, — UAx,)|?
<|12l1? = 2(z, Jpan) + 2rn(z, A* Jp(Ax, — UAz,))
+ ||z || = 2rp(zn, A* Jp(Az, — UAz,))
(3.1) T orall Al Ay — U A
= ¢(z,xn) + 2rn(Az, Jp(Ax, — UAxy,))
—2rp(Axy, Jp(Az, — UAxy,))
+ c(ral| Al Azy — U Az, |?
= ¢(z, ) — 2rn(Azy, — Az, Jp(Azy, — UAzy,))
+ c(ral| Al Azy — U Az, ||?
= ¢z, 2n) = (1 = n)|| Azy — UAzy |
+ C(THHA”)ZHAQ% - UAan2
= ¢z, an) + (el Al — (L= m) || Azy — UAw,|f?
From cry||Al]? — (1 — 1) < 0, we have that
(3.2) o(z,yn) < d(2z,2,), VneN.
Put z, = ng(anJEu + (1 — ap)JEgTyy). We have that
¢(z,2n) = d(z, I (anJpu+ (1 = an) JpTyn))
= ||1z|1* = 2(z, anJEu + (1 — o) JETyn)
+ |anJEu + (1 — an) JpTyn|*
= |12]1* = 2an(z, Jpu) — 2(1 — an)(z, JETyn)
+agul® + (1= an)l| Tyl
= and(z,u) + (1 — an)d(z, Tyn)
< and(z,u) + (1 = an)d(z, yn)
< and(z,u) + (1 — an)d(z, xy).
Using this, we get that
0(2,2nt1) = B2, I (BT ptn + (1 = Ba) J52n)
= [|1211* = 2(2, BuJg@n + (1 = Bn) JE20)
+ |Bnd B + (1= Bn) Jpznl®
= [I2lI” = 2Bn(z, Jpwa) — 2(1 = Ba)(z, JE2n)
+ Ballznl® + (1 = Ba)llznll?
= Bnd(z,xn) + (1 = Bn)d(2, 2n)
< Bnd(z,2zn) + (1 = Bn)(and(z,u) + (1 — an)o(z, zn))
= (1= an(l = Bn))o(z, 2n) + an(l = Bn)o(z,u).
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Putting K = max{¢(z,x1),¢(z,u)}, we have that ¢(z,x,) < K for all n € N. In
fact, it is obvious that ¢(z,z1) < K. Suppose that ¢(z,z;) < K for some k € N.
Then we have that
¢(z,2p41) < (1= aw(l = Br))d(2, 21) + ar(l = B)¢(z, u)
< (1 —ap(l=Bp)K + ap(l - Br)K = K.
By induction, we obtain that ¢(z,x,) < K for all n € N. Then {x,} is bounded.
Furthermore, {Azy,}, {2, } and {y, } are bounded. Take 20 = Ilp(p)na-1pryu. Since
Zp = Jbil(anJEu + (1 — o) JETYy), we have that
JExn+1 —Jgx, = BnJE-rn + (1 - 6n)JEZn — Jpxy

(33) = (1 - Bn)(JEzn - JE:L’x)

= (1 - Bn){anJEu + (1 - an)JETyn - JE-fUn}

=1 - ) {an(Jeu — JETyn) + JeTyn — Jezn }.
From (2.5) and (3.2), we have that

2(20 — T, JETYn — JETn) = ¢(20, Tn) + &(Tn, Tyn) — ¢(20, T'Yn)
(3.4) > ¢(20, Tn) + ¢(zn, TYn) — ¢(20, Yn)
> (20, 2n) + A(Tn, Tyn) — ¢(20, Tn)
= ¢(zn, Tyn)

From (3.3) and (3.4), we have that
2(z0 — xp, JETn11 — Jpn) = 2(1 — Bn)an(z0 — Tn, Jpu — JETyn)
(3.5) +2(1 = Bn){z0 — Tny JETYn — JExn)
> 2(1 — Bp)an(z0 — Tn, Jpu — JgTyy)
+ (1 = Bn)(@n, Tyn).
Furthermore, using (2.5) and (3.5), we have that
d(20, Tn) + &(Tn, Tnt1) — ¢(20, Tns1) > 2(1 — Bp)an(z0 — Tn, JEU — JETYn)
(1~ B Tom)
Setting I, = &(20, zy), we have that
(3.6) Iy — i1 4 d(xn, 2ng1) > 2(1 — Bn)an(zo0 — xpn, Jpu — JETyn)
+ (1 = Bn)d(@n, Tyn)

and hence

(3.7) Lni1 — Iy < d(xn, 1) —2(1 = Bn)an(z0 — zpn, Jpu — JpTyn)
- (1 - 6n)¢(meyn)~

Putting

r = max { sup ||zy,]|, sup HZnH}’
neN neN
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we have from Lemma 2.4 that there exists a strictly increasing, continuous and
convex function g : [0,00) — [0, 00) such that ¢g(0) = 0 and
IAa + (1= Nyll* < Al + (1 = Nyll* = A1 = Ng(llz — yl)
for all z,y € B, and X with 0 < X <1, where B, = {z € E* : ||z|| < r}. Using this,
we have that
(2n, Tny1) = Han2 — 2z, Bndpzn + (1 = Bn)JE2n)
+[|BndErn + (1 — Bn)JEZnHQ
< lznll? = 2(zn, BadpTn + (1 — Bn)Jp2n)
+ Ballzall? + (1= B)llznl® = Bu(1 = Bu)g(|Tpzn — Jpzal))
= Bn@(Tn, Tn) + (1 — Bn)d(@n, 2n)
(3-8) = Bn(1 = Bu)g(llJezn — Jpznl)
= (1= Bn)p(xn, 2n) = Bn(1 = Bu)g([|[Jpxn — JE20|)
= (1 = B){l|znll® = 2(xn, anJpu + (1 — ) JETyn)
+ [|anJpu + (1 — an) JETy,||*}
= Bn(1 = Bn)g(|JETn — JE20)
< (1= Bp){and(@n, u) + (1 — an)d(zn, Tyn) }
— Bn(1 = Bn)g( JEzn — JE20])).
We have from (3.7) and (3.8) that

Lo = Iy < (@, o) — 2(1 = Bp)an(20 — Tn, Jpu — JETYn)

— (1= Bn)9(@n, Tyn)

< (1= Bu){and(@n, u) + (1 — an)d(zn, Tyn)}
= Bn(1 = Bn)g(| Jexn — JE20]|)
—2(1 = Bn)an(z0 — zn, JEu — JETYn)
— (1= Bn)d(wn, Tyn).

= (1 = Bp){and(zn, u) + (1 — an)d(@n, Tyn) }
= Bu(1 = Bn)g(| Jexn — JE20]|)
— (1= Bp)an{ (20, Tyn) + ¢(zn, u) — ¢(20, u) — d(zn, Tyn)}
— (1= Bn)9(xn, Tyn)

= (1 = Bn)and(xn, u) + (1 = Bn)(1 — an)d(xn, Tyn)
= Bu(1 = Bn)g(| Jezn — JE20]|)
= (1= Br)an{d(z0, Tyn) + ¢(n, u) — d(20,u)}
+ (1 = Bn)and(@n, Tyn) — (1 = Brn)p(xn, Tyn)

= (1= Bn)and(@n, u) + (1 — Bn)@(zn, Tyn)
= Bn(1 = Bn)g(| Jezn — JE20])
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— (1= Bp)an{ (20, Tyn) + d(zn,u) — d(20,u)}
— (1= Bn)d(@n, Tyn)
= (1= Bn)and(zn, u) — Bn(l = Bn)g(Jezn — Jpznll)

— (1 = Bn)an{9(20, Tyn) + ¢(zn,u) — ¢(20,u)}

and hence
Lop1—IL + Bu(1 = Bn)g(| JExn — JE20])
(3.9) < (1= Bn)ang(zn, u)
— (1= Bn)an{d(20, Tyn) + ¢(xn,u) — ¢(20,u)}.

We will divide the proof into two cases.

Case 1: Suppose that there is a natural number N such that I3, < I3, for all
n > N. In this case, lim,_, I}, exists and then lim, o (I},+1 — I,) = 0. Using
lim,, oo @y, =0 and 0 < a < B, < b < 1, we have from (3.9) that

(3.10) lim ||Jgz, — Jgzy| = 0.
n—oo
We also have that
(3.11) lJezn — JETYn|| = lanJeu + (1 — o) JETYn — JET yn |
= ay||Jgu — JgTy,|| — 0.

Furthermore, from ||JgTy, — Jpxn| < |JETYn — Jezn|| + || JE2n — JEy]|, Wwe have
that

(3.12) lim [|J5Tyn — Juza] = 0.
From (3.3) we have that
(3.13) li_>m lJepzn+1 — Jpx,|| = 0.
We have from (3.1) that
ra((1—n) — ern || A|?) | Az, — U Az, ||?
< QS(van) - Qb(z’yn)
= 2(z, JETYyn — Jgn) + |Jewal|2 — (| JETYn||2
= 2(2, JETyn — JE$n>
+ (I Tzl = IETYn ) (| JEzRll + | TETYnll)
< 2||2|| JETyn — Jzn|
+ |Jezn — JETYul|([[ TETnll + | TET Ynl|)-

Since0<d<r,<vy< Cﬁ;ﬁg and ||JgTy, — Jpxy| — 0 from (3.12), we have that

(3.14) li_>m |Az,, — UAz,|* = 0.
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Furthermore, since
Jeyn — Jpxy = —rn A" Jp(Az, — UAx,),
we have (3.14) that

(3.15) lim [ Jp2n — Jpyal = 0.
We show that
(3.16) lim sup(z,, — 20, Jpu — Jgzo) <0,
n—oo

where zo = Ilpp)na-1p@yu. Put I = limsup,_,.(vn — 20, JEu — JEzo). Then
without loss of generality, there exists a subsequence {z,,} of {z,} such that
[ = lim (x,, — 20, JEu — JE20)
1—00

and {z,,} converges weakly to some point w € E. Since ||Jgx, — JEyn|| — 0 from
(3.15) and lim,, o0 || JETYn — JExy|| = 0 from(3.12), we have

lim |[JgTyn — JEYn|l = 0.

n—oo

Since E* is uniformly smooth, we have lim,, oo || Ty — yn|| = 0. Since ||Jpx, —
Jeyn|| — 0 and hence ||z, — yn|| — O from the uniform smoothness of E*, we
have that {yn,} converges weakly to some point w € FE. Since T is relatively
nonexpansive, we get that w € F(T). On the other hand, from (3.14) we have that

lim [|Az, — UAz,| =0.

n—o0

Since {zp,} converges weakly to w € E and A is bounded and linear, we also have
that {Az,,} converges weakly to Aw. Using the demiclosedness of U, we have that
Aw = UAw. Therefore, w € F(T)N A“*F(U). Since {z,,} converges weakly to
w € F(T)N A"'F(U), we have that

[l = Alim (xnl — 20, JEu - JEZD> == <w — 20, JE’LL - JEZQ> < 0.
1—00

Since z,, = ng(anJEu + (1 — a)JETYy), we have from Lemma 2.14 that
(20, 20) = d(20, I (anTpu + (1 = an) JETyn))
= ||l20/|* = 2(20, anJEu + (1 — ) JTyy)
+ |lanJpu + (1 — ozn)JETynH2
= V(z0,anJpu+ (1 — an) JgTyn)
< V(z0,anJpu+ (1 — an) JETYn — an(Jpu — JE20))
+ 2an<J§1(anJEu + (1 — an)JETYn) — 20, Jeu — JE20)
= V (20, anJEz0 + (1 — an) JETyn)
+ 20 (zn — 20, JEU — JE20)
= ||l20]|* = 2(20, anJE20 + (1 — ) JETyn)
+ |anTz20 + (1 — an) JeTyn|*
+ 20 (2n — 20, JEU — JE20)
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< (1= an)9(20, Tyn) + 200 (20 — 20, JEU — JE20)
< (1 = an)o(20, ) + 200, (20, — 20, Jpu — JE20)

Thus we have that

$(20, Tnt1) < Bnd(20, Tn) + (1 — Bn)@(20, 21)
< Bnd(20, Tn)
+ (1= Bpn) (1 — an)d(z0, xn) + 20 (2 — 20, JEU — JE20))
= (Bn + (1 = Bn)(1 — an)) d(20, zn)
+2(1 = Bn)an(zn — 20, JEu — Jp20)
= (1— (1= Bn)an)9(20, Tn)
+2(1 = Bn)an((zn — zpn, Jpu — Jp20) + (xn, — 20, Jpu — Jp20)).

Since > > (1 — By)an = 00, by Lemma 2.12, (3.16) and =, — 2, — 0, we obtain
that z,, — zo.

Case 2: Suppose that there exists a subsequence {I},, } of the sequence {I},} such
that I,, < I},,+1 for all ¢ € N. In this case, we define 7 : N — N by
T(n) =max{k <n: [} < Ik}

Then we have from Lemma 2.13 that I’;,) < I7(n)+1- Thus we have from (3.9)
that for all n € N,

B’T(n)(]‘_BT(TL))Q(HJE’ZT(R) - JExT(n)||)
< (1 = Brin))r(m) (2 (ny > )
- (1 - Br(n))ar(n){d)(z()a TyT(n)) + ¢(xT(n)7 ’LL) - ¢(20a u)}

Using lim, yocap =0 and 0 < a < 3, < b < 1, as in the proof of Case 1 we have
that

(3.17) lim || Jezr(n) — JET- ()|l = 0.

n—o0

As in the proof of Case 1 we also have that

n—o0

Since
HJETT(TL)yT(n) - JEmT(n)H
< WWETr(m)Yr(n) — JEZr(m) | + I1TEZ7(0) — TETz () I,
we have that

lim
n—oo
As in the proof of Case 1 we also have that

(3.20) i (| Jpzr(n) 11 = Jpzem)ll = 0.
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Furthermore, as in the proof of Case 1 we have that

. _ 2 _
(3.21) nhﬁnolo HAxT(TL) UA{/CT(n) H =0.
and

(3.22) nli_g)lo | TET7(n) — JEY-(n)l| = 0.

Since E* is uniformly smooth, we have from (3.17), (3.18), (3.20) and (3.22) that

HZT(n) — l‘T(n)” — 0, . ||Ty7(n) — ZT(?’L)H — 0, ||x7—(n)+1 — xT(n)H — O, . and er(n) —
Yr(n)ll = O, respectively.
For zo = Upr)na-1r@)u, let us show that

lim sup(2,(,) — 20, JE20 — JEu) > 0.
n—oo

Put [ = limsup,,_, o (T7(n) — 20, Je20 — JEu). Without loss of generality, there exists
a subsequence {Z,(p,)} of {Z;(,)} such that

l= 'lim <x'r(nz-) — 20, JEZO - JEU>
1—+00

and {z,(,,)} converges weakly to some point w € E. From [|y;p) — -l — 0,
{Yr(n,)} converges weakly to w € E. Furthermore, since |z, — Zrm)l — 0, we
also have that {z;(,,)} converges weakly to w € E. As in the proof of Case 1 we
have that w € F(T) N A71F(U). Then we have

[l = llim <$T(nl) — 20, JEZQ - JEU> = (w — 20, JEZ() - JEU> > 0.
1—00

As in the proof of Case 1, we also have that

(20, 27(n)) < (1 = @r(n))0(20, TYr(n)) + 207(n) (22 (n) — 20, JEU — JE20)
and then

QS(ZO? xT(n)+1) < (/B‘r(n) + (1 - BT(n))(l - aT(n))) ¢(207 x‘r(n))
+ 2(1 - BT(N))aT(n) <ZT(7L) — 20, JEu — ‘]EZO>'

From I7.(,;) < I’ (n)41, We have that

(1 = Br(n)) () (20, Tr(n)) < 2(1 = Brn))Qr(n) (Zr(n) — 20, JEU — JE20)-
Since (1 — Br(n))ar(ny > 0, we have that

P(20, 7(n)) < 2(27(n) — 20, JEU — JE20)

= 2<ZT(n) - xT(n), JEu - JEZO> + 2(xT(n) — 20, JEu - JEZ()>.
Thus we have that
lim sup ¢(xzo,7'(n)) <0

n—oo
and hence ¢(20, Z7(,)) — 0. From (3.20), we have also that Jgz,(n) — JET7(n)41 — 0
and hence ¢(2;(n), Tr(n)+1) — 0 as n — 0. Using these results, we have that
?(20); Tr(n)+1) — 0. Using Lemma 2.13 again, we obtain that

¢(ZO7 $n) < QZ)(ZO» xT(TL)—‘rl) —0

as n — oo. This implies that x, — z9. This completes the proof. U
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Problem. Can we remove the condition “E* is a 2-uniforly smooth Banach space”
in Theorem 3.27

4. APPLICATIONS

In this section, using Theorem 3.2, we first get well-known and new strong conver-
gence theorems which are connected with the feasibility problem, the split common
null point problem and the split common fixed point problem in Hilbert spaces and
in Banach spaces. We know the following result obtained by Marino and Xu [22];
see also [41].

Lemma 4.1 ([22, 41]). Let H be a Hilbert space, let C' be a nonempty, closed and
convex subset of H and let k be a real number with 0 < k < 1. LetU : C — H be a
k-strict pseudo-contraction. If x,, = z and x, — Uz, — 0, then z € F(U).

We also know the following result from Kocourek, Takahashi and Yao [15]; see
also [43].

Lemma 4.2 ([15, 43]). Let H be a Hilbert space, let C' be a nonempty, closed and
conver subset of H and let U : C — H be generalized hybrid. If x, — z and
Xy — Uxy — 0, then z € F(U).

The following theorem was prove by Takahashi [36].

Theorem 4.3. Let H be a Hilbert space and let F' be a smooth, strictly convex
and reflexive Banach space. Let Jp be the duality mapping on F and let n be a
real number with n € (—oo,1). Let T : H — H be a nonexpansive mapping and
let U : F — F be an n-demimetric and demiclosed mapping with F(U) # (0. Let
A: H — F be a bounded linear operator such that A # 0 and let A* be the adjoint
operator of A. Suppose that F(T)NAF(U) # 0. Foru,z1 =2 € H, let {x,} C H
be a sequence generated by

Tpt1 = Bntn + (1 — Bn)(anu + (1 —an)T(xy —rn, A" Jp(I — U)Aa:n))
for all n € N, where a,b,6,v € R, {r,} C (0,00), {an} C (0,1) and {Bn} C (0,1)
satisfy

1—n
| A]|2°

0<o<r, << O<a<pB,<b<1l, VneN,

(o)
lim o, =0 and E Qay, = 00.
n—oo 1

n=

Then the sequence {x,} converges strongly to a point zg € F(T)NATIF(U), where
20 = Prr)na-1r@)u-

Proof. A Hilbert space H is a 2-uniformly smooth Banach space which has the
best smoothness number 1 > 0. Since 7' is a nonexpansive mapping of H; into
H; such that F(T) # 0, it is relatively nonexpansive. Since F(T) N A~1F(U) is
nonempty, closed and convex. there exists the metric profection Pp(7)na-1p1) of
H onto F(T) N A™'F(U). From Theorem 3.2, we have the desired result. O
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The following are two strong convergence theorems for solving the split common
fixed point problem in two Hilbert spaces.

Theorem 4.4. Let Hy and Hs be Hilbert spaces. Let k be a real number with
k € ]0,1). Let T : Hi — Hj be a nonspreading mapping with F(T) # () and let
U : Hy — Hs be a k-strict pseudo-contraction with F(U) # (0. Let A : Hy — Hs
be a bounded linear operator such that A # 0 and let A* be the adjoint operator of
A. Suppose that F(T)N A YF(U) # 0. For u,m1 = x € Hy, let {x,} C Hy be a
sequence generated by

Tp41 = ﬁnmn + (1 - Bn)(anu + (1 - O[n)T(l?n - TnA*(I - U)Al‘n))

for all n € N, where a,b,0,v € R, {r,} C (0,00), {an} C (0,1) and {B,} C (0,1)
satisfy

k
0<6§rn§7<w, 0<a<pB,<b<l1l, VneN,

oo
nlLIEOaH =0 and nz::lan = 00.
Then {x,} converges strongly to a point zg € F(T) N A~'F(U), where zp =
Prryna-1ruyu-
Proof. Since T is nonspreading of H; into Hy, from (2) in Examples, it satisfies the
following:
2Tz~ Ty|* < |Tx —y|* + | Ty — =], Va,y € Hi.
Putting y = p for p € F(T'), we have that
2|Tx —y|* < | T —yl* + lly —«|?, Ve H
and hence
1Tz —y|* < |ly —z|? vz e Hi.
This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.2
that T is demiclosed. On the other hand, since U is a k-strict pseudo-contraction
of Hy into Hs such that F(U) # ), from (1) in Examples, U is k-demimetric.
Furthermore, from Lemma 4.1, U is demiclosed. Therefore, we have the desired
result from Theorem 3.2. U

Theorem 4.5. Let Hy and Hsy be Hilbert spaces. Let T : Hy — Hy be a hybrid
mapping with F(T) # O and let U : Hy — Hy be a generalized hybrid mapping
with F(U) # 0. Let A : Hi — Hs be a bounded linear operator such that A # 0
and let A* be the adjoint operator of A. Suppose that F(T) N A~ F(U) # (). For
u,x1 =x € Hy, let {z,} C H be a sequence generated by

Tnt1 = Bnan + (1= Bp) (anu + (1 — )T (2, — rn A*(I — U)Axy,))

for all n € N, where a,b,0,7 € R, {r,} C (0,00), {an} C (0,1) and {Br} C (0,1)
satisfy

1
0<5§rn§7<w, 0<a<p,<b<l1l, VneN,
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oo

nli_)rgloan =0 and Zan = 00.
n=1

Then {xz,} converges strongly to a point zo € F(T) N A'F(U), where zg =

Prryna-1rw)u-

Proof. Since T is a hybrid mapping of H; into Hy such that F(T) # 0, from (2) in

Examples, it satisfies the following:

3T — Ty|* < llz — y|* + ITx —y|* + | Ty — 2|*, Va,y € Hi.
Putting y = p for p € F(T'), we have that
3T — yl” < |l =yl + T2 — yl* + lly — =|*, Vo H

and hence

1Tz = yl* < |ly — =|? Va e H.
This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma
4.2 that T is demiclosed. Since U is a generalized hybrid mapping of Hs into Ho
such that F(U) # 0, from (2) in Examples, U is 0-demimetric. Furthermore, from
Lemma 4.2, U is demiclosed. Therefore, we have the desired result from Theorem
3.2. O

The following theorem is a strong convergence theorems for solving the feasibility
problem in two Banach spaces.

Theorem 4.6. Let E be a uniformly convexr and uniformly smooth Banach space
which E* is 2-uniformly smooth and it has the best smoothness number ¢ > 0. Let
F be a smooth, strictly conver and reflexive Banach space. Let Jg and Jr be the
duality mappings on E and F, respectively. Let C' and D be nonempty, closed and
convex subsets of B and F', respectively. Let Ilo and Pp be the generalized projection
of E onto C' and the metric projection of F' onto D, respectively. Let A: H — F
be a bounded linear operator such that A # 0 and let A* be the adjoint operator of
A. Suppose that CNA™ID # 0. For u,z1 = x € E, let {x,} C E be a sequence
generated by

Yn = Jbil (JEmn — rpA*Jp(Ax, — PDAxn)),
Zn = ng(anJEu + (1 — Oén)JEHC’yn>a
Tni1 = I (Budprn + (1 — Bn)JEzn), Yn €N,

where a,b,8,v € R, {r,} C (0,00), {an} C (0,1) and {Bn} C (0,1) satisfy the
following:

oo
nli_)n;oozn—o, Zan—oo,
n=1
2
O<5§rn§’y<W and 0<a<pB,<b<l1l, VneN.
c

Then {z,} converges strongly to a point zg € C N A™ID, where 2o = Upna-1pu.
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Proof. Since Il is the genralized projection of E onto C, we have from Lemma 2.7
that

o(z,Heox) < ¢(z,z), YxeFE, zeC.

We show that Il is demiclosed. In fact, assume that x,, — p and x,, — llcx, — O.
It is clear that IIcx,, — p. Since E is uniformly smooth, we have that ||Jpz, —
Jellox,| — 0. Since Il is the generalized projection of E onto C, we have that

(Iecxp — ep, Jpx, — Jellox, — (Jep — Jellep)) > 0.

Therefore, (p — Hep, —(Jep — Jellep)) > 0 and hence ¢(p, Hep) + ¢(Hep, p) < 0.
This implies that p = Ilop and hence Il is demiclosed. On the other hand, since Pp
is the metric projection of F' onto D, from (3) in Examples, Pp is (—1)-demimetric.
We also have that if {z,,} is a sequence in F' such that z,, — p and =, — Ppx,, — 0,
then p = Ppp. In fact, assume that z,, — p and x, — Ppz,, — 0. It is clear that
Ppz, — p and ||Jp(z, — Ppzy)|| = ||xn — Ppxn|| — 0. Since Pp is the metric
projection of F' onto D, we have that

(Ppxyn — Ppp, Jp(zy, — Ppxy) — Jp(p — Ppp)) > 0.

Therefore, —||p — Pppl||?> = (p — Ppp, —Jr(p — Ppp)) > 0 and hence p = Ppp. This
implies that Pp is demiclosed. Therefore, we have the desired result from Theorem
3.2. O

The following theorem is a strong convergence theorems for solving the split null
point problem in two Banach spaces.

Theorem 4.7. Let E be a uniformly convexr and uniformly smooth Banach space
which E* is 2-uniformly smooth and it has the best smoothness number ¢ > 0. Let F'
be a smooth, strictly convex and reflexive Banach space. Let Jg and Jp be the duality
mappings on E and F', respectively. Let B and G be mazximal monotone operators of
E into E* and F into F*, respectively. Let @, be the generalized resolvent of B for
@ >0 and let Jy be the metric resolvent of G for A > 0, respectively. Let A: E — F
be a bounded linear operator such that A # 0 and let A* be the adjoint operator of
A. Suppose that B~10N A=Y(G710) # 0. For u,m1 = 2 € E, let {x,} C E be a
sequence generated by

Yn = J}EI (JE:L'n — rpA*Jp(Azxy, — J,\AiL‘n)),
Zn = ng(anJEu + (1 — an)JEQuyn),
Tnt1 = I  (Budprn + (1 — Bn)Jpzn), Yn €N,

where a,b,6,v € R, {r,} C (0,00), {an} C (0,1) and {B,} C (0,1) satisfy the
following:

o0
lim «, =0, E Qy = 00,
n—oo

n=1

0<d<r, << and 0<a<f,<b<l1l, VneN.

2
cl|All?
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Then {x,} converges strongly to a point zg € B~'0 N A~Y(G~10), where zg =
HB—lomA—l(G—lo)’LL.

Proof. Since @, is the generalized resolvent of B on E, we have from Lemma 2.10
that

o(2,Quz) < ¢(2,7), VreE, € B0.

Next, we show that Ilg is demiclosed. In fact, assume that z, — p and =z, —
Qury — 0. It is clear that Q,z, — p. Since E is unifrmly smooth, we have that

|Jexn — JEQuxy)|| — 0. Since @, is the generalized resolvent of B, we have from
[4] that

<Q,uxn - Q,up7 JET, — JEQu-xn - (JEp - JEQMP)) > 0.

Therefore, (p — Qup, —(Jep — JEQup)) > 0 and hence ¢(p, Q.p) + ¢(Qup,p) < 0.
This implies that p = Q,p and hence @, is demiclosed. On the other hand, since J)
is the metric resolvent of G for A > 0, from (4) in Examples, J is (—1)-demimetric.
We also have that if {z,,} is a sequence in F' such that z, — p and z,, — Jxz, — 0,
then p = Jyp. In fact, assume that x,, — p and x,, — Jyz, — 0. It is clear that
Iarn, = pand || Jp(zn —Jaxn)|| = [|zn— Jazn| — 0. Since J) is the metric resolvent
of G, we have from [4] that

(Nrxn — I, Jp(xn — Jazn) — Jr(p — Jap)) > 0.

Therefore, —||p — Jyp||? = (p — Jap, —Jr(p — Jxp)) > 0 and hence p = Jyp. This
implies that Jy is demiclosed. Therefore, we have the desired result from Theorem
3.2. O
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