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- the (Yosida) regularization of the normal cone (see [28] and the recent survey
[31] along with the references therein) through the family of ordinary differential
equations

uν(T0) = u0 and − u̇ν(t) =
1

2ν
∇d2D(t)(uν(t)) with ν > 0.

Due to its numerous applications (mechanical problems ([4]), resource allocation in
economics ([22]), crowd motion ([25]), nonregular electrical circuits ([1]), variational
inequalities [36], etc.), the original (first order) Moreau’s sweeping process has been
extended in various directions (see, e.g., [11, 26, 24, 8, 23, 17, 10] and the references
therein).

Besides first order works, the second order theory has been also well investigated.
Roughly speaking, it is divided into two families of inclusions, depending on the
point considered in the outward normal

−ü(t) ∈ N
(
C(t);u(t)

)
or − ü(t) ∈ N

(
C(u(t)); u̇(t)

)
.

For the first inclusion with outward normal at the state/position, we refer for in-
stance to [34] and the references therein. The second problem with outward normal
at the velocity has been introduced by C. Castaing in [12] at the end of eighties and
then developed in a great number of works including [26, 13, 8, 2, 3, 5, 32]. Among
those studies, we mention the (quite natural in view of (P)) problem of second order
state-dependent sweeping process, that is,

(Q)


−ü(t) ∈ N

(
C(t, u(t)); u̇(t)

)
+ F

(
t, u̇(t), u(t)

)
,

u̇(t) ∈ C(t, u(t)),

u(0) = u0, u̇(0) = v0.

The latter inclusion has been first investigated in [13] for a (nonconvex) prox-regular
(see the definition below) ball-compact moving set C(t, x) ⊂ H. For other develop-
ments, we refer to [2] for an alternative compactness condition and to [3, 5] for BV
versions of (Q).

Recently, a deep link beetwen problems (P) and (Q) has been brough to light by
J. Noel ([33]) and M. Yarou ([41]). Loosely speaking, through a clever change of
variables, both authors successfully reduce the problem (Q) to a first-order state-
dependent sweeping process (P). Unfortunately, such an approach seems to be
limited to the finite dimensional setting since it requires a ball-compactness property
of the whole space H. To overcome this difficulty, the authors of [32] introduced
the following measure differential inclusion (called ”First order Mixed partially BV
Sweeping Process”)

(FMSP)

{
−dΦ ∈ N

(
C(t,Φ(t))×Q; Φ(t)

)
+G(t,Φ(t))× {f(t,Φ1(t))} ,

Φ(t0) = (u0, q0).

The main interest of such an evolution problem lies in the fact that it encompasses
both inclusions (P) and (Q), in the sense that if Q = {0} (resp. Q = H) any solution
Φ of (FMSP) provides a trajectory x : I → H satisfying the first-order sweeping
process (P) (resp. the second order sweeping process (Q) with outward normal at
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the velocity). The existence of solutions for (FMSP) is studied in [32] for a prox-
regular ball-compact moving set in any Hilbert space. Recall that a (nonempty
closed) set S of the Hilbert space H is prox-regular with constant r provided that the
nearest point mapping projS is well defined on a suitable enlargement of S (namely
Ur(S) := {dS < r}) and continuous therein. This concept expresses a variational
behavior of order two since it is known (see, e.g., [16]) that the r-prox-regularity
property is equivalent to⟨

v, x′ − x
⟩
≤ ∥v∥

2r
∥x′ − x∥2 for all x, x′ ∈ S, v ∈ N(S;x).

Let us point out that prox-regularity has been well recognized as a powerful tool to
go beyond the convexity property in numerous and various contexts: selections and
parametrizations, differential inclusions, separation properties, best approximations
algorithms (see, e.g., the survey [16] and the references therein). Coming back to the
problem (FMSP), we mention that the continuity of u 7→ projC(t,u,y)(h) allows the

authors of [32] to apply Schauder’s fixed point result in order to construct a solution
of (FMSP) through the following appropriate Moreau catching-up algorithm-type:

(1.1)

 ynp+1 = projQ
(
ynp −

∫ tnp+1

tnp
f(s, xnp )ds

)
,

xnp+1 = projC(tnp+1,x
n
p+1,y

n
p+1)

(
xnp −

∫ tnp+1

tnp
projG(s,xn

p ,y
n
p )
(0)ds

)
.

Our main aim in this work is to provide an existence result for the problem (SP)
(that is, (FMSP) in an absolutely continuous setting) driven by a subsmooth
moving set C(t, u, v). The class of subsmooth sets ([6]) (see also the recent survey
[39]) strictly contains the class of prox-regular ones and describes a variational
behavior of order one, that is, for every ε > 0, the following estimate holds⟨

v, x′ − x
⟩
≤ ε∥v∥ ∥x′ − x∥,

for appropriate x, x′ ∈ S and every v ∈ N(S;x). The lack of regularity (continu-
ity) for the nearest point mapping of a subsmooth set leads to replace the second
implicit-type equality of (1.1) by the following (explicit-type) inclusion

xnp+1 ∈ ProjC(tnp+1,x
n
p ,y

n
p )

(
xnp −

∫ tnp+1

tnp

projG(s,xn
p ,y

n
p )
(0)ds

)
.

As in [32], the existence of solution for our problem will entail the existence of
solutions for both subsmooth sweeping processes (P) and (Q). Our present pa-
per complements the very few number of works dealing with sweeping processes
governed by a subsmooth set ([21, 23, 5]).

The paper is organized as follows. Section 2 is devoted to the introduction of
notation and the necessary preliminaries. In Section 3, we state and prove our main
existence result for the problem (SP) governed by a subsmooth set with a Lipschitz
variation. In Section 4, we use Moreau’s reduction technique to obtain a solution of
(SP) in the absolutely continuous framework. Such an existence result is applied
in Section 5 to obtain a trajectory solution of the second order state-dependent
sweeping process with outward normal at the velocity.
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2. Notation and preliminaries

Throughout, H is a real Hilbert space endowed with the inner product ⟨·, ·⟩ and
the associated norm ∥·∥. The open (resp. closed) ball of H centered at x ∈ H with
radius r > 0 is denoted by B(x, r) (resp. B[x, r]). The letter B denotes the closed
unit ball of H, that is, B := B[0, 1]. The distance function from a nonempty subset
S ⊂ H is defined by

dS(x) :=: d(x, S) := inf
y∈S

∥x− y∥ for all x ∈ H.

For any x ∈ H, the (possibly empty) set of nearest points of x in S is defined as

ProjS(x) := {y ∈ S : dS(x) = ∥x− y∥} .

If the latter set is reduced to a singleton, we denote projS(x) its unique element. The
Hausdorff-Pompeiu distance between two nonempty subsets S1, S2 ⊂ H is defined
as the extended real

haus(S1, S2) := max

{
sup
x∈S1

d(x, S2), sup
x∈S2

d(x, S1)

}
.

It is known (and not difficult to prove) that

(2.1) haus(S1, S2) := sup
x∈H

|d(x, S1)− d(x, S2)| .

As usual, N denotes the set of integers starting from 1 and R⋆
+ :=]0,+∞[ the

set of nonnegative reals. In all the paper, λ stands for the Lebesgue measure of
an interval I := [T0, T ] ⊂ R with T0 < T . The λ-Bochner integrability will play
an important role in what follows. Recall that for p ∈ [1,+∞[∪{∞}, a (class) of
mapping f : I → H belongs to the Lebesgue-Bochner space Lp(I,H, λ) whenever
it is λ-Bochner (or λ-strongly) measurable on I (see, e.g., [18, Chapter 2]) and
∥f(·)∥ ∈ Lp(I,R, λ).

2.1. Normal cones and subdifferentials. Let S be a nonempty closed set of the
Hilbert space H. A vector v is a Fréchet normal vector to the set S at a point x ∈ S
provided that (see, e.g., [37, 27, 40])

lim sup
S∋x′→x

⟨v, x′ − x⟩
∥x′ − x∥

≤ 0,

that is, for every real ε > 0, there is a real δ > 0 such that⟨
v, x′ − x

⟩
≤ ε∥x′ − x∥ for all x′ ∈ B(x, δ) ∩ S.

The set NF (S;x) of all Fréchet normal vectors at x is a closed convex cone of H
containing 0 called Fr辿 chet normal cone of S at x. As usual, we set

(2.2) NF (S;x) := ∅ for all x ∈ H \ S.

For each v ∈ H with w ∈ ProjS(v) ̸= ∅, we may obviously write d2S(v) = ∥w − v∥2,
or equivalently, ⟨

v − w, x′ − w
⟩
≤ 1

2
∥x′ − w∥2 for all x′ ∈ S,
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and this ensures in particular the crucial inclusion

(2.3) v − w ∈ NF (S;w).

Besides the Fr辿 chet normal cone, we also need to consider the Clarke one. The
Clarke normal cone of S at x ∈ S is defined as (see, e.g., [37, 14, 27, 40])

NC(S;x) :=
{
v ∈ H : ⟨v, h⟩ ≤ 0,∀h ∈ TC(S;x)

}
,

where TC(S;x) denotes the so-called Clarke tangent cone of S at x

TC(S;x) :=
{
h ∈ H : ∀S ∋ xn → x,∀R⋆

+ ∋ tn ↓ 0,∃hn → h, xn + tnhn ∈ S, ∀n ∈ N
}
.

It is easily checked that TC(S;x) is a closed convex cone containing 0. As (2.2),
one puts TC(S;x) := NC(S;x) := ∅ for every x outside S. It is known that the
Fréchet normal cone is always included in the Clarke one, i.e.,

(2.4) NF (S;x) ⊂ NC(S;x) for all x ∈ H.

If S is (closed) convex, then it is also known that the Fréchet and Clarke normal
cones coincide with the one in the sense of convex analysis, that is,

NF (S;x) = NC(S;x) = {v ∈ H :
⟨
v, x′ − x

⟩
≤ 0, ∀x′ ∈ S} for all x ∈ S.

Let f : U → R∪{+∞} be a function defined on a nonempty open subset U of H.
Through the above concepts of normal cones, one defines the Fréchet subdifferential
∂F f(x) and the Clarke subdifferential ∂Cf(x) of f at x ∈ U by

(2.5) ∂F f(x) :=
{
v ∈ H : (v,−1) ∈ NF

(
Ef ;

(
x, f(x)

))}
and

(2.6) ∂Cf(x) :=
{
v ∈ H : (v,−1) ∈ NC

(
Ef ;

(
x, f(x)

))}
,

where H× R is endowed with the usual product structure and

Ef := epi f := {(u, r) ∈ U × R : f(u) ≤ r}.

It follows from the very definition of the latter subdifferentials that ∂F f(x) = ∅ and
∂Cf(x) = ∅ whenever f is not finite at x ∈ U . From (2.5), (2.6) and (2.4), it is
readily seen that

∂F f(x) ⊂ ∂Cf(x) for all x ∈ U.

The Fréchet subdifferential can also be described in a variational way, namely

∂F f(x) =

{
v ∈ H : lim inf

x′→x

f(x′)− f(x)− ⟨v, x′ − x⟩
∥x′ − x∥

≥ 0

}
,

for any x ∈ U with |f(x)| < +∞. Of course, when U is convex and the function f
is convex on U , the Fr辿 chet and Clarke subdifferentials coincide with the one in
the sense of convex analysis, i.e., for every x ∈ U with |f(x)| < +∞,

(2.7) ∂F f(x) = ∂Cf(x) =
{
v ∈ H :

⟨
v, x′ − x

⟩
≤ f(x′)− f(x), ∀x′ ∈ U

}
.
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If f is the distance function associated to the closed (not necessarily convex) set S
(that is, f = dS) then we have the following description of its Fréchet and Clarke
subdifferential (see, e.g., [9, 40])

(2.8) ∂FdS(x) = NF (S;x) ∩ B and ∂CdS(x) ⊂ NC(S;x) ∩ B for all x ∈ S.

For a function f which is γ-Lipschitz near x ∈ U for some real γ ≥ 0, it is known that
(see [14, 40]) the Clarke subdifferential is nonempty, weakly compact and satisfies

∂Cf(x) = {v ∈ H : ⟨v, h⟩ ≤ fo(x;h), ∀h ∈ H} ⊂ γB,

where fo(x;h) is the Clarke directional derivative at x in the direction h ∈ H defined
by

fo(x;h) := lim sup
t↓0,x′→x

t−1
(
f(x′ + th)− f(x′)

)
.

Under the latter Lipschitz assumption on the function f , the Clarke derivative
fo(x; ·) of f at x is nothing but the support function of the closed convex set
∂Cf(x). Recall that for any subset A ⊂ H, its support function σ(·, A) is defined by

σ(ξ,A) := sup
x∈A

⟨ξ, x⟩ for all ξ ∈ H.

As a direct consequence of the Hahn-Banach theorem, we get that the support
function characterizes the closed convex sets of H, in the sense that for every subsets
S1, S2 of H,

(2.9) co S1 ⊂ co S2 ⇔ σ(·, S1) ≤ σ(·, S2).

Here and below, co (resp. co) stands for the convex (resp. closed convex) hull of S.
Through the support function, we define the concept of scalar upper semicontinuity
as follows: a multimapping F : T ⇒ H from a Hausdorff topological space T to
the Hilbert space H is said to be scalarly upper semicontinuous whenever, for any
ξ ∈ H, the extended real-valued function σ(ξ, F (·)) : T → R := R ∪ {−∞,+∞} is
upper semicontinuous.

2.2. Subsmooth sets in Hilbert spaces. The class of uniformly subsmooth sets
will be fundamental in the rest of the paper. It was introduced in the Banach
framework by D. Aussel, A. Daniilidis and L. Thibault in [6]. More details can be
found in the recent and nice survey [39] (see also the forthcoming monograph [40]).
Let us start with the definition of uniformly subsmooth sets.

Definition 2.1. A nonempty closed subset S ofH is said to be uniformly subsmooth
whenever for every real ε > 0, there exists a real δ > 0 such that for all x1, x2 ∈ S
with ∥x1 − x2∥ < δ, for all v ∈ NC(S;x1) ∩ B, one has

⟨v, x2 − x1⟩ ≤ ε ∥x2 − x1∥ .

A nonempty family (Sj)j∈J of nonempty closed subsets of H is said to be equi-
uniformly subsmooth if for every real ε > 0, there exists a real δ > 0 such that for
all j ∈ J , for all x1, x2 ∈ Sj , for all v ∈ NC(Sj ;x1) ∩ B, one has

⟨v, x2 − x1⟩ ≤ ε ∥x2 − x1∥ .
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An important class of uniformly subsmooth sets is given by the class of uniformly
prox-regular sets ([35]). Recall that a nonempty closed subset S of H is said to be
r-prox-regular for some extended real r ∈]0,+∞], whenever for all x1, x2 ∈ S, for
all v ∈ NC(S;x1) ∩ B, one has

⟨v, x2 − x1⟩ ≤
1

2r
∥x1 − x2∥2 ,

with the convention 1
r := 0 whenever r = +∞. As mentioned in the very introduc-

tion of the paper, such a property expresses a variational behavior of order two while
a uniformly subsmooth set is related to the order one. Prox-regularity has been rec-
ognized as a key concept in variational analysis and its applications (see, e.g., [16]
and the references therein). It is worth pointing out that the subsmoothness prop-
erty of a set does not imply its prox-regularity (see [21] for a counterexample in
R2).

Proposition 2.2. The following hold:

(a) Any nonempty closed convex subset of H is uniformly subsmooth.
(b) Any nonempty family of nonempty closed convex subsets of H is equi-

uniformly subsmooth.

More generally, for any extended real r ∈]0,+∞], one has:

(c) Any r-prox-regular set of H is uniformly subsmooth.
(d) Any nonempty family of r-prox-regular subsets of H is equi-uniformly sub-

smooth.

Subsmooth sets enjoy the following Fr辿 chet-Clarke regularity properties:

Proposition 2.3. Let S be a uniformly subsmooth subset of H. The following hold:

(a) The set S is Fréchet-Clarke normally regular, i.e.,

NF (S;x) = NC(S;x) for all x ∈ H.

(b) The distance function dS is Fréchet-Clarke regular at every point of S, i.e.,

∂FdS(x) = ∂CdS(x) for all x ∈ S.

According to (a) of Proposition 2.3, we put

N(S;x) := NF (S;x) = NC(S;x) for all x ∈ H,

whenever the set S is uniformly subsmooth.
We end this section with the following result which provides an upper semicon-

tinuity property.

Proposition 2.4. [39, Proposition 10.4] Let E be a metric space and let (C(q))q∈E
be an equi-uniformly subsmooth family of the Hilbert space H. Let also Q ⊂ E,
q ∈ clQ (the closure of Q in E) and x ∈ C(q).

Then, for any net (qj)j∈J in Q converging to q with dC(qj)(x) →
j∈J

0, for any net

(xj)j∈J converging to x ∈ H, one has
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lim sup
j∈J

σ
(
h, ∂CdC(qj)(xj)

)
≤ σ

(
h, ∂CdC(q)(x)

)
for all h ∈ H.

3. Mixed partially state-dependent sweeping process in Lipschitz
setting

The present section is devoted to the development of the main result of the paper.
It provides sufficient conditions ensuring the existence of a Lipschitz trajectory
solution for the sweeping process (SP). Its proof will require a Gronwall-lemma
type that we recall below for the sake of the reader.

Lemma 3.1 (Gronwall). Let φ : I → R be an absolutely continuous function on
I, a : I → R and b : I → R be Lebesgue integrable functions on I. If for λ-almost
every t ∈ I,

φ̇(t) ≤ b(t) + a(t)φ(t),

then for all t ∈ I,

φ(t) ≤ φ(T0) exp

(∫ t

T0

a(s)ds

)
+

∫ t

T0

b(τ) exp

(∫ t

τ
a(s)ds

)
dτ.

Now, we are in a position to state and prove the main result of the paper.

Theorem 3.2. Let C : I×H2 ⇒ H and G : I×H2 ⇒ H be two multimappings and
f : I×H → H be a mapping. Let Q be a closed convex subset of H, (u0, q0) ∈ H×Q
with u0 ∈ C(T0, u0, q0). Assume that:

(i) The family
(
C(t, x, y)

)
t∈I,x,y∈H is equi-uniformly subsmooth and there exists

a real ρ > 0 such that

C(t, x, y) ⊂ ρB for all t ∈ I, x, y ∈ H;

(ii) for every x ∈ ρB, the mapping f(·, x) is λ-Bochner measurable on I and
there exist two reals β, l ≥ 0 such that

(3.1) ∥f(t, x)∥ ≤ β(1 + ∥x∥) for all t ∈ I, x ∈ ρB

and

(3.2)
∥∥f(t, x)− f(t, x′)

∥∥ ≤ l
∥∥x− x′

∥∥ for all t ∈ I, x, x′ ∈ ρB;

(iii) the set C
(
I × ρB× (κB ∩Q)

)
is relatively compact with

κ := ∥q0∥+ 2β(1 + ρ)(T − T0);

(iv) there exist a real L ∈ [0, 1[ and two reals K,L′ ≥ 0 such that

haus
(
C(t1, x1, y1), C(t2, x2, y2)

)
≤ K |t2 − t1|+ L ∥x1 − x2∥+ L′ ∥y1 − y2∥ ,

for all t1, t2 ∈ I, all x1, x2 ∈ ρB and all y1, y2 ∈ Q ∩ κB;
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(v) the multimapping G is nonempty closed convex valued, G(t, ·, ·) is scalarly
upper semicontinuous for each t ∈ I, and for each (x, y) ∈ ρB × (κB ∩ Q)
the mapping projG(·,x,y)(0) : I → H is λ-Bochner measurable on I and there
exists a real α ≥ 0 such that∥∥∥projG(t,x,y)(0)

∥∥∥ ≤ α(1 + ∥x∥+ ∥y∥),

for all t ∈ I, all x ∈ ρB and all y ∈ κB ∩Q.

Then, there exists a Lipschitz continuous solution Φ = (Φ1,Φ2) : I → H2 of the
differential inclusion (SP), that is:

(a) the mappings Φ1,Φ2 are Lipschitz continuous on I and satisfy Φ1(T0) = u0,
Φ2(T0) = q0 along with(

Φ1(t),Φ2(t)
)
∈ C

(
t,Φ1(t),Φ2(t)

)
×Q for all t ∈ I;

(b) for λ-almost every t ∈ I, one has

Φ̇2(t) + f
(
t,Φ1(t)

)
∈ −N

(
Q; Φ2(t)

)
;

(c) there exists a λ-Bochner integrable mapping z : I → H with

z(t) ∈ G
(
t,Φ1(t),Φ2(t)

)
λ-a.e. t ∈ I

and such that

Φ̇1(t) + z(t) ∈ −N
(
C(t,Φ(t)); Φ1(t)

)
λ-a.e. t ∈ I.

Proof. Let us start by setting for every (t, x, y) ∈ I ×H2,

g(t, x, y) := projG(t,x,y)(0),

that is, g(t, x, y) is the element of minimal norm of the nonempty closed convex
set G(t, x, y). It directly follows from assumption (v) that the mapping g(·, x, y) is
λ-Bochner integrable on I for any x ∈ ρB and any y ∈ κB∩Q. On the other hand,
we observe through assumption (iv) and (2.1) that

(3.3)

∣∣d(z1, C(t1, x1, y1))− d
(
z2, C(t2, x2, y2)

)∣∣ ≤ ∥z1 − z2∥+K(t2 − t1)

+ L∥x1 − x2∥+ L′∥y1 − y2∥,

for all t1, t2 ∈ I with t1 < t2 and x1, x2 ∈ ρB, y1, y2 ∈ Q ∩ κB and z1, z2 ∈ H.

Step 1. Construction of sequences (xnp )0≤p≤2n and (ynp )0≤p≤2n (n ≥ 1).
Fix for a moment any integer n ≥ 1. Let us start by setting

(3.4) xn−1 := xn0 := u0 ∈ C (T0, u0, q0) ⊂ ρB and yn0 := q0 ∈ Q ∩ κB

and

b := β(1 + ρ), c := α(1 + ρ+ κ) and d := 2c+K + 2L′b.

We also need to consider the partition of I by the points

tni := T0 + i∆n for all i ∈ {0, . . . , 2n} with ∆n :=
T − T0
2n

.
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We are going to construct by (finite) induction xn1 , . . . , x
n
2n and yn1 , . . . , y

n
2n , in H

such that for each p ∈ {0, . . . , 2n − 1},

(3.5)


κB ∋ ynp+1 = projQ

(
ynp −

∫ tnp+1

tnp
f(s, xnp )ds

)
,∥∥ynp+1 − ynp

∥∥ ≤ 2b∆n,

xnp+1 ∈ ProjC(tnp+1,x
n
p ,y

n
p )

(
xnp −

∫ tnp+1

tnp
g(s, xnp , y

n
p )ds

)
,∥∥xnp+1 − xnp

∥∥ ≤ d∆n + L∥xnp − xnp−1∥.

Set yn1 := projQ
(
yn0 −

∫ tn1
tn0
f(s, xn0 )ds

)
. Using the definition of yn1 , the inclusion

yn0 ∈ Q, the inequality ∥xn0∥ ≤ ρ (see (3.4)) and the inequality (3.1) in assumption
(ii), we obtain

∥yn1 − yn0 ∥ ≤

∥∥∥∥∥yn1 −
(
yn0 −

∫ tn1

tn0

f(s, xn0 )ds
)∥∥∥∥∥+

∫ tn1

tn0

∥f(s, xn0 )∥ ds

= dQ
(
yn0 −

∫ tn1

tn0

f(s, xn0 )ds
)
+

∫ tn1

tn0

∥f(s, xn0 )∥ ds

≤ 2

∫ tn1

tn0

∥f(s, xn0 )∥ ds ≤ 2β(1 + ∥xn0∥)(tn1 − tn0 ) ≤ 2b∆n,(3.6)

from which we easily derive

∥yn1 ∥ ≤ ∥yn0 ∥+ 2b∆n ≤ κ.

Thanks to the (strong) compactness property of C(tn1 , x
n
0 , y

n
0 ) ⊂ C

(
I×ρB×(κB∩Q)

)
(see assumption (iii)), we can choose

(3.7) xn1 ∈ ProjC(tn1 ,x
n
0 ,y

n
0 )

(
xn0 −

∫ tn1

tn0

g(s, xn0 , y
n
0 )ds

)
̸= ∅.

By (3.7), assumption (v), (3.3) and the inclusions provided by (3.4), we get

∥xn1 − xn0∥ ≤

∥∥∥∥∥xn1 −
(
xn0 −

∫ tn1

tn0

g(s, xn0 , y
n
0 )ds

)∥∥∥∥∥+

∫ tn1

tn0

∥g(s, xn0 , yn0 )∥ ds

≤ dC(tn1 ,x
n
0 ,y

n
0 )

(
xn0 −

∫ tn1

tn0

g(s, xn0 , y
n
0 )ds

)
+ α(1 + ∥xn0∥+ ∥yn0 ∥)∆n

≤ dC(tn0 ,x
n
0 ,y

n
0 )

(
xn0 −

∫ tn1

tn0

g(s, xn0 , y
n
0 )ds

)
+K∆n + α(1 + ρ+ κ)∆n

≤
∫ tn1

tn0

∥g(s, xn0 , yn0 )∥ ds+K∆n + c∆n ≤ (2c+K)∆n ≤ d∆n.(3.8)

Now, let p ∈ {1, . . . , 2n− 1}. Assume that xn1 , . . . , x
n
p and yn1 , . . . , y

n
p have been con-

structed, so that properties in (3.5) hold true. Set ynp+1 := projQ
(
ynp−

∫ tnp+1

tnp
f(s, xnp )ds

)
.

Proceeding as in (3.6), we have∥∥ynp+1 − ynp
∥∥ ≤

∥∥∥∥∥ynp+1 −
(
ynp −

∫ tnp+1

tnp

f(s, xnp )ds
)∥∥∥∥∥+

∫ tnp+1

tnp

∥f(s, xnp )∥ds



FIRST AND SECOND ORDER SUBSMOOTH SWEEPING PROCESS 457

= dQ
(
ynp −

∫ tnp+1

tnp

f(s, xnp )ds
)
+

∫ tnp+1

tnp

∥∥f(s, xnp )∥∥ ds
≤ 2

∫ tnp+1

tnp

∥∥f(s, xnp )∥∥ ds ≤ 2β(1 + ρ)∆n = 2b∆n.(3.9)

This and the first inequality in (3.5) ensure that∥∥ynp+1

∥∥ ≤
∥∥ynp∥∥+ 2β(1 + ρ)∆n

≤
∥∥ynp−1

∥∥+ 4β(1 + ρ)∆n

...

≤ ∥yn0 ∥+ 2(p+ 1)β(1 + ρ)∆n ≤ ∥yn0 ∥+ 2n+1b∆n ≤ ∥yn0 ∥+ 2b(T − T0) ≤ κ.

Again, the compactness assumption (iii) allows us to choose some

xnp+1 ∈ ProjC(tnp+1,x
n
p ,y

n
p )

(
xnp −

∫ tnp+1

tnp

g(s, xnp , y
n
p )ds

)
̸= ∅.

In the same way as above in (3.8), we obtain∥∥xnp+1 − xnp
∥∥ ≤ ∥xnp+1 −

(
xnp −

∫ tnp+1

tnp

g(s, xnp , y
n
p )ds

)
∥+

∫ tnp+1

tnp

∥g(s, xnp , ynp )∥ds

≤ dC(tnp+1,x
n
p ,y

n
p )

(
xnp −

∫ tnp+1

tnp

g(s, xnp , y
n
p )ds

)
+ α(1 + ρ+ κ)∆n

≤ dC(tnp ,x
n
p−1,y

n
p−1)

(
xnp −

∫ tnp+1

tnp

g(s, xnp , y
n
p )ds

)
+ c∆n

+K∆n + L∥xnp − xnp−1∥+ L′∥ynp − ynp−1∥
≤ (2c+K)∆n + L∥xnp − xnp−1∥+ 2L′b∆n

≤ d∆n + L∥xnp − xnp−1∥,

where the fourth inequality is due to (3.9). This completes the induction.
Fix for a moment any p ∈ {0, . . . , 2n − 1}. As a direct consequence of the second

inequality in (3.5) and (3.8), we have∥∥xnp+1 − xnp
∥∥ ≤ d∆n + L∥xnp − xnp−1∥
≤ d∆n + L

(
d∆n + L∥xnp−1 − xnp−2∥

)
= d∆n(1 + L) + L2∥xnp−1 − xnp−2∥
≤ d∆n(1 + L) + L2

(
d∆n + L∥xnp−2 − xnp−3∥

)
= d∆n(1 + L+ L2) + L3∥xnp−2 − xnp−3∥
...

≤ d∆n(1 + L+ . . .+ Lp−1) + Lp∥xn1 − xn0∥

≤ d∆n(1 + L . . .+ Lp) ≤ d

1− L
∆n.(3.10)
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With σnp :=
∫ tnp+1

tnp
g(s, xnp , y

n
p )ds and ωn

p :=
∫ tnp+1

tnp
f(s, xnp )ds, it directly follows from

the assumptions (v) and (ii) that

(3.11) ∥σnp ∥ ≤ α(1 + ∥xnp∥+ ∥ynp ∥)∆n ≤ α(1 + ρ+ κ)∆n = c∆n

and

(3.12)
∥∥ωn

p

∥∥ ≤
∫ tnp+1

tnp

∥f(s, xnp )∥ds ≤ β(1 + ∥xnp∥)∆n ≤ b∆n.

Putting together (3.10), (3.11), (3.5) and (3.12), we obtain with a := (1−L)−1d+ c∥∥xnp+1 − xnp + σnp
∥∥ ≤ ∥xnp+1 − xnp∥+ ∥σnp ∥ ≤ a∆n(3.13)

and ∥∥ynp+1 − ynp + ωn
p

∥∥ = dQ(y
n
p − ωn

p ) ≤ ∥ωn
p ∥ ≤ b∆n.(3.14)

Coming back again to the inclusions provided by (3.5) and using (2.3), (3.13), (2.8)
and Proposition 2.3(b) yield

1

a∆n

(
xnp+1 − xnp + σnp

)
∈ −NF

(
C(tnp+1, x

n
p , y

n
p );x

n
p+1

)
∩ B

= −∂FdC(tnp+1,x
n
p ,y

n
p )
(xnp+1) = −∂CdC(tnp+1,x

n
p ,y

n
p )
(xnp+1).(3.15)

Similarly, we get with the help of (3.14)

(3.16)
1

b∆n

(
ynp+1−ynp+ωn

p

)
∈ −NF

(
Q; ynp+1

)
∩B = −∂FdQ(xnp+1) = −∂CdQ(xnp+1).

Step 2. Construction of sequences (un(·))n≥1 and (qn(·))n≥1.
Fix for a moment any n ≥ 1. Let us define the mapping un(·) : I → H by setting

un(T ) := xn2n and

un(t) := xnp +
t− tnp
∆n

(
xnp+1 − xnp + σnp

)
−
∫ t

tnp

g(s, xnp , y
n
p )ds,

for all t ∈ [tnp , t
n
p+1[ with p ∈ {0, . . . , 2n − 1}. Note that

(3.17) un(t
n
p ) = xnp for all p ∈ {0, . . . , 2n} .

Besides un(·), we also need to consider the mapping zn : I → H defined by zn(T ) :=
g(T, xn2n , y

n
2n) and

zn(t) := g(t, xnp , y
n
p ) for all t ∈ [tnp , t

n
p+1[ with p ∈ {0, . . . , 2n − 1}.

Fix for a moment any integer p ∈ {0, . . . , 2n − 1}. We easily see that un(·) is
derivable λ-almost everywhere on I with

(3.18) u̇n(t) =
1

∆n

(
xnp+1 − xnp + σnp

)
− zn(t) λ-a.e. t ∈]tnp , tnp+1[,

in particular (see (3.13) and assumption (v))

(3.19) ∥u̇n(t)∥ ≤ a+ α(1 + ρ+ κ) = a+ c λ-a.e. t ∈ I.
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Hence, the mapping un(·) is (a+ c)-Lipschitz continuous on I. On the other hand,
from (3.18) and (3.15), we derive that

(3.20) u̇n(t) + zn(t) ∈ −a∂CdC(tnp+1,x
n
p ,y

n
p )
(xnp+1) λ-a.e. t ∈]tnp , tnp+1[.

In a similar way as un(·), let us define the mapping qn : I → H by setting qn(T ) :=
yn2n and

qn(t) := ynp +
t− tnp
∆n

(
ynp+1 − ynp + ωn

p

)
−
∫ t

tnp

f(s, xnp )ds,

for all t ∈ [tnp , t
n
p+1[ with p ∈ {0, . . . , 2n − 1}. It is clear that

(3.21) qn(t
n
p ) = ynp for all p ∈ {0, . . . , 2n}.

Again, fix any p ∈ {0, . . . , 2n−1}. We easily observe that qn(·) is derivable λ-almost
everywhere on I with

(3.22) q̇n(t) =
1

∆n

(
ynp+1 − ynp + ωn

p

)
− f(t, xnp ) λ-a.e. t ∈]tnp , tnp+1[.

It follows from the latter equality and from the estimates (3.14) and (3.1) in as-
sumption (ii) that

(3.23) ∥q̇n(t)∥ ≤ b+ β(1 + ρ) ≤ 2b λ-a.e. t ∈ I,

and this guarantees the 2b-Lipschitz property of the mapping qn(·) on I. Further,
it is clear from (3.22) and (3.16) that

(3.24) q̇n(t) + f(t, xnp ) ∈ −b∂CdQ(ynp+1) λ-a.e. t ∈]tnp , tnp+1[.

Now, let us consider the mappings θn, δn : I → I defined by

δn(t) :=

{
tnp if t ∈ [tnp , t

n
p+1[ for some p ∈ {0, . . . , 2n − 1} ,

t2n−1 if t = T

and

θn(t) :=

{
tnp+1 if t ∈ [tnp , t

n
p+1[ for some p ∈ {0, . . . , 2n − 1} ,

T if t = T.

It is readily seen that for every t ∈ I,

|δn(t)− t| ≤ ∆n and |θn(t)− t| ≤ ∆n,

in particular

lim
m→∞

δm(t) = t and lim
m→∞

θm(t) = t.

Fix for a moment any p ∈ {0, . . . , 2n − 1}. The definitions of δn(·), θn(·) along with
(3.17) give in a straightforward way

un(δn(T )) = xn2n−1 and un(δn(t)) = un(t
n
p ) = xnp for all t ∈ [tnp , t

n
p+1[,

un(θn(T )) = xn2n and un(θn(t)) = un(t
n
p+1) = xnp+1 for all t ∈ [tnp , t

n
p+1[.

In the same spirit with (3.21), we see that

qn(δn(T )) = yn2n−1 and qn(δn(t)) = qn(t
n
p ) = ynp for all t ∈ [tnp , t

n
p+1[
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and

qn(θn(T )) = yn2n and qn(θn(t)) = qn(t
n
p+1) = ynp+1 for all t ∈ [tnp , t

n
p+1[.

It is evident in view of (3.5) and (3.20) that we have for every t ∈ I

un(θn(t)) ∈ C
(
θn(t), un(δn(t)), qn(δn(t))

)
=: Dn(t)

⊂ C
(
I × ρB× (κB ∩Q)

)
,(3.25)

along with the inclusion

(3.26) u̇n(t) + zn(t) ∈ −a∂CdDn(t)

(
un(θn(t))

)
λ-a.e. t ∈ I.

It is also clear from (3.24) that

(3.27) q̇n(t) + f
(
t, un(δn(t))

)
∈ −b∂CdQ

(
qn
(
θn(t)

))
λ-a.e. t ∈ I.

Step 3. Convergence of (un(·))n≥1 up to a subsequence.
From the inequality (3.19), we obviously have

{u̇n(·) : n ≥ 1} ⊂ L∞(I,H, λ) ⊂ L2(I,H, λ) ⊂ L1(I,H, λ).

Hence, we may and do suppose that
(
u̇n(·)

)
n≥1

weakly converges in L2(I,H, λ)
(and then, it also weakly converges in L1(I,H, λ)) to a (class of) mapping v(·) ∈
L2(I,H, λ) ⊂ L1(I,H, λ). Then, for every t ∈ I and every ξ ∈ H,

lim
n→∞

∫ T

T0

⟨
1[T0,t](s)ξ, u̇n(s)

⟩
ds =

∫ T

T0

⟨
1[T0,t](s)ξ, v(s)

⟩
ds,

where 1[T0,t] denotes the usual indicator function in the sense of measure theory of
the interval [T0, t]. It follows that for every t ∈ I and every ξ ∈ H,

lim
n→∞

⟨
ξ, u0 +

∫ t

T0

u̇n(s)ds

⟩
=

⟨
ξ, u0 +

∫ t

T0

v(s)ds

⟩
.

Thus, we obtain

(3.28) un(t) = u0 +

∫ t

T0

u̇n(s)ds
w−→ u0 +

∫ t

T0

v(s)ds =: u(t) for all t ∈ I,

and this says that the mapping u(·) is absolutely continuous on I with v(·) as a
derivative, i.e.,

(3.29) u̇(·) = v(·) λ-a.e. t ∈ I.

By virtue of the relative compactness property of C
(
I × ρB × (κB ∩ Q)

)
(see as-

sumption (iii)) and the inclusions in (3.25), we may assume that for each t ∈ I, the
sequence

(
un(θn(t))

)
n≥1

strongly converges to some û(t) ∈ H. Due to the Lipschitz

property in (3.19), we have for every t ∈ I and every integer n ≥ 1,

∥un(t)− û(t)∥ ≤ ∥un(t)− un(θn(t))∥+ ∥un(θn(t))− û(t)∥
≤ (a+ c)(θn(t)− t) + ∥un(θn(t))− û(t)∥
≤ (a+ c)∆n + ∥un(θn(t))− û(t)∥,
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and this obviously entails that un(t) → û(t). The latter strong convergence along
with the weak convergence in (3.28) ensure that

un(t) → u(t) for all t ∈ I.

Step 4. Cauchy property of (qn(·))n≥1.
Let us start by setting for any integer k ≥ 1 and any t ∈ I such that q̇k(t) exists

(3.30) pk(t) := q̇k(t) + f
(
t, uk(δk(t))

)
∈ bB,

where the latter inclusion is due to (3.27) and (2.8). Fix any integers m,n ≥ 1.
Putting together (3.27), (2.7) and the inclusion qn(θn(t)) ∈ Q valid for every t ∈ I,
we have ⟨

b−1pn(t), qn(θn(t))− qm(t)
⟩
≤ dQ(qm(t)) λ-a.e. t ∈ I.

We derive from the latter inequality, the inclusion (3.30), the 2b-Lipschitz property
of qn(·) and qm(·) (coming from the inequality (3.23)) and from qm(θm(t)) ∈ Q valid
for any t ∈ I

⟨pn(t), qn(t)− qm(t)⟩ = ⟨pn(t), qn(t)− qn(θn(t))⟩+ ⟨pn(t), qn(θn(t))− qm(t)⟩
≤ b

(
∥qn(t)− qn(θn(t))∥+ dQ(qm(t))

)
≤ b

(
∥qn(t)− qn(θn(t))∥+ ∥qm(θm(t))− qm(t)∥

)
≤ 2b2(θn(t)− t) + 2b2(θm(t)− t)

= 2b2
(
θm(t) + θn(t)− 2t

)
,(3.31)

for λ-almost every t ∈ I. Since m,n have been arbitrarily choosen, we can also
write

(3.32) ⟨pm(t), qm(t)− qn(t)⟩ ≤ 2b2
(
θm(t) + θn(t)− 2t

)
λ-a.e. t ∈ I.

Adding the inequalities (3.31) and (3.32) yields

⟨q̇n(t)− q̇m(t), qn(t)− qm(t)⟩
≤ −

⟨
f
(
t, un(δn(t))

)
, qn(t)− qm(t)

⟩
−
⟨
f
(
t, um(δm(t))

)
, qm(t)− qn(t)

⟩
+ 4b2

(
θm(t) + θn(t)− 2t

)
≤∥qn(t)− qm(t)∥

∥∥f(t, un(δn(t)))− f
(
t, um(δm(t))

)∥∥
+ 4b2

(
θm(t) + θn(t)− 2t

)
,(3.33)

for λ-almost every t ∈ I. From the Lipschitz property in (3.2) of assumption (ii)
and from the inclusion {uk(δk(t)) : t ∈ I, k ≥ 1} ⊂ ρB, we see that for all t ∈ I, all
integers k, k′ ≥ 1,

(3.34)
∥∥f(t, uk(δk(t)))− f

(
t, uk′(δk′(t))

)∥∥ ≤ l ∥uk(δk(t))− uk′(δk′(t))∥ .

Through (3.33), (3.34) and the elementary estimate ab ≤ 2−1(a2+b2) valid for every
(a, b) ∈ R2, we see that

⟨q̇n(t)− q̇m(t), qn(t)− qm(t)⟩≤2−1
(
∥qm(t)− qn(t)∥2+ l2 ∥un(δn(t))− um(δm(t))∥2

)
+ 4b2(θm(t) + θn(t)− 2t).(3.35)
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Now, define ψm,n, Am,n : I → R by

ψm,n(t) := 2−1 ∥qm(t)− qn(t)∥2 for all t ∈ I

and

Am,n(t) := 2−1l2 ∥un(δn(t))− um(δm(t))∥2 + 4b2
(
θm(t) + θn(t)− 2t

)
for all t ∈ I.

With the above definitions and the estimate (3.35) at hands, we get

ψ̇m,n(t) ≤ ψm,n(t) +Am,n(t) λ-a.e. t ∈ I.

A direct application of Gronwall lemma (see Lemma 3.1) gives

ψm,n(t) ≤ eT−T0

∫ T

T0

Am,n(s)ds.

On the other hand, it is an exercise to show that Am,n(t) → 0 as m,n→ ∞ as well
as

|Am,n(t)| ≤
l2

2
(2ρ)2 + 8b2(T − T0) for allm,n ≥ 1.

We are then in position to apply the Lebesgue dominated convergence theorem to
obtain for every t ∈ I,

ψm,n(t) → 0 asm,n→ ∞.

Therefore, for every t ∈ I, the sequence (qk(t))k≥1 has the Cauchy property in the
Hilbert space H and this guarantees the existence of q(t) ∈ H such that

qk(t) → q(t).

Further, from (3.23), we see that q(·) is a 2b-Lipschitz mapping and this allows us to
assume (proceeding as in the beginning of Step 3) that (q̇n(·))n≥1 weakly converges
in L1(I,H, λ) to q̇(·).

Step 5. The mapping Φ(·) := (u(·), q(·)) is a trajectory solution of (SP).
Fix for a moment any integer n ≥ 1 and any real t ∈ I. Using (3.3), (3.25) and

the (a+ c)-Lipschitz property of un(·) (see (3.19)), we get

d
(
un(t), C

(
t, u(t), q(t)

))
≤ d

(
un(θn(t)), Dn(t)

)
+ ∥un(t)− un (θn(t))∥+K(θn(t)− t)

+ L ∥u(t)− un (δn(t))∥+ L′∥q(t)− qn(δn(t))∥
≤ (K + a+ c)(θn(t)− t) + L ∥u(t)− un (δn(t))∥
+ L′∥q(t)− qn(δn(t))∥.

Since θn(t) ↓ t, un(δn(t)) → u(t) and qn(δn(t)) → q(t), the latter estimate guarantees

d
(
un(t), C(t, u(t), q(t))

)
→ 0,

and such a convergence property ensures (thanks to the fact that C(·, ·, ·) is closed
valued)

u(t) ∈ C
(
t, u(t), q(t)

)
.

On the other hand, from the convergence Q ∋ qn(δn(t)) → q(t) and the closedness
of Q, we obviously have q(t) ∈ Q.
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Now, through the inequality in (3.19), we see that the sequence (zn(·))n≥1 weakly
converges (up to a subsequence) in L1(I,H, λ) to a mapping z(·) ∈ L1(I,H, λ).
Coming back to the beginning of Step 3 and to (3.29), the sequence

(
u̇n(·)+zn(·)

)
n≥1

weakly converges in L1(I,H, λ) to u̇(·)+z(·). Then, by the classical Mazur’s lemma,
we are able to construct a sequence (ξn(·))n≥1 of L1(I,H, λ) which strongly con-
verges to u̇n(·) + zn(·) and such that

(3.36) ξn(·) ∈ co {u̇k(·) + zk(·) : k ≥ n} for all n ≥ 1.

Extracting a subsequence if necessary, we may and do suppose that (ξn(·))n≥1 also
converges λ-almost everywhere to u̇(·) + z(·). This and the inclusion (3.36) easily
give

u̇(t) + z(t) ∈
∩
n≥1

co {u̇k(·) + zk(·) : k ≥ n} λ-a.e. t ∈ I,

from which we derive for λ-almost every t ∈ I

⟨h, u̇(t) + z(t)⟩ ≤ inf
n≥1

sup
k≥n

⟨h, u̇k(t) + zk(t)⟩ for all h ∈ H.

Through (3.26) and the latter inequality, we see that for λ-almost every t ∈ I

⟨h, u̇(t) + z(t)⟩ ≤ lim sup
n→∞

σ
(
− ah, ∂CdDn(t)

(
un(θn(t))

))
for all h ∈ H.

We are then in a position to apply Proposition 2.4 to get for λ-almost every t ∈ I

⟨h, u̇(t) + z(t)⟩ ≤ σ
(
− ah, ∂CdC(t,u(t),q(t))(u(t))

)
for all h ∈ H.

Then, the equivalence in (2.9) coming from Hahn-Banach separation theorem and
the inclusion (2.8) guarantee that

(3.37) u̇(t) + z(t) ∈ −a∂CdC(t,u(t),q(t))

(
u(t)

)
⊂ −N

(
C(t, u(t), q(t));u(t)

)
,

for λ-almost every t ∈ I.
Through assumption (ii), it is clear that

(
f(·, un(δn(·)))

)
n≥1

strongly converges

in L1(I,H, λ) to f(·, u(·)). Taking into account the end of Step 4, we obtain that
the sequence

(
q̇n(·) + f(·, un(δn(·)))

)
n≥1

weakly converges in L1(I,H, λ) to q̇(·) +
f(·, u(·)). Applying as above Mazur’s lemma and profiting from (3.27), we obtain

⟨h, q̇(t) + f(t, u(t))⟩ ≤ lim sup
n→∞

σ
(
− bh, ∂CdQ(qn(θn(t)))

)
,

for λ-almost every t ∈ I and all h ∈ H. Using Proposition 2.4, we get for λ-almost
every t ∈ I

⟨h, q̇(t) + f(t, u(t))⟩ ≤ σ
(
− bh, ∂CdQ(q(t))

)
for all h ∈ H.

Invoking (2.9) and (2.8), we arrive to

(3.38) q̇(t) + f(t, u(t)) ∈ −b∂CdQ(q(t)) ⊂ −N
(
Q; q(t)

)
λ-a.e. t ∈ I.

Defining Φ : I → H2 by

Φ(t) := (u(t), q(t)) for all t ∈ I
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and taking into account all the development above (in particular (3.37) and (3.38)),
we obtain that Φ1,Φ2 are Lipschitz-continuous mappings on I satisfying

Φ̇1(t) + z(t) ∈ −N
(
C(t,Φ(t)); Φ1(t)

)
λ-a.e. t ∈ I

and

Φ̇2(t) + f
(
t,Φ1(t)

)
∈ −N

(
Q; Φ2(t)

)
λ-a.e. t ∈ I.

It remains to show that z(t) ∈ G
(
t, u(t), q(t)

)
for λ-almost every t ∈ I. Since

(zn(·))n≥1 weakly converges to z(·) in L1(I,H, λ), the Mazur’s lemma (up to a
subsequence) allows us to write

z(t) ∈
∩
n≥1

co {zk(t) : k ≥ n} λ-a.e. t ∈ I.

This inclusion along with the following one valid for every t ∈ I and every n ≥ 1,

zn(t) ∈ G
(
t, un(δn(t)), qn(δn(t))

)
allows us to find a Borel subset Ω ⊂ I with λ(I \Ω) = 0 such that for all t ∈ Ω and
all h ∈ H,

⟨h, z(t)⟩ ≤ lim sup
n→∞

σ
(
h,G

(
t, un(δn(t)), qn(δn(t)

))
.

Then, for each t ∈ I\Ω, using the fact thatG(t, ·, ·) is scalarly upper-semicontinuous,
we arrive to the inequality

⟨h, z(t)⟩ ≤ σ
(
h,G(t, u(t), q(t))

)
for all h ∈ H,

which entails z(t) ∈ G
(
t, u(t), q(t)

)
by the closedness and convexity of G(t, u(t), q(t))

and by (2.9). This finishes the proof. □

Remark 3.3. As mentioned in [32], for any x, y ∈ H, the mapping projG(·,x,y)(0)
is λ-Bochner measurable whenever the Hilbert space H is separable and the mul-
timapping G(·, x, y) is Lebesgue measurable, i.e., its graph belongs to L(I)⊗B(H),
where L(I) and B(H) denote respectively the Lebesgue σ-field of I and the Borel
σ-field of H.

4. Absolutely continuous subsmooth sweeping process

In the present section, we only assume that the moving set in Theorem 3.2 varies
in an absolutely continuous way, i.e., there is some absolutely continuous function
v(·) : I → R such that

haus
(
C(t1, x1, y1), C(t2, x2, y2)

)
≤ |v(t2)− v(t1)|+ L∥x1 − x2∥+ L′∥y1 − y2∥.

The existence of solutions for the problem (SP) under such an assumption is ob-
tained through the reduction method due to J.J. Moreau ([28], see also [31, 21]).

Theorem 4.1. Let C : I×H2 ⇒ H and G : I×H2 ⇒ H be two multimappings and
f : I×H → H be a mapping. Let Q be a closed convex subset of H, (u0, q0) ∈ H×Q
with u0 ∈ C(T0, u0, q0). Assume that (i)-(ii) in Theorem 3.2 hold. Assume also that:

(iii’) the set C
(
I × ρB×Q

)
is relatively compact;
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(iv’) there exist a real L ∈ [0, 1[ a real L′ ≥ 0 and an absolutely continuous
function v : I → R such that

haus
(
C(t1, x1, y1), C(t2, x2, y2)

)
≤ |v(t2)− v(t1)|+ L ∥x1 − x2∥+ L′ ∥y1 − y2∥ ,

for all t1, t2 ∈ I, all x1, x2 ∈ ρB and all y1, y2 ∈ Q.
(v’) the multimapping G is nonempty closed convex valued, G(t, ·, ·) is scalarly

upper semicontinuous for each t ∈ I, and for each (x, y) ∈ ρB × Q the
mapping projG(·,x,y)(0) : I → H is λ-Bochner measurable on I and there
exists a real α ≥ 0 such that∥∥∥projG(t,x,y)(0)

∥∥∥ ≤ α(1 + ∥x∥+ ∥y∥),

for all t ∈ I, all x ∈ ρB and all y ∈ Q.

Then, there exists a solution Φ = (Φ1,Φ2) : I → H2 of the differential inclusion
(SP), that is,

(a) the mappings Φ1,Φ2 are absolutely continuous on I and satisfy Φ1(T0) = u0,
Φ2(T0) = q0 along with(

Φ1(t),Φ2(t)
)
∈ C

(
t,Φ1(t),Φ2(t)

)
×Q for all t ∈ I;

(b) for λ-almost every t ∈ I,

Φ̇2(t) + f(t,Φ1(t)) ∈ −N(Q; Φ2(t));

(c) there exists a λ-Bochner integrable mapping z : I → H with

z(t) ∈ G(t,Φ(t)) λ-a.e. t ∈ I,

and such that

Φ̇1(t) + z(t) ∈ −N
(
C(t,Φ(t)); Φ1(t)

)
λ-a.e. t ∈ I.

Proof. Fix any real η > 0. The function w : I → w(I) defined by

w(t) := T0 +

∫ t

T0

(|v̇(τ)|+ η)dτ for all t ∈ I

is obviously absolutely continuous on I and satisfies (see (iv’))

(4.1) haus
(
C(t1, x1, y1), C(t2, x2, y2)

)
≤ |w(t2)− w(t1)|+L∥x1−x2∥+L′∥y1−y2∥,

for every t1, t2 ∈ I, every x1, x2 ∈ ρB and every y1, y2 ∈ Q. Since the function w(·)
is increasing on I, it is has an increasing inverse w−1 : J := [T0, T ] → I, where
T := w(T ). We claim that the function w−1 is η−1-Lipschitz continuous on J .
Indeed, for every τ1, τ2 ∈ J with τ1 < τ2, there are two reals T0 ≤ t1 < t2 ≤ T such
that τi = w(ti) for i ∈ {1, 2}, hence

w−1(τ2)−w−1(τ1) = t2 − t1 ≤ η−1

∫ t2

t1

ẇ(t)dt ≤ η−1
(
w(t2)−w(t1)

)
≤ η−1(τ2 − τ1).

With the function w−1 at hands, we define the multimapping C : J × H2 ⇒ H
by setting for every τ ∈ J and every x, y ∈ H,

C(τ, x, y) := C
(
w−1(τ), x, y

)
.
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We also need to define a multimapping G : J×H2 ⇒ H and a mapping f : J×H →
H with

G(τ, x, y) := θ
(
w−1(τ)

)−1
G(w−1(τ), x, y) for all τ ∈ J, x, y ∈ H,

and

f(τ, x) := θ
(
w−1(τ)

)−1
f(w−1(τ), x) for all τ ∈ J, x ∈ H,

where θ : I → [η,+∞[ is a λ-measurable function which coincide λ-amost ev-
erywhere with the derivative ẇ(·). Obviously, the family (C(τ, x, y))τ∈J,x,y∈H is
equi-uniformly subsmooth and

C(τ, x, y) ⊂ ρB for all τ ∈ J, x, y ∈ H.
Thanks to assumption (ii), it is readily seen that f(·, x) is λ-Bochner measurable
on J along with

∥f(τ, x)∥ ≤ η−1β(1 + ∥x∥) for all τ ∈ J, x ∈ ρB

and

∥f(τ, x1)− f(τ, x2)∥ ≤ η−1l∥x1 − x2∥ for all τ ∈ J, x1, x2 ∈ ρB.
From assumption (iii’), we get that C

(
J × ρB × Q) is relatively compact. On the

other hand, we derive from (4.1) that

haus
(
C(τ1, x1, y1), C(τ2, x2, y2)

)
= haus

(
C(w−1(τ1), x1, y1), C(w

−1(τ2), x2, y2)
)

≤
∣∣w(w−1(τ1))− w(w−1(τ2))

∣∣
+ L∥x1 − x2∥+ L′∥y1 − y2∥

≤ |τ2 − τ1|+ L∥x1 − x2∥+ L′∥y1 − y2∥,
for every τ1, τ2 ∈ J , every x1, x2 ∈ ρB and every y1, y2 ∈ Q. Due to the properties
of G coming from (v’), it is evident to observe that G takes nonempty closed convex
values and that G(τ, ·, ·) enjoys for any τ ∈ J the scalar upper semicontinuity
property. Concerning the element of minimal norm, we can check that for all τ ∈ J ,
all x, y ∈ H,

projG(τ,x,y)(0) = θ
(
w−1(τ)

)−1
proj

G
(
w−1(τ),x,y

)(0)
and this ensures the λ-Bochner measurability of the mapping projG(·,x,y)(0) for any

x ∈ ρB and any y ∈ Q along with the estimate∥∥∥projG(τ,x,y)(0)
∥∥∥ ≤ η−1α(1 + ∥x∥+ ∥y∥),

valid for every τ ∈ J and every x ∈ ρB and every y ∈ Q.
Taking into account what precedes, we can apply Theorem 3.2 to get the existence

of two mappings φ1, φ2 : J → H2 satisfying the following properties

(a’) the mappings φ1, φ2 are Lipschitz continuous on J and satisfies φ1(T0) = u0
and φ2(T0) = q0 along with

φ(τ) :=
(
φ1(τ), φ2(τ)

)
∈ C

(
τ, φ1(τ), φ2(τ)

)
×Q for all τ ∈ J ;

(b’) for λ-almost every τ ∈ J ,

φ̇2(τ) + f(τ, φ1(τ)) ∈ −N
(
Q;φ2(τ)

)
;
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(c’) there exists a λ-Bochner integrable mapping z : J → H with

z(τ) ∈ G
(
τ, φ(τ)

)
λ-a.e. τ ∈ J,

and such that

φ̇1(τ) + z(τ) ∈ −N
(
C(τ, φ1(τ), φ2(τ));φ1(τ)

)
λ-a.e. τ ∈ J.

For each i ∈ {1, 2}, define Φ : I → H by

Φi(t) := φi(w(t)) for all t ∈ I,

which is obviously absolutely continuous on I along with

(4.2) Φ̇i(t) = ẇ(t)φ̇i(w(t)) λ-a.e. t ∈ I.

It directly follows from (a’) that Φ1(T0) = φ1(T0) = u0, Φ2(T0) = φ2(T0) = q0 and(
Φ1(t),Φ2(t)

)
∈ C

(
t,Φ1(t),Φ2(t)

)
×Q for all t ∈ I,

where the inclusion is due to the definition of C. Putting together (4.2), (b’) and
the definition of θ and f give a λ-negligible set of I such that

Φ̇2(t) + f(t,Φ1(t)) ∈ −N
(
Q; Φ2(t)

)
for all t ∈ I \N1.

It remains to observe that the definition of C,G and (c’) ensure the existence of a
negligible set N2 of I such that the λ-Bochner integrable mapping Z(·) = θ(·)z(w(·))
satisfies for every t ∈ I \N2

Z(t) ∈ G(t,Φ(t)) and Φ̇1(t) + Z(t) ∈ −N
(
C(t,Φ(t)); Φ1(t))

)
.

The proof is complete. □

The case where f ≡ 0 and Q = {0} in the latter theorem leads to the existence
of solutions for (P).

Corollary 4.2. Let C : I × H ⇒ H and G : I × H ⇒ H be two multimappings,
u0 ∈ H with u0 ∈ C(T0, u0). Assume that:

(i) the family
(
C(t, x)

)
t∈I,x∈H is equi-uniformly subsmooth and there exists a

real ρ > 0 such that

C(t, x) ⊂ ρB for all t ∈ I, x ∈ H;

(ii) the set C
(
I × ρB

)
is relatively compact;

(iii) there exist a real L ∈ [0, 1[ and an absolutely continuous function v : I → R
such that

haus
(
C(t1, x1), C(t2, x2)

)
≤ |v(t2)− v(t1)|+ L ∥x1 − x2∥ ,

for all t1, t2 ∈ I, all x1, x2 ∈ ρB;
(iv) the multimapping G is nonempty closed convex valued, G(t, ·) is scalarly

upper semicontinuous for each t ∈ I, and for each x ∈ ρB the mapping
projG(·,x)(0) : I → H is λ-Bochner measurable on I and there exists a real
α ≥ 0 such that∥∥∥projG(t,x)(0)

∥∥∥ ≤ α(1 + ∥x∥) for all t ∈ I, x ∈ ρB.
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Then, there exists an absolutely continuous mapping u(·) : I → H such that
−u̇(t) ∈ N

(
C(t, u(t));u(t)

)
+G(t, u(t)) λ-a.e. t ∈ I,

u(t) ∈ C(t, u(t)) for all t ∈ I,
u(T0) = u0.

Proof. It suffices to apply Theorem 4.1 with Q := {0} and f ≡ 0 along with the

multimappings Ĉ : I ×H2 ⇒ H and Ĝ : I ×H2 ⇒ H defined by

Ĉ(t, x, y) := C(t, x) and Ĝ(t, x, y) := G(t, x) for all (t, x, y) ∈ I ×H2.

□

5. Reduction of state-dependent second order sweeping process to
the first order one

In this last section, we derive from our existence results for (SP) (see Theorem
3.2 and Theorem 4.1) the existence of a trajectory solution for the problem (Q),
i.e., for the second order state-dependent sweeping process with outward normal
at the velocity. As mentioned in the introduction, such a reduction has been first
independently observed by J. Noël ([33]) and M. Yarou ([41]) in Rd with a prox-
regular set moving in an absolute continuous way. The extension in any Hilbert
space has been developped in [32] through the introduction of the BV differential
inclusion (FMSP) driven by a prox-regular moving set.

The following result lies at the heart of the reduction technique provided by
[33, 41, 32].

Proposition 5.1. Let C : I ×H ⇒ H and F : I ×H2 ⇒ H be two multimappings.
Let also (u0, v0) ∈ H2 with v0 ∈ C(T0, u0).

If Φ1,Φ2 : I → H are absolutely continuous mappings satisfying with Φ :=
(Φ1,Φ2) the following differential inclusion (in the sense of Theorem 4.1)

(R)


−Φ̇(t) ∈ NC

(
C(t,Φ2(t))×H; Φ(t)

)
+ F

(
t,Φ(t)

)
× {−Φ1(t)} λ-a.e. t ∈ I,

Φ(t) ∈ C
(
t,Φ2(t)

)
×H for all t ∈ I,

Φ(T0) = (v0, u0),

then Φ̇2 = Φ1 λ-almost everywhere on I and the mapping Φ2(·) is a solution of the
second order sweeping process

−Φ̈2(t) ∈ NC
(
C(t,Φ2(t)), Φ̇2(t)

)
+ F

(
t, Φ̇2(t),Φ2(t)

)
,

Φ̇2(t) ∈ C(t,Φ2(t)),

Φ2(T0) = u0, Φ̇2(T0) = v0,

that is,

(a) the mapping Φ2 is absolutely continuous on I and Φ2(T0) = u0;
(b) there exists an absolutely continuous mapping ϕ : I → H with ϕ(T0) = v0,

Φ̇2 = ϕ Lebesgue-almost everywhere on I and

ϕ(t) ∈ C
(
t,Φ2(t)

)
for all t ∈ I;
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(c) there exists a λ-Bochner integrable mapping z : I → H with

z(t) ∈ F
(
t, Φ̇2(t),Φ2(t)

)
λ-a.e. t ∈ I,

and such that

Φ̈2(t) + z(t) ∈ −NC
(
C(t,Φ2(t)); Φ̇2(t)

)
λ-a.e. t ∈ I.

Proof. Assume that Φ(·) : I → H2 is a solution of (R). Let us first define the
multimappings SC , GF : I ×H2 ⇒ H2 by setting for every (t, x, y) ∈ I ×H2,

SC(t, x, y) := C(t, y)×H and GF (t, x, y) := F (t, x, y)× {−x}.
Note that(

Φ1(T0),Φ2(T0)
)
= (v0, u0) ∈ SC

(
T0,Φ(T0)

)
= C

(
T0,Φ2(T0)

)
×H.

Now, we are going to show that the properties (a)-(b)-(c) claimed above hold true.
Since it is evident that (a) holds, we only focus on (b) and (c). Thanks to the fact
that Φ(·) is a solution of (R), we have

(5.1)
(
Φ1(t),Φ2(t)

)
= Φ(t) ∈ SC

(
t,Φ(t)

)
for all t ∈ I,

and

(5.2) Φ̇2(t)− Φ1(t) ∈ −N
(
H; Φ2(t)

)
= {0} λ-a.e. t ∈ I,

i.e., Φ̇2 = Φ1 λ-almost everywhere on I. Further, we know that there is a λ-Bochner
integrable mapping z(·) : I → H satisfying

z(t) ∈ GF

(
t,Φ(t)

)
= F

(
t,Φ1(t),Φ2(t)

)
λ-a.e. t ∈ I

along with

Φ̇1(t) + z(t) ∈ −N
(
C(t,Φ2(t)); Φ1(t)

)
λ-a.e. t ∈ I.

This and the equality Φ̇2 = Φ1 valid λ-almost everywhere on I (see (5.2)) guarantee
that (b) holds true. Concerning (c), it suffices to set ϕ := Φ1 and to invoke (5.1) to
get

ϕ(t) ∈ C
(
t,Φ2(t)

)
for all t ∈ I.

All together means that the mapping Φ2(·) satisfies properties (a)-(b) and (c) as
desired. The proof is complete. □

Remark 5.2. It is worth pointing out that we can replace in the latter proposition
the Clarke normal cone NC by any concept of normals coming from Variational
Analysis.

We are now in a position to reduce the second order sweeping process with out-
ward normal at the velocity to the Moreau’s one.

Theorem 5.3. Let C : I × H ⇒ H and F : I × H2 ⇒ H be two multimappings,
(u0, v0) ∈ H2 with v0 ∈ C(T0, u0). Assume that:

(i) the family
(
C(t, y)

)
t∈I,y∈H is equi-uniformly subsmooth and there exists a

real ρ > 0 such that

C(t, y) ⊂ ρB for all t ∈ I, y ∈ H;
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(ii) the set C(I ×H) is relatively compact;
(iii) there exist a real L′ ≥ 0 and an absolutely continuous function v : I → R

such that

haus
(
C(t1, y1), C(t2, y2)

)
≤ |v(t2)− v(t1)|+ L′ ∥y1 − y2∥ ,

for all t1, t2 ∈ I and y1, y2 ∈ H;
(iv) the multimapping F is nonempty closed convex valued, F (t, ·, ·) is scalarly

upper semicontinuous for each t ∈ I, and for each (x, y) ∈ ρB × H, the
mapping projF (·,x,y)(0) : I → H is λ-Bochner measurable on I and there
exists a real α ≥ 0 such that∥∥∥projF (t,x,y)(0)

∥∥∥ ≤ α(1 + ∥x∥+ ∥y∥),

for all t ∈ I, x ∈ ρB and all y ∈ H.

Then, there exists a solution u(·) : I → H of the second order sweeping process
(in the sense of (a)-(b)-(c) in Proposition 5.1)

−ü(t) ∈ N
(
C(t, u(t)); u̇(t)

)
+ F (t, u̇(t), u(t)),

u̇(t) ∈ C
(
t, u(t)

)
,

u(T0) = u0, u̇(T0) = v0.

Proof. All conditions of Theorem 4.1 are satisfied with SC , GF : I × H2 ⇒ H2

defined by

SC(t, x, y) := C(t, y)×H and GF (t, x, y) := F (t, x, y)×{−x} for all(t, x, y) ∈ I×H2.

This ensures the existence of a mapping Φ(·) satisfying
−Φ̇(t) ∈ N

(
SC(t,Φ(t)); Φ(t)

)
+GF

(
t,Φ(t)

)
λ-a.e. t ∈ I,

Φ(t) ∈ SC(t,Φ(t)) for all t ∈ I,

Φ(T0) = (v0, u0).

It remains to apply Proposition 5.1 to get that u(·) := Φ2(·) is a solution of the
considered second order sweeping process. This completes the proof. □
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