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According to successive studies, the conditions imposed on mappings can be
relaxed to include important classes of mappings. Kocourek et al. [12] defined a
wide class of mappings. A mapping T : C → H is called

(iii) generalized hybrid [12] if there exist α, β ∈ R such that

α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C, where R is the set of real numbers. The class of generalized hybrid
mappings simultaneously includes nonexpansive mappings, nonspreading mappings
[14], hybrid mappings [28], and λ-hybrid mappings [1] as special cases. A non-
spreading mapping which is deduced from a firmly nonexpansive mapping is not
necessarily continuous; see [10] or [32].

For nonspreading mappings, Kurokawa and Takahashi [20] used the following
iteration:

(1.2) xn+1 = λnw + (1− λn)
1

n

n−1∑
k=0

T kxn,

for all n ∈ N and given x1, w ∈ C, and established a strong convergence theorem for
finding a fixed point of T . The idea of mean convergence as (1.2) based on Shimizu
and Takahashi [23] [24], and Atsushiba and Takahashi [3]; see also Kohsaka [13],
and Hojo and Takahashi [7]. For generalized hybrid mappings, Takahashi et al. [32]
demonstrated a strong convergence theorem by using the iteration

(1.3) xn+1 = λnw + (1− λn) (αnxn + (1− αn)Txn) for all n ∈ N.

In (1.3), x1, w ∈ C are given, and {λn} and {αn} are sequences in [0, 1].
The class of generalized hybrid mappings has been further extended. A mapping

T : C → C is called
(iv) normally 2-generalized hybrid [15] if there exist α0, β0, α1, β1, α2, β2 ∈ R

such that
∑2

n=0 (αn + βn) ≥ 0, α2 + α1 + α0 > 0, and

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + α0 ∥x− Ty∥2

+ β2

∥∥T 2x− y
∥∥2 + β1 ∥Tx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C. This class of mappings contains generalized hybrid mappings,
normally generalized hybrid mappings [31], and 2-generalized hybrid mappings [22]
as special cases. Hojo et al. [8] gave examples that are 2-generalized hybrid but not

generalized hybrid. It can be shown that if
∑2

n=0 (αn + βn) > 0, then a normally
2-generalized hybrid mapping has at most one fixed point; see Theorem 4.3 in [17].

Let T : C → C be a normally 2-generalized hybrid mapping. Kondo and Taka-
hashi [16] considered the following iteration:

(1.4) xn+1 = λnw + (1− λn)
(
anxn + bnTxn + cnT

2xn
)

for all n ∈ N.

In (1.4), x1, w ∈ C are given, and an, bn, cn ∈ [0, 1] such that an+ bn+cn = 1. They
showed that the sequence {xn} converge strongly to an attractive point of T . Very
recently, Kondo and Takahashi [18] applied the iteration (1.4) to common attractive
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point problems of two normally 2-generalized hybrid mappings. They considered the
following iteration:

(1.5) xn+1 = λnwn + (1− λn)
(
anxn + bnSxn + cnS

2xn + dnTxn + enT
2xn
)

for all n ∈ N. In (1.5), x1 ∈ C is given, an, bn, cn, dn, en ∈ [0, 1] such that an + bn +
cn + dn + en = 1, and the sequence {wn} in C is convergent. They proved a strong
convergence theorem to a common attractive point of S and T . For common fixed
or attractive point problems, see also Aoyama et al. [2], Iemoto and Takahashi [9],
Hojo et al. [5], Takahashi [29], and Takahashi et al. [33].

In this paper, combining the ideas of the iterations (1.2) and (1.5), we consider
two types of iterations as follows:

xn+1 = λnwn + (1− λn)

(
anxn + bn

1

n

n∑
k=1

Skxn + cn
1

n

n∑
k=1

T kxn

)
and

xn+1 = λnwn + (1− λn)

(
anxn + bnSxn + cnS

2xn + dn
1

n

n∑
k=1

T kxn

)
,

where S and T are normally 2-generalized hybrid mappings, which are not necessar-
ily commutative. Using these iterations, we show that the sequence {xn} converges
strongly to common attractive and fixed points of S and T (Theorem 3.1 and 3.2).
These two theorems are used to obtain well-known and new strong convergence
theorems which are connected with normally 2-generalized hybrid mappings in a
Hilbert space.

2. Preliminaries

This section briefly presents definitions of basic concepts and preliminary results.
In a real Hilbert space H, it is known that

(2.1) 2⟨x− y, y⟩ ≤ ∥x∥2 − ∥y∥2 ≤ 2⟨x− y, x⟩

for all x, y ∈ H. The strong and weak convergence of a sequence {xn} in H to an
element x (∈ H) are denoted by xn → x and xn ⇀ x, respectively.

Let T be a mapping from C into H, where C is a nonempty subset of H. Taka-
hashi and Takeuchi [30] showed that the set of attractive points A (T ) is closed
and convex in a Hilbert space. A mapping T : C → H with F (T ) ̸= ∅ is called
quasi-nonexpansive if ∥Tx− u∥ ≤ ∥x− u∥ for all x ∈ C and u ∈ F (T ). For a quasi-
nonexpansive mapping T , it holds that F (T ) ⊂ A (T ). We know from [15] that
a normally 2-generalized hybrid mapping with F (T ) ̸= ∅ is quasi-nonexpansive.
We also know from Itoh and Takahashi [11] that the set of fixed points F (T ) of a
quasi-nonexpansive mapping is closed and convex.

Let D be a nonempty, closed, and convex subset of H. Let PD be the metric
projection from H onto D, that is, for any x ∈ H, ∥x− PDx∥ = infz∈D ∥x− z∥. For
the metric projection PD from H onto D, it holds that ⟨x− PDx, PDx− z⟩ ≥ 0
for all x ∈ H and z ∈ D; see [26]. It is easy to verify that the metric projection is
firmly nonexpansive, and thus, it is nonexpansive.
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We list lemmas that will be utilized in the proofs of the theorems in this paper.
In Lemma 2.1, parts (a) and (b) were proved by Takahashi [27] and Maruyama et
al. [22], respectively. For a proof of (c), see [18].

Lemma 2.1 ([27], [22]). Let x, y, z, w ∈ H and a, b, c, d ∈ R. Then, the following
hold:

(a) If a+ b = 1, then ∥ax+ by∥2 = a ∥x∥2 + b ∥y∥2 − ab ∥x− y∥2.
(b) If a+ b+ c = 1, then

∥ax+ by + cz∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .
(c) If a+ b+ c+ d = 1, then

∥ax+ by + cz + dw∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2

−ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2

−bc ∥y − z∥2 − bd ∥y − w∥2 − cd ∥z − w∥2 .

The next lemma reveals a relationship between A (T ) and F (T ).

Lemma 2.2 ([30]). Let C be a nonempty subset of H, and let T be a mapping from
C into H. Then, A (T ) ∩ C ⊂ F (T ).

According to Lemmas 2.3 and 2.4, a weak limit of a sequence in H is an attractive
point of a nonlinear mapping. For Lemma 2.3, see also Kurokawa and Takahashi
[20]. For Lemma 2.4, see also Kocourek et al. [12] and Maruyama et al. [22].

Lemma 2.3 ([16]). Let C be a nonempty subset of H, and let T : C → C be
a normally 2-generalized hybrid mapping from C into itself. Suppose that A (T ) is
nonempty. Let {xn} be a bounded sequence in H, and define zn ≡ 1

n

∑n
k=1 T

kxn (∈ H) .
If zni ⇀ u, then u ∈ A (T ), where {zni} is a subsequence of {zn}.

Lemma 2.4 ([15]). Let C be a nonempty subset of H, let T be a normally 2-
generalized hybrid mapping from C into itself, and let {xn} be a sequence in C. If
{xn} satisfies Txn − xn → 0, T 2xn − xn → 0, and xn ⇀ u, then u ∈ A (T ).

Lemmas 2.5 and 2.6 play key roles to derive strong convergence.

Lemma 2.5 ([2]; see also [35]). Let {Xn} be a sequence of nonnegative real numbers,
let {Yn} be a sequence of real numbers such that lim supn→∞ Yn ≤ 0, and let {Zn}
be a sequence of nonnegative real numbers such that

∑∞
n=1 Zn < ∞. Let {λn}

be a sequence of real numbers in the interval [0, 1) such that
∑∞

n=1 λn = ∞. If
Xn+1 ≤ (1− λn)Xn + λnYn + Zn for all n ∈ N, then Xn → 0 as n → ∞.

Lemma 2.6 ([21]). Let {Xn} be a sequence of real numbers. Assume that {Xn} is
not monotone decreasing for sufficiently large n ∈ N, that is, there exists a subse-
quence {Xni} of {Xn} such that Xni < Xni+1 for all i ∈ N. Let n0 be a natural
number such that {k ∈ N : k ≤ n0, Xk < Xk+1} is nonempty. Define a sequence
{τ (n)}n≥n0

of natural numbers as follows:

τ (n) = max {k ∈ N : k ≤ n0, Xk < Xk+1} for all n ≥ n0.



STRONG CONVERGENCE FOR FINDING COMMON ATTRACTIVE POINTS 425

Then, the following hold:
(a) τ (n) → ∞ as n → ∞;
(b) Xn ≤ Xτ(n)+1 and Xτ(n) < Xτ(n)+1 for all n ≥ n0.

3. Main Results

In this section, we present two alternative iterations under which sequences con-
verge strongly to common attractive and fixed points. The proofs have been devel-
oped in [32], [16], [18], [6], and [25].

Theorem 3.1. Let C be a nonempty and convex subset of H, let S and T be
normally 2-generalized hybrid mappings from C into itself with A (S) ∩ A (T ) ̸= ∅,
and let PA be the metric projection from H onto A (S) ∩ A (T ). Let a, b ∈ (0, 1)
such that a ≤ b, and let {λn}, {an}, {bn}, and {cn} be sequences of real numbers in
the interval (0, 1) such that

λn → 0,
∞∑
n=1

λn = ∞,

an + bn + cn = 1, 0 < a ≤ an, bn, cn ≤ b < 1 for all n ∈ N.

Let {wn} be a sequence in C such that wn → w. Define a sequence {xn} in C as
follows:

x1 ∈ C : given,

xn+1 = λnwn + (1− λn)

(
anxn + bn

1

n

n∑
k=1

Skxn + cn
1

n

n∑
k=1

T kxn

)
for all n ∈ N. Then, the sequence {xn} converges strongly to a common attractive
point w ∈ A (S) ∩ A (T ), where w = PAw. Additionally, if C is closed, then {xn}
converges strongly to a common fixed point ŵ = PFw ∈ F (S) ∩ F (T ), where PF is
the metric projection from H onto F (S) ∩ F (T ).

Proof. Define

yn =
1

n

n∑
k=1

Skxn,

zn =
1

n

n∑
k=1

T kxn, and

hn = anxn + bnyn + cnzn.

Then, xn+1 = λnwn + (1− λn)hn. First, observe that

(3.1) ∥yn − q∥ ≤ ∥xn − q∥ and ∥zn − q∥ ≤ ∥xn − q∥

for all q ∈ A (S) ∩A (T ) and n ∈ N. It can be easily ascertained as follows:

∥yn − q∥ =

∥∥∥∥∥ 1n
n∑

k=1

Skxn − q

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n∑

k=1

Skxn − nq

∥∥∥∥∥
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=
1

n

∥∥∥∥∥
n∑

k=1

(
Skxn − q

)∥∥∥∥∥ ≤ 1

n

n∑
k=1

∥∥∥(Skxn − q
)∥∥∥

≤ 1

n

n∑
k=1

∥xn − q∥ = ∥xn − q∥ .

Similarly, the other part ∥zn − q∥ ≤ ∥xn − q∥ can be verified. It follows from (3.1)
that

(3.2) ∥hn − q∥ ≤ ∥xn − q∥

for all q ∈ A (S) ∩A (T ) and n ∈ N. Indeed,

∥hn − q∥ = ∥anxn + bnyn + cnzn − q∥
≤ an ∥xn − q∥+ bn ∥yn − q∥+ cn ∥zn − q∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥
= ∥xn − q∥ .

Next, we show that {xn} is bounded by using the mathematical induction.
Choose q ∈ A (S) ∩A (T ) arbitrarily, and define

M = max

{
sup
k∈N

∥wk − q∥ , ∥x1 − q∥
}
.

Since {wn} is bounded, M is a real number. We prove that ∥xn − q∥ ≤ M for all
n ∈ N. (i) For the case of n = 1, it obviously holds. (ii) Assume that ∥xk − q∥ ≤ M
for some k ∈ N. It follows from (3.2) that

∥xk+1 − q∥ = ∥λnwn + (1− λn)hn − q∥
≤ λk ∥wk − q∥+ (1− λk) ∥hk − q∥
≤ λk ∥wk − q∥+ (1− λk) ∥xk − q∥
≤ λkM + (1− λk)M = M.

Hence, {xn} is bounded.
The following inequality is crucial for our purpose:

anbn ∥xn − yn∥2 + bncn ∥yn − zn∥2 + cnan ∥zn − xn∥2(3.3)

≤ λn ∥wn − q∥2 + ∥xn − q∥2 − ∥xn+1 − q∥2

for all q ∈ A (S) ∩A (T ) and n ∈ N. By using Lemma 2.1 and (3.1), we obtain

∥xn+1 − q∥2

= ∥λn (wn − q) + (1− λn) (hn − q)∥2

≤ λn ∥wn − q∥2 + (1− λn) ∥hn − q∥2

≤ λn ∥wn − q∥2 + ∥an (xn − q) + bn (yn − q) + cn (zn − q)∥2

= λn ∥wn − q∥2 + an ∥xn − q∥2 + bn ∥yn − q∥2 + cn ∥zn − q∥2

−anbn ∥xn − yn∥2 − bncn ∥yn − zn∥2 − cnan ∥zn − xn∥2
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≤ λn ∥wn − q∥2 + an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2

−anbn ∥xn − yn∥2 − bncn ∥yn − zn∥2 − cnan ∥zn − xn∥2

= λn ∥wn − q∥2 + ∥xn − q∥2

−anbn ∥xn − yn∥2 − bncn ∥yn − zn∥2 − cnan ∥zn − xn∥2 .

Thus, (3.3) follows.
Next, we show that

(3.4) ∥xn+1 − xn∥ ≤ λn ∥wn − xn∥+ ∥yn − xn∥+ ∥zn − xn∥

for all n ∈ N. This inequality can be ascertained as follows:

∥xn+1 − xn∥
= ∥λnwn + (1− λn)hn − xn∥
≤ λn ∥wn − xn∥+ (1− λn) ∥hn − xn∥
≤ λn ∥wn − xn∥+ ∥anxn + bnyn + cnzn − (an + bn + cn)xn∥
≤ λn ∥wn − xn∥+ bn ∥yn − xn∥+ cn ∥zn − xn∥
≤ λn ∥wn − xn∥+ ∥yn − xn∥+ ∥zn − xn∥ .

Let Xn = ∥xn − w∥2, where w = PAw. Our purpose is to demonstrate that
Xn → 0 as n → ∞. The rest of the proof is divided into two cases.

Case (A). Suppose that there exists a natural number n′ such that Xn+1 ≤ Xn

for all n ≥ n′. In this case, the sequence {Xn} is convergent. Since w ∈ A (S)∩A (T ),
it holds from (3.3) that

anbn ∥xn − yn∥2 + bncn ∥yn − zn∥2 + cnan ∥zn − xn∥2(3.5)

≤ λn ∥wn − w∥2 + ∥xn − w∥2 − ∥xn+1 − w∥2

≡ λn ∥wn − w∥2 +Xn −Xn+1

for all n ∈ N. Since {wn} is bounded, λn → 0, and {Xn} is convergent, we have
that

(3.6) xn − yn → 0 and xn − zn → 0.

Since {wn} and {xn} are bounded, we have from (3.4) that

(3.7) xn+1 − xn → 0.

We have from (2.1) and (3.2) that

Xn+1 = ∥xn+1 − w∥2

= ∥λn (wn − w) + (1− λn) (hn − w)∥2

≤ (1− λn)
2 ∥hn − w∥2 + 2λn ⟨xn+1 − w, wn − w⟩

≤ (1− λn) ∥xn − w∥2 + 2λn ⟨xn+1 − w, wn − w⟩
≡ (1− λn)Xn + 2λn ⟨xn+1 − w, wn − w⟩
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for all n ∈ N. From Lemma 2.5, it suffices to prove that

lim sup
n→∞

⟨xn+1 − w, wn − w⟩ ≤ 0.

Since the sequences {xn} is bounded, we can assume, without loss of generality,
that there exists subsequence {xni} of {xn}such that

lim sup
n→∞

⟨xn+1 − w, wn − w⟩ = lim
i→∞

⟨xni − w, wni−1 − w⟩

and xni ⇀ u for some u ∈ H. Therefore, it follows from (3.6) that yni ⇀ u and
zni ⇀ u. From Lemma 2.3, we obtain u ∈ A (S) ∩ A (T ). Since wn → w and
w ≡ PAw, we have that

lim sup
n→∞

⟨xn+1 − w, wn − w⟩ = lim
i→∞

⟨xni − w, wni−1 − w⟩

= ⟨u− w, w − w⟩ ≤ 0.

This completes the proof for Case (A).
Case (B). Suppose that there exists a subsequence {Xni} of {Xn} such that

Xni < Xni+1 for all i ∈ N. Let n0 be a natural number such that {k ∈ N : k ≤ n0,
Xk < Xk+1} ̸= ∅. Define

τ (n) = max {k ∈ N : k ≤ n, Xk < Xk+1} for all n ≥ n0.

From Lemma 2.6, it holds that

τ (n) → ∞ as n → ∞;(3.8)

Xn ≤ Xτ(n)+1 for all n ≥ n0;(3.9)

Xτ(n) < Xτ(n)+1 for all n ≥ n0.(3.10)

From (3.9), it suffices to demonstrate that Xτ(n)+1 → 0. From (3.2)–(3.4), the
following hold:

(3.11)
∥∥hτ(n) − w

∥∥ ≤
∥∥xτ(n) − w

∥∥ ,
aτ(n)bτ(n)

∥∥xτ(n) − yτ(n)
∥∥2 + bτ(n)cτ(n)

∥∥yτ(n) − zτ(n)
∥∥2(3.12)

+cτ(n)aτ(n)
∥∥zτ(n) − xτ(n)

∥∥2
≤ λτ(n)

∥∥wτ(n) − w
∥∥2 + ∥∥xτ(n) − w

∥∥2 − ∥∥xτ(n)+1 − w
∥∥2

≡ λτ(n)

∥∥wτ(n) − w
∥∥2 +Xτ(n) −Xτ(n)+1, and∥∥xτ(n)+1 − xτ(n)
∥∥(3.13)

≤ λτ(n)

∥∥wτ(n) − xτ(n)
∥∥+ ∥∥yτ(n) − xτ(n)

∥∥+ ∥∥zτ(n) − xτ(n)
∥∥

for all n ≥ n0. It holds from (3.10) and (3.12) that

aτ(n)bτ(n)
∥∥xτ(n) − yτ(n)

∥∥2 + bτ(n)cτ(n)
∥∥yτ(n) − zτ(n)

∥∥2
+ cτ(n)aτ(n)

∥∥zτ(n) − xτ(n)
∥∥2 ≤ λτ(n)

∥∥wτ(n) − w
∥∥2 .
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Since
{
wτ(n)

}
is bounded and λτ(n) → 0, we obtain that

(3.14) xτ(n) − yτ(n) → 0, xτ(n) − zτ(n) → 0,

as n → ∞. Thus, we have from (3.13) that

xτ(n)+1 − xτ(n) → 0.

Since
{
xτ(n)

}
and

{
xτ(n)+1

}
are bounded, it holds that

Xτ(n)+1 −Xτ(n) → 0.

Thus, it suffices to prove that Xτ(n) → 0. Using (2.1) and (3.11), we obtain

Xτ(n)+1 =
∥∥xτ(n)+1 − w

∥∥2
=

∥∥λτ(n)

(
wτ(n) − w

)
+
(
1− λτ(n)

) (
hτ(n) − w

)∥∥2
≤

(
1− λτ(n)

)2 ∥∥hτ(n) − w
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
≤

(
1− λτ(n)

) ∥∥xτ(n) − w
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
=

(
1− λτ(n)

)
Xτ(n) + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
,

and hence,

λτ(n)Xτ(n) ≤ Xτ(n) −Xτ(n)+1 + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
.

From (3.10),

λτ(n)Xτ(n) ≤ 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
,

and hence,

Xτ(n) ≤ 2
⟨
xτ(n)+1 − w, wτ(n) − w

⟩
We prove that

lim sup
n→∞

⟨
xτ(n) − w, wτ(n)−1 − w

⟩
≤ 0.

Since
{
xτ(n)

}
is bounded, we can assume, without loss of generality, that there is a

subsequence
{
xτ(ni)

}
of
{
xτ(n)

}
such that

lim sup
n→∞

⟨
xτ(n) − w, wτ(n)−1 − w

⟩
= lim

i→∞

⟨
xτ(ni) − w, wτ(ni)−1 − w

⟩
and xτ(ni) ⇀ u for some u ∈ H. From (3.14), we obtain

yτ(ni) ⇀ u and zτ(ni) ⇀ u.

Using Lemma 2.3, we have that u ∈ A (S) ∩A (T ). Since w ≡ PAw, we obtain

lim sup
n→∞

⟨
xτ(n) − w, wτ(n)−1 − w

⟩
= lim

i→∞

⟨
xτ(ni) − w, wτ(ni)−1 − w

⟩
= ⟨u− w, w − w⟩ ≤ 0.

This completes the proof for Case (B), and we have shown that xn → w ≡ PAw.
Suppose, in addition to the other assumptions, that C is closed in H. We show

that xn → ŵ (≡ PFw). Since xn → w ≡ PAw and C is closed, it holds that
w ∈ C ∩ A (S) ∩ A (T ). We have from Lemma 2.2 that w ∈ F (S) ∩ F (T ), and
hence, F (S) ∩ F (T ) ̸= ∅. Since S and T are quasi-nonexpansive, F (S) ∩ F (T ) is
closed and convex. Consequently, there exists the metric projection PF from H onto
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F (S) ∩ F (T ). We prove that (ŵ ≡)PFw = w (≡ PAw). Since w ∈ F (S) ∩ F (T ),
it suffices to demonstrate that ∥w − w∥ ≤ ∥w − v∥ for all v ∈ F (S) ∩ F (T ). Let
v ∈ F (S) ∩ F (T ). Since S and T are quasi-nonexpansive, it holds that F (S) ∩
F (T ) ⊂ A (S) ∩A (T ). Thus, we have that

∥w − w∥ = inf {∥w − q∥ : q ∈ A (S) ∩A (T )}
≤ inf {∥w − q∥ : q ∈ F (S) ∩ F (T )}
≤ ∥w − v∥ .

This means that w = PFw (≡ ŵ). This completes the proof. □

Theorem 3.2. Let C be a nonempty and convex subset of H, let S and T be
normally 2-generalized hybrid mappings from C into itself with A (S) ∩ A (T ) ̸= ∅,
and let PA be the metric projection from H onto A (S)∩A (T ). Let a, b ∈ (0, 1) such
that a ≤ b, and let {λn}, {an}, {bn}, {cn}, and {dn} be sequences of real numbers
in the interval (0, 1) such that

λn → 0,

∞∑
n=1

λn = ∞,

an + bn + cn + dn = 1, 0 < a ≤ an, bn, cn, dn ≤ b < 1 for all n ∈ N.

Let {wn} be a sequence in C such that wn → w. Define a sequence {xn} in C as
follows:

x1 ∈ C : given,

xn+1 = λnwn + (1− λn)

(
anxn + bnSxn + cnS

2xn + dn
1

n

n∑
k=1

T kxn

)
for all n ∈ N. Then, the sequence {xn} converges strongly to a common attractive
point w ∈ A (S) ∩ A (T ), where w = PAw. Additionally, if C is closed, then {xn}
converges strongly to a common fixed point ŵ = PFw ∈ F (S) ∩ F (T ), where PF is
the metric projection from H onto F (S) ∩ F (T ).

Proof. Let us define zn and hn as follows:

zn =
1

n

n∑
k=1

T kxn, and

hn = anxn + bnSxn + cnS
2xn + dnzn.

Then, we have that xn+1 = λnwn + (1− λn)hn. As in the proof of Theorem 3.1,
we can verify that

(3.15) ∥zn − q∥ ≤ ∥xn − q∥
for all q ∈ A (T ) and n ∈ N. From (3.15), the following holds:

(3.16) ∥hn − q∥ ≤ ∥xn − q∥
for all q ∈ A (S) ∩A (T ) and n ∈ N. Indeed,

∥hn − q∥ =
∥∥anxn + bnSxn + cnS

2xn + dnzn − q
∥∥
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≤ an ∥xn − q∥+ bn ∥Sxn − q∥+ cn
∥∥S2xn − q

∥∥+ dn ∥zn − q∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥+ dn ∥xn − q∥
= ∥xn − q∥ .

Using this inequality, as in the proof of Theorem 3.1, we can prove that {xn} is
bounded.

We show that

anbn ∥xn − Sxn∥2 + ancn
∥∥xn − S2xn

∥∥2 + andn ∥xn − zn∥2(3.17)

+bncn
∥∥Sxn − S2xn

∥∥2 + bndn ∥Sxn − zn∥2 + cndn
∥∥S2xn − zn

∥∥2
≤ λn ∥wn − q∥2 + ∥xn − q∥2 − ∥xn+1 − q∥2

for all q ∈ A (S)∩A (T ) and n ∈ N. By using Lemma 2.1-(c) and (3.15), we obtain

∥xn+1 − q∥2

= ∥λn (wn − q) + (1− λn) (hn − q)∥2

≤ λn ∥wn − q∥2 + (1− λn) ∥hn − q∥2

= λn ∥wn − q∥2 + (1− λn)
∥∥anxn + bnSxn + cnS

2xn + dnzn − q
∥∥2

≤ λn ∥wn − q∥2

+
∥∥an (xn − q) + bn (Sxn − q) + cn

(
S2xn − q

)
+ dn (zn − q)

∥∥2
= λn ∥wn − q∥2

+an ∥xn − q∥2 + bn ∥Sxn − q∥2 + cn
∥∥S2xn − q

∥∥2 + dn ∥zn − q∥2

−anbn ∥xn − Sxn∥2 − ancn
∥∥xn − S2xn

∥∥2 − andn ∥xn − zn∥2

−bncn
∥∥Sxn − S2xn

∥∥2 − bndn ∥Sxn − zn∥2 − cndn
∥∥S2xn − zn

∥∥2
≤ λn ∥wn − q∥2

+an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2 + dn ∥xn − q∥2

−anbn ∥xn − Sxn∥2 − ancn
∥∥xn − S2xn

∥∥2 − andn ∥xn − zn∥2

−bncn
∥∥Sxn − S2xn

∥∥2 − bndn ∥Sxn − zn∥2 − cndn
∥∥S2xn − zn

∥∥2
= λn ∥wn − q∥2 + ∥xn − q∥2

−anbn ∥xn − Sxn∥2 − ancn
∥∥xn − S2xn

∥∥2 − andn ∥xn − zn∥2

−bncn
∥∥Sxn − S2xn

∥∥2 − bndn ∥Sxn − zn∥2 − cndn
∥∥S2xn − zn

∥∥2 .
Therefore, we obtain (3.17).

Our next aim is to prove that

(3.18) ∥xn+1 − xn∥ ≤ λn ∥wn − xn∥+ ∥Sxn − xn∥+
∥∥S2xn − xn

∥∥+ ∥zn − xn∥

for all n ∈ N. Indeed, we have that

∥xn+1 − xn∥
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= ∥λnwn + (1− λn)hn − xn∥
≤ λn ∥wn − xn∥+ (1− λn) ∥hn − xn∥
≤ λn ∥wn − xn∥

+
∥∥anxn + bnSxn + cnS

2xn + dnzn − (an + bn + cn + dn)xn
∥∥

≤ λn ∥wn − xn∥+ bn ∥Sxn − xn∥+ cn
∥∥S2xn − xn

∥∥+ dn ∥zn − xn∥
≤ λn ∥wn − xn∥+ ∥Sxn − xn∥+

∥∥S2xn − xn
∥∥+ ∥zn − xn∥ .

Define Xn = ∥xn − w∥2, where w = PAw. Our goal is to prove that Xn → 0 as
n → ∞. We divide the rest of the proof into two cases.

Case (A). Suppose that there exists a natural number n′ such that Xn+1 ≤ Xn

for all n ≥ n′. In this case, the sequence {Xn} is convergent. Since w ∈ A (S)∩A (T ),
it holds from (3.17) that

anbn ∥xn − Sxn∥2 + ancn
∥∥xn − S2xn

∥∥2 + andn ∥xn − zn∥2

+bncn
∥∥Sxn − S2xn

∥∥2 + bndn ∥Sxn − zn∥2 + cndn
∥∥S2xn − zn

∥∥2
≤ λn ∥wn − w∥2 + ∥xn − w∥2 − ∥xn+1 − w∥2

≡ λn ∥wn − w∥2 +Xn −Xn+1

for all n ∈ N. Since {wn} is bounded, λn → 0, and {Xn} is convergent, we have
that

(3.19) xn − Sxn → 0, xn − S2xn → 0, xn − zn → 0,

Since {wn} and {xn} are bounded, it follows from (3.18) and (3.19) that

xn+1 − xn → 0.

We obtain from (2.1) and (3.16) that

Xn+1 = ∥xn+1 − w∥2

= ∥λn (wn − w) + (1− λn) (hn − w)∥2

≤ (1− λn)
2 ∥hn − w∥2 + 2λn ⟨xn+1 − w, wn − w⟩

≤ (1− λn) ∥xn − w∥2 + 2λn ⟨xn+1 − w, wn − w⟩
≡ (1− λn)Xn + 2λn ⟨xn+1 − w, wn − w⟩

for all n ∈ N. From Lemma 2.5, it suffices to prove that

lim sup
n→∞

⟨xn+1 − w, wn − w⟩ ≤ 0.

Since the sequences {xn} is bounded and {wn} is convergent, we can assume, with-
out loss of generality, that there exists subsequence {xni} of {xn}such that

lim sup
n→∞

⟨xn+1 − w, wn − w⟩ = lim
i→∞

⟨xni − w, wni−1 − w⟩

and xni ⇀ u for some u ∈ H. From Lemma 2.4 and (3.19), we have that u ∈ A (S).
Furthermore, it follows from (3.19) that zni ⇀ u. From Lemma 2.3, we obtain
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u ∈ A (T ). Thus, u ∈ A (S) ∩A (T ). Since wn → w and w = PAw, we have that

lim sup
n→∞

⟨xn+1 − w, wn − w⟩ = lim
i→∞

⟨xni − w, wni−1 − w⟩

= ⟨u− w, w − w⟩ ≤ 0.

This completes the proof for Case (A).
Case (B). Suppose that there exists a subsequence {Xni} of {Xn} such that

Xni < Xni+1 for all i ∈ N. Let n0 be a natural number such that {k ∈ N : k ≤ n0,
Xk < Xk+1} is nonempty. Define

τ (n) = max {k ∈ N : k ≤ n, Xk < Xk+1} for all n ≥ n0.

From Lemma 2.6, it holds that

τ (n) → ∞ as n → ∞;(3.20)

Xn ≤ Xτ(n)+1 for all n ≥ n0;(3.21)

Xτ(n) < Xτ(n)+1 for all n ≥ n0.(3.22)

From (3.21), it suffices to demonstrate that Xτ(n)+1 → 0. Since w (≡ PAw) ∈
A (S) ∩A (T ), we have from (3.16)–(3.18) that

(3.23)
∥∥hτ(n) − w

∥∥ ≤
∥∥xτ(n) − w

∥∥ ,
aτ(n)bτ(n)

∥∥xτ(n) − Sxτ(n)
∥∥2 + aτ(n)cτ(n)

∥∥xτ(n) − S2xτ(n)
∥∥2(3.24)

+ aτ(n)dτ(n)
∥∥xτ(n) − zτ(n)

∥∥2
+ bτ(n)cτ(n)

∥∥Sxτ(n) − S2xτ(n)
∥∥2 + bτ(n)dτ(n)

∥∥Sxτ(n) − zτ(n)
∥∥2

+ cτ(n)dτ(n)
∥∥S2xτ(n) − zτ(n)

∥∥2
≤ λτ(n)

∥∥wτ(n) − w
∥∥2 + ∥∥xτ(n) − w

∥∥2 − ∥∥xτ(n)+1 − w
∥∥2

≡ λτ(n)

∥∥wτ(n) − w
∥∥2 +Xτ(n) −Xτ(n)+1, and∥∥xτ(n)+1 − xτ(n)

∥∥(3.25)

≤ λτ(n)

∥∥wτ(n) − xτ(n)
∥∥

+
∥∥∥Sxτ(n)

− x
τ(n)

∥∥∥+ ∥∥∥S2x
τ(n)

− x
τ(n)

∥∥∥+ ∥∥∥zτ(n)
− x

τ(n)

∥∥∥
for all n ≥ n0. It follows from (3.22) and (3.24) that

aτ(n)bτ(n)
∥∥xτ(n) − Sxτ(n)

∥∥2 + aτ(n)cτ(n)
∥∥xτ(n) − S2xτ(n)

∥∥2
+ aτ(n)dτ(n)

∥∥xτ(n) − zτ(n)
∥∥2

+ bτ(n)cτ(n)
∥∥Sxτ(n) − S2xτ(n)

∥∥2 + bτ(n)dτ(n)
∥∥Sxτ(n) − zτ(n)

∥∥2
+ cτ(n)dτ(n)

∥∥S2xτ(n) − zτ(n)
∥∥2

≤ λτ(n)

∥∥wτ(n) − w
∥∥2 .
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Since
{
wτ(n)

}
is bounded and λτ(n) → 0, we obtain that

(3.26) xτ(n) − Sxτ(n) → 0, xτ(n) − S2xτ(n) → 0, xτ(n) − zτ(n) → 0

as n → ∞. Thus, we have from (3.25) that

xτ(n)+1 − xτ(n) → 0.

Consequently, it holds that

Xτ(n)+1 −Xτ(n) → 0.

Thus, our goal is to prove that Xτ(n) → 0. From (2.1) and (3.23), we obtain

Xτ(n)+1 =
∥∥xτ(n)+1 − w

∥∥2
=

∥∥λτ(n)

(
wτ(n) − w

)
+
(
1− λτ(n)

) (
hτ(n) − w

)∥∥2
≤

(
1− λτ(n)

)2 ∥∥hτ(n) − w
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
≤

(
1− λτ(n)

) ∥∥xτ(n) − w
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
≡

(
1− λτ(n)

)
Xτ(n) + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
.

This yields that

λτ(n)Xτ(n) ≤ Xτ(n) −Xτ(n)+1 + 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
.

We have from (3.22) that

λτ(n)Xτ(n) ≤ 2λτ(n)

⟨
xτ(n)+1 − w, wτ(n) − w

⟩
,

Dividing it by λτ(n) (> 0), we obtain

Xτ(n) ≤ 2
⟨
xτ(n)+1 − w, wτ(n) − w

⟩
We show that

lim sup
n→∞

⟨
xτ(n) − w, wτ(n)−1 − w

⟩
≤ 0.

Since
{
xτ(n)

}
is bounded, we can assume, without loss of generality, that there is a

subsequence
{
xτ(ni)

}
of
{
xτ(n)

}
such that

lim sup
n→∞

⟨
xτ(n) − w, wτ(n)−1 − w

⟩
= lim

i→∞

⟨
xτ(ni) − w, wτ(ni)−1 − w

⟩
and xτ(ni) ⇀ u for some u ∈ H. From (3.26) and Lemma 2.4, we have that
u ∈ A (S). Furthermore, from (3.26), it holds that

zτ(ni) ⇀ u.

As a consequence from Lemma 2.3, we have that u ∈ A (T ). Thus, u ∈ A (S)∩A (T ).
Since w = PAw, we obtain

lim sup
n→∞

⟨
xτ(n) − w, wτ(n)−1 − w

⟩
= lim

i→∞

⟨
xτ(ni) − w, wτ(ni)−1 − w

⟩
= ⟨u− w, w − w⟩ ≤ 0.

This completes the proof for Case (B), and we have shown that xn → w ≡ PAw as
claimed.
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Additionally, suppose that C is closed in H. As in the proof of Theorem 3.1, we
can show that xn → ŵ (= PFw), where PF is the metric projection from H onto
F (S) ∩ F (T ). This completes the proof. □

4. Applications

In this section, using Theorems 3.1 and 3.2, we obtain well-known and new strong
convergence theorems which are connected with normally 2-generalized hybrid map-
pings in a Hilbert space. We can first prove the following two results from Theorems
3.1 and 3.2.

Theorem 4.1. Let C be a nonempty and convex subset of H, let S be a normally
2-generalized hybrid mapping from C into itself with A (S) ̸= ∅, and let PA(S) be
the metric projection from H onto A (S). Let a, b ∈ (0, 1) such that a ≤ b, and let
{λn}, {an} and {dn} be sequences of real numbers in the interval (0, 1) such that

λn → 0,
∞∑
n=1

λn = ∞,

an + dn = 1, 0 < a ≤ an, dn ≤ b < 1 for all n ∈ N.

Let {wn} be a sequence in C such that wn → w. Define a sequence {xn} in C as
follows:

x1 ∈ C : given,

xn+1 = λnwn + (1− λn)

(
anxn + dn

1

n

n∑
k=1

Skxn

)
for all n ∈ N. Then, the sequence {xn} converges strongly to an attractive point
w ∈ A (S), where w = PA(S)w. Additionally, if C is closed, then {xn} converges
strongly to a fixed point ŵ = PF (S)w ∈ F (S), where PF (S) is the metric projection
from H onto F (S).

Proof. Putting bn = cn = dn
2 and T = S in Theorem 3.1, we have the desired result

from Theorem 3.1. □

Theorem 4.2. Let C be a nonempty and convex subset of H, let S be a normally
2-generalized hybrid mapping from C into itself with A (S) ̸= ∅, and let PA(S) be
the metric projection from H onto A (S). Let a, b ∈ (0, 1) such that a ≤ b, and let
{λn}, {fn}, {bn}, and {cn} be sequences of real numbers in the interval (0, 1) such
that

λn → 0,

∞∑
n=1

λn = ∞,

fn + bn + cn = 1, 0 < a ≤ fn, bn, cn ≤ b < 1 for all n ∈ N.

Let {wn} be a sequence in C such that wn → w. Define a sequence {xn} in C as
follows:

x1 ∈ C : given,
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xn+1 = λnwn + (1− λn)
(
fnxn + bnSxn + cnS

2xn
)

for all n ∈ N. Then, the sequence {xn} converges strongly to an attractive point
w ∈ A (S), where w = PA(S)w. Additionally, if C is closed, then {xn} converges
strongly to a fixed point ŵ = PF (S)w ∈ F (S), where PF (S) is the metric projection
from H onto F (S).

Proof. Putting an = dn = fn
2 and T = I in Theorem 3.2, we have the desired result

from Theorem 3.2. □
We have that a generalized hybrid mapping is a normally 2-generalized hybrid

mapping. As direct results of Theorems 3.1 and 3.2, we have the following two
theorems.

Theorem 4.3. Let C be a nonempty and convex subset of H, let S and T be
generalized hybrid mappings from C into itself such that A (S) ∩ A (T ) ̸= ∅, and
let PA be the metric projection from H onto A (S) ∩ A (T ). Let a, b ∈ (0, 1) such
that a ≤ b, and let {λn}, {an}, {bn}, and {cn} be sequences of real numbers in the
interval (0, 1) such that

λn → 0,
∞∑
n=1

λn = ∞,

an + bn + cn = 1, 0 < a ≤ an, bn, cn ≤ b < 1 for all n ∈ N.

Let {wn} be a sequence in C such that wn → w. Define a sequence {xn} in C as
follows:

x1 ∈ C : given,

xn+1 = λnwn + (1− λn)

(
anxn + bn

1

n

n∑
k=1

Skxn + cn
1

n

n∑
k=1

T kxn

)
for all n ∈ N. Then, the sequence {xn} converges strongly to a common attractive
point w ∈ A (S) ∩ A (T ), where w = PAw. Additionally, if C is closed, then {xn}
converges strongly to a common fixed point ŵ = PFw ∈ F (S) ∩ F (T ), where PF is
the metric projection from H onto F (S) ∩ F (T ).

Theorem 4.4. Let C be a nonempty and convex subset of H, let S and T be
generalized hybrid and normally 2-generalized hybrid mappings from C into itself,
respectively, such that A (S) ∩ A (T ) ̸= ∅, and let PA be the metric projection from
H onto A (S) ∩ A (T ). Let a, b ∈ (0, 1) such that a ≤ b, and let {λn}, {an}, {bn},
{cn}, and {dn} be sequences of real numbers in the interval (0, 1) such that

λn → 0,

∞∑
n=1

λn = ∞,

an + bn + cn + dn = 1, 0 < a ≤ an, bn, cn, dn ≤ b < 1 for all n ∈ N.

Let {wn} be a sequence in C such that wn → w. Define a sequence {xn} in C as
follows:

x1 ∈ C : given,
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xn+1 = λnwn + (1− λn)

(
anxn + bnSxn + cnS

2xn + dn
1

n

n∑
k=1

T kxn

)

for all n ∈ N. Then, the sequence {xn} converges strongly to a common attractive
point w ∈ A (S) ∩ A (T ), where w = PAw. Additionally, if C is closed, then {xn}
converges strongly to a common fixed point ŵ = PFw ∈ F (S) ∩ F (T ), where PF is
the metric projection from H onto F (S) ∩ F (T ).
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