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Theorem 1.2. The linear program (LD) is a proper dual to the linear fractional
program (LF), that is, the weak duality, the strong duality and the converse duality
hold between (LF) and (LD).

Recently, we [5] studied duality theorems for a linear fractional semidefinite opti-
mization problem. By using the Craven’s approaches mentioned above, that is, the
transformation and the equivalence in Theorem 1.1, we can prove duality theorems
for the problem. But in the paper [5], we directly proved the duality theorems for
the problem.

In this paper, we will directly prove the duality theorems for a linear fractional
optimization problem which consists of a linear fractional integral objective function,
linear integral constraint functions and a constraint cone.

Consider the following linear fractional optimization problem :

(P) Minimize

∫ 1

0
c(t)Tx(t)dt+ α∫ 1

0
d(t)Tx(t)dt+ β

subject to x(·) ∈ K,∫ 1

0
ai(t)

Tx(t)dt = bi, i = 1, . . . ,m,

where c, d ∈ L2
n[0, 1], ai ∈ L2

n[0, 1], bi ∈ R, i = 1, . . . ,m, α, β ∈ R are given,
and K is a closed convex cone in L2

n[0, 1] with intK ̸= ∅. Let K∗ =

{z ∈ L2
n[0, 1] |

∫ 1
0 z(t)Tx(t)dt ≧ 0 for any x ∈ K} and assume that intK∗ ̸= ∅.

Let △ = {x ∈ K |
∫ 1
0 ai(t)

Tx(t)dt = bi, i = 1, . . . ,m}.

Theorem 1.3 ([6]). Let X and Y be Banach spaces. f : X → R, g : X → Y and C
a convex subset of X. Let x0 be an optimal solution of : inf{f(x) | g(x) = 0, x ∈
C}. Assume that f is Fréchet differentiable at x0 and g is Fréchet differentiable
in a neighborhood of x0 and that the Fréchet differential g′ is continuous at x0.
Furthermore assume that there exists x̂ ∈ intC such that g′(x0)(x̂−x0) = 0. Assume
that g′(x0)(·) is surjective. Then there exists y∗ ∈ Y ∗ such that[

f ′(x0) + y∗ ◦ g′(x0)
]
(x− x0) ≧ 0 for any x ∈ C.

2. Duality theorems

We formulate the dual problem for (P) as follows:

(D) Maximize γ

subject to c−
m∑
i=1

yiai − γd ∈ K∗,

βγ − bT y ≦ α,

y ∈ Rm, γ ∈ R,
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Theorem 2.1 (Weak duality). Assume that for any x ∈ △,
∫ 1
0 d(t)Tx(t)dt+β > 0.

Let x be feasible for (P) and let (γ, y) be feasible for (D). Then∫ 1

0
c(t)Tx(t)dt+ α∫ 1

0
d(t)Tx(t)dt+ β

≧ γ.

Proof. Since c−
∑m

i=1 yiai − γd ∈ K∗ and x ∈ K we have∫ 1

0

[
c(t)−

m∑
i=1

yiai(t)− γd(t)
]T

x(t) ≧ 0.

For any x ∈ △, ∫ 1

0
c(t)Tx(t)dt+ α− γ

[∫ 1

0
d(t)Tx(t)dt+ β

]
=

∫ 1

0

[
c(t)− γd(t)

]T
x(t)dt+ α− γβ

≧
∫ 1

0

[ m∑
i=1

yiai(t)
]T

x(t)dt+ α− γβ

=

m∑
i=1

yi

∫ 1

0
ai(t)

Tx(t)dt+ α− γβ

=

m∑
i=1

yibi + α− γβ

≧ 0.

Therefore, ∫ 1

0
c(t)Tx(t)dt+ α∫ 1

0
d(t)Tx(t)dt+ β

≧ γ.

□

Theorem 2.2 (Strong duality). Let x̄ be an optimal solution of (P). Suppose that

for any x ∈ △,
∫ 1
0 d(t)Tx(t)dt+ β > 0. Assume that there exists x̂(·) ∈ intK such

that ∫ 1

0
ai(t)

T
(
x̂(t)− x̄(t)

)
= 0, i = 1, . . . ,m

and that a1, . . . , am are linearly independent in L2
n[0, 1]. Then there exists y ∈ Rm

such that
( ∫ 1

0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

, y
)
is an optimal solution of (D).

Proof. Let X = L2
n[0, 1], Y = Rm and C = K. Let q(x) =

∫ 1
0 c(t)T x(t)dt+α∫ 1
0 d(t)T x(t)dt+β

. Since x̄

is an optimal solution of (P), x̄ is an optimal solution of the following optimization



442 G. S. KIM, M. H. KIM, AND G. M. LEE

problem:

Minimize

∫ 1

0
c(t)Tx(t)dt+ α− q(x̄)

[∫ 1

0
d(t)Tx(t)dt+ β

]
subject to x ∈ △.

Define f : X → R by f(x) =
∫ 1
0 c(t)Tx(t)dt + α − q(x̄)

[∫ 1
0 d(t)Tx(t)dt + β

]
and

g : X → Y by g(x) =


∫ 1
0 a1(t)

Tx(t)dt− b1
...∫ 1

0 am(t)Tx(t)dt− bm

 . Then the Fréchet differential

of f at x̄ is f ′(x̄)h =
∫ 1
0 [c(t) − q(x̄)d(t)]Th(t)dt for any h ∈ X, and the Fréchet

differential of g at x̄ is g′(x̄)h =


∫ 1
0 a1(t)

Th(t)dt
...∫ 1

0 am(t)Th(t)dt

 for any h ∈ X. Also, g′

is continuous at x0. By assumption, there exists x̂ ∈ intC such that g′(x̄)(x̂ −
x̄) = 0. Since a1, . . . , am are linearly independent in L2

n[0, 1], it follows from the
lemma on the biorthogonal basis in [3], there exist a∗1, . . . , a

∗
m ∈ L2

n[0, 1] such that∫ 1
0 a∗i (t)

Taj(t)dt =

{
0, i ̸= j,
1, i = j.

Let γ = (γ1, . . . , γm)T ∈ Rm be any point. Then

g′(x̄)(
∑m

i=1 γia
∗
i ) =


∫ 1
0 a1(t)

T
∑m

i=1 γia
∗
i (t)dt

...∫ 1
0 am(t)T

∑m
i=1 γia

∗
i (t)dt

 =

 γ1
...
γm

 = γ. Thus g′(x̄)(·) is

surjective. By Theorem 1.3, there exists y∗ ∈ Y ∗ such that
[
f ′(x0)−y∗◦g′(x0)

]
(x−

x0) ≧ 0 for any x ∈ K. Thus there exist yi ∈ R, i = 1, . . . ,m such that

∫ 1

0

[
c(t)− q(x̄)d(t)−

m∑
i=1

yiai(t)
]T

(x(t)− x̄(t))dt ≧ 0 for any x(·) ∈ K.

Let γ̄ = q(x̄). Then
∫ 1
0

[
c(t) − γ̄d(t) −

∑m
i=1 yiai(t)

]T
x(t)dt ≧ 0 for any x(·) ∈ K.

i.e., c− γ̄d−
∑m

i=1 yiai ∈ K∗. Moreover, we have

∫ 1

0

[
c(t)− γ̄d(t)−

m∑
i=1

yiai(t)
]T

x̄(t)dt = 0.
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Since x̄ is feasible for (P),
∫ 1
0 ai(t)

T x̄(t)dt = bi, i = 1, . . . ,m, and so,

−βγ̄ +

m∑
i=1

biyi + α = −βγ̄ +

m∑
i=1

yi

∫ 1

0
ai(t)

T x̄(t)dt+ α

= −βγ̄ + α+

∫ 1

0

[
c(t)− γ̄d(t)

]T
x̄(t)dt

=

∫ 1

0
c(t)T x̄(t)dt+ α− γ̄

[∫ 1

0
d(t)T x̄(t)dt+ β

]
= 0.

Thus, (γ̄, y) is feasible for (D). By Theorem 2.1 (Weak duality), for any feasible
(γ, ỹ) for D,

γ ≦

∫ 1

0
c(t)T x̄(t)dt+ α∫ 1

0
d(t)T x̄(t)dt+ β

= γ̄.

So, (γ̄, y) is an optimal solution of (D). □

Theorem 2.3 (Converse duality). Assume that for any x ∈ △,∫ 1
0 d(t)Tx(t)dt + β > 0 and that △ is bounded. Further assume that there exist

ỹ ∈ Rm and γ̃ ∈ R such that c−
∑m

i=1 ỹiai− γ̃d ∈ intK∗ and βγ̃−bT ỹ < α. If (γ̄, ȳ)
is an optimal solution of (D), then there exists x̄ ∈ △ such that x̄ is an optimal
solution of (P) and

γ̄ =

∫ 1

0
c(t)T x̄(t)dt+ α∫ 1

0
d(t)T x̄(t)dt+ β

.

Proof. Let (γ̄, ȳ) be an optimal solution of (D). By Lemma 4.1 in [4], there exist
v ∈ K and η ∈ R+ such that

−1 +

∫ 1

0
d(t)T v(t)dt+ ηβ = 0,(2.1) ∫ 1

0
ai(t)

T v(t)dt− ηbi = 0, i = 1, . . . ,m,(2.2) ∫ 1

0

[
c(t)−

m∑
i=1

ȳiai(t)− γ̄d(t)
]T

v(t)dt = 0,(2.3)

η(βγ̄ − bT ȳ − α) = 0,(2.4)

c−
m∑
i=1

ȳiai − γ̄d ∈ K∗ and βγ̄ − bT ȳ ≦ α.
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From (2.3) and (2.4),∫ 1

0
c(t)T v(t)dt =

∫ 1

0

[ m∑
i=1

ȳiai(t) + γ̄d(t)
]T

v(t)dt

αη = ηβγ̄ − ηbT ȳ.

From (2.1) and (2.2),∫ 1

0
c(t)T v(t)dt+ αη =

∫ 1

0

[ m∑
i=1

ȳiai(t) + γ̄d(t)
]T

v(t)dt+ ηβγ̄ − ηbT ȳ

=

∫ 1

0

m∑
i=1

ȳiai(t)
T v(t)dt− ηbT ȳ

+γ̄
(∫ 1

0
d(t)T v(t)dt+ ηβ

)
= γ̄.

Thus we have ∫ 1

0
c(t)T v(t)dt+ αη = γ̄,(2.5) ∫ 1

0
d(t)T v(t)dt+ ηβ = 1,(2.6) ∫ 1

0
ai(t)

T v(t)dt− ηbi = 0, i = 1, . . . ,m.(2.7)

Suppose that η = 0. From (2.6) and (2.7), ∥v∥ :=
∫ 1
0 ∥v(t)∥dt > 0 and∫ 1

0 ai(t)
T v(t)dt = 0, i = 1 . . . ,m. For any x ∈ △ and any γ > 0, x + γv ∈ K

and ∫ 1

0
ai(t)

T (x(t) + γ̄v(t))dt =

∫ 1

0
ai(t)

Tx(t)dt+ γ̄

∫ 1

0
ai(t)

T v(t)dt

= bi

and so x + γv ∈ △. This contradicts the boundedness of the set △. Thus η > 0.
Let x̄ = 1

ηv. Since v ∈ K, x̄ ∈ K. From (2.5), (2.6) and (2.7), η = 1∫ 1
0 d(t)T x̄(t)dt+β

,

γ̄ =
∫ 1
0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

and
∫ 1
0 ai(t)

T x̄(t)dt = bi, i = 1, . . . ,m. By Theorem 2.1 (weak

duality), x̄ is an optimal solution of (P). □
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