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STRONG CONVERGENCE THEOREMS FOR FINDING
COMMON ATTRACTIVE POINTS OF NORMALLY
2-GENERALIZED HYBRID MAPPINGS AND APPLICATIONS

ATSUMASA KONDO* AND WATARU TAKAHASHI'

ABSTRACT. In this paper, using the ideas of mean convergence by Shimizu and
Takahashi [23, 24], Atsushiba and Takahashi [3], and Kurokawa and Takahashi
[20]. we prove two strong convergence theorems for finding common attractive
and fixed points of two normally 2-generalized hybrid mappings in a Hilbert space.
The mappings are not necessarily commutative. These two theorems are used
to obtain well-known and new strong convergence theorems which are connected
with normally 2-generalized hybrid mappings in a Hilbert space.

1. INTRODUCTION

In this paper, we denote a real Hilbert space by H, and its inner product and
norm by (-, -) and ||-||, respectively. Let C' be a nonempty subset of H, and let T be
a mapping from C into H. The sets of fixed and attractive points [30] are denoted
by

F(T) = {ueC:Tu=u} and
A(T) = {ueH:||[Ty—ul| <|ly—ul forallyeC},

respectively. The concept of attractive points was introduced by Takahashi and
Takeuchi in their 2011’s paper [30]. A mapping T : C' — H is called

(i) firmly nonexpansive if |Tx — Ty||* < (x —y, Tx — Ty) for all z,y € C;

(ii) nonexpansive if | Tx — Ty|| < ||z — y|| for all z,y € C.

It is well-known that a firmly nonexpansive mapping is nonexpansive. This map-
ping is deduced from the resolvent of a maximal monotone operator of H into itself.
For nonexpansive mappings, approximation methods for finding fixed points have
been studied. Wittmann [34] proved a strong convergence to a fixed point of T' by
using the Halpern’s type iteration [4]:

(1.1) Tnt1 = A\ + (1 = \y) Ty, for all n € N.

In (1.1), z1 = x € C is given, {\,} is a sequence of real numbers in the interval
[0, 1] that satisfies certain conditions, and N is the set of natural numbers.
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According to successive studies, the conditions imposed on mappings can be
relaxed to include important classes of mappings. Kocourek et al. [12] defined a
wide class of mappings. A mapping T : C — H is called

(iii) generalized hybrid [12] if there exist «, 5 € R such that

a|Te = Ty|* + (1 - a) o = Ty|* < BI|Tz — ylI* + (1 = B) |« —y*

for all z,y € C, where R is the set of real numbers. The class of generalized hybrid
mappings simultaneously includes nonexpansive mappings, nonspreading mappings
[14], hybrid mappings [28], and A-hybrid mappings [1] as special cases. A non-
spreading mapping which is deduced from a firmly nonexpansive mapping is not
necessarily continuous; see [10] or [32].

For nonspreading mappings, Kurokawa and Takahashi [20] used the following
iteration:

1 n—1
(1.2) g1 = Anw + (1= An) — > Tray,
k=0

for all n € N and given z1,w € C, and established a strong convergence theorem for
finding a fixed point of T'. The idea of mean convergence as (1.2) based on Shimizu
and Takahashi [23] [24], and Atsushiba and Takahashi [3]; see also Kohsaka [13],
and Hojo and Takahashi [7]. For generalized hybrid mappings, Takahashi et al. [32]
demonstrated a strong convergence theorem by using the iteration

(1.3) Tng1 = Aw + (1 = Ap) (apxn + (1 — ap) Txy,) for all n € N.

In (1.3), z1,w € C are given, and {\,} and {a,} are sequences in [0, 1].

The class of generalized hybrid mappings has been further extended. A mapping
T:C — Cis called

(iv) normally 2-generalized hybrid [15] if there exist o, (g, a1, 51, a2, 85 € R
such that 3°2_ (an + B,) > 0, ag + a1 + ag > 0, and

@z ||T%x — Ty|)* + a1 | Tz — Ty|* + ag ||z — Tyl
+ By || T2z — y||> + By | Tz — yl)* + Bo ||z — y]? < 0

for all z,y € C. This class of mappings contains generalized hybrid mappings,
normally generalized hybrid mappings [31], and 2-generalized hybrid mappings [22]
as special cases. Hojo et al. [8] gave examples that are 2-generalized hybrid but not
generalized hybrid. Tt can be shown that if >.2_ (ay, + 8,,) > 0, then a normally
2-generalized hybrid mapping has at most one fixed point; see Theorem 4.3 in [17].

Let T : C — C be a normally 2-generalized hybrid mapping. Kondo and Taka-
hashi [16] considered the following iteration:

(1.4) Tnt1 = Apw + (1 = Ap) (anwn + b, Tz, + chan) for all n € N.

In (1.4), z1,w € C are given, and ay, by, ¢, € [0, 1] such that a,, + b, +c¢, = 1. They
showed that the sequence {z,} converge strongly to an attractive point of 7. Very
recently, Kondo and Takahashi [18] applied the iteration (1.4) to common attractive
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point problems of two normally 2-generalized hybrid mappings. They considered the
following iteration:

(1.5) Tnt1 = Awn + (1= Ap) (anxn + bp Sty + cn Sy + dp T + enTzazn)

for all n € N. In (1.5), z1 € C is given, ay, by, ¢y, dy, €, € [0, 1] such that a, + b, +
¢n +dy + e, = 1, and the sequence {w,} in C' is convergent. They proved a strong
convergence theorem to a common attractive point of S and 7. For common fixed
or attractive point problems, see also Aoyama et al. [2], lemoto and Takahashi [9],
Hojo et al. [5], Takahashi [29], and Takahashi et al. [33].

In this paper, combining the ideas of the iterations (1.2) and (1.5), we consider
two types of iterations as follows:

1< 1<
Tne1 = Awn+ (1—=Ap) (anxn + bnﬁ ; Sk, + cnﬁ ;Tkmn> and

n

Tny1 = Awn+ (1—Ap) <ana?n + bp STy + cnS%T, + dn% Z Tk:nn> )
k=1
where S and T are normally 2-generalized hybrid mappings, which are not necessar-
ily commutative. Using these iterations, we show that the sequence {x,} converges
strongly to common attractive and fixed points of S and T' (Theorem 3.1 and 3.2).
These two theorems are used to obtain well-known and new strong convergence
theorems which are connected with normally 2-generalized hybrid mappings in a
Hilbert space.

2. PRELIMINARIES

This section briefly presents definitions of basic concepts and preliminary results.
In a real Hilbert space H, it is known that

(2.1) 20—y, y) < llz* Iy < 2(z — v, x)

for all z,y € H. The strong and weak convergence of a sequence {x,} in H to an
element z (€ H) are denoted by x, — = and z,, — x, respectively.

Let T be a mapping from C' into H, where C is a nonempty subset of H. Taka-
hashi and Takeuchi [30] showed that the set of attractive points A (7T') is closed
and convex in a Hilbert space. A mapping T : C — H with F (T) # () is called
quasi-nonezpansive if | Tx — u|| < ||z — ul| for all x € C' and u € F(T'). For a quasi-
nonexpansive mapping 7', it holds that F' (7)) C A(T). We know from [15] that
a normally 2-generalized hybrid mapping with F (T) # ) is quasi-nonexpansive.
We also know from Itoh and Takahashi [11] that the set of fixed points F' (1) of a
quasi-nonexpansive mapping is closed and convex.

Let D be a nonempty, closed, and convex subset of H. Let Pp be the metric
projection from H onto D, that is, for any « € H, ||z — Ppz|| = inf,cp || — z||. For
the metric projection Pp from H onto D, it holds that (x — Ppz, Ppx —z) > 0
for all x € H and z € D; see [26]. It is easy to verify that the metric projection is
firmly nonexpansive, and thus, it is nonexpansive.
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We list lemmas that will be utilized in the proofs of the theorems in this paper.
In Lemma 2.1, parts (a) and (b) were proved by Takahashi [27] and Maruyama et
al. [22], respectively. For a proof of (c), see [18].

Lemma 2.1 ([27], [22]). Let z,y,z,w € H and a,b,c,d € R. Then, the following
hold:
(a) If a+b=1, then [laz +by||* = alz|* + blly|* — abl|lz — y||*.
(b) Ifa+b+c=1, then
|az + by + cz|?
2 2 2 2 2 2
= alzlI" +bllyll” +cllzl” = abllz = ylI” = belly — 2[" = ca |z — ]|
(c) Ifa+b+c+d=1, then
laz +by + ez +dwl* = a2l +blyl* +clz)* +d ol
—ab |z —y|* — ac|lz — 2[|* - ad ||z — w]|*
—belly = z* = bd |y — w||* - ed||z — w|.
The next lemma reveals a relationship between A (T') and F (7).

Lemma 2.2 ([30]). Let C be a nonempty subset of H, and let T be a mapping from
C into H. Then, A(T)NC C F(T).

According to Lemmas 2.3 and 2.4, a weak limit of a sequence in H is an attractive
point of a nonlinear mapping. For Lemma 2.3, see also Kurokawa and Takahashi
[20]. For Lemma 2.4, see also Kocourek et al. [12] and Maruyama et al. [22].

Lemma 2.3 ([16]). Let C' be a nonempty subset of H, and let T : C — C be
a normally 2-generalized hybrid mapping from C into itself. Suppose that A (T) is
nonempty. Let {z,} be a bounded sequence in H, and define z, = L 3"} T*x,, (€ H).
If zp, — u, then uw € A(T), where {zn,} is a subsequence of {z,}.

Lemma 2.4 ([15]). Let C' be a nonempty subset of H, let T be a normally 2-
generalized hybrid mapping from C into itself, and let {x,} be a sequence in C. If
{x,} satisfies Tz, — xp — 0, T?x, — 2, — 0, and z, — u, then u € A(T).

Lemmas 2.5 and 2.6 play key roles to derive strong convergence.

Lemma 2.5 ([2]; see also [35]). Let {X,,} be a sequence of nonnegative real numbers,
let {Y,} be a sequence of real numbers such that limsup,, . Y, <0, and let {Z,}
be a sequence of nonnegative real numbers such that > 2 | Z, < oco. Let {\,}
be a sequence of real numbers in the interval [0,1) such that » > A, = oo. If
Xnt1 < (1= Xp) Xpn + Ny + Z,, for alln € N, then X,, — 0 as n — oo.

Lemma 2.6 ([21]). Let {X,,} be a sequence of real numbers. Assume that {X,} is
not monotone decreasing for sufficiently large n € N, that is, there exists a subse-
quence {X,,} of {Xn} such that X, < Xy, 41 for all i € N. Let ng be a natural
number such that {k € N:k <ng, Xy < Xpi1} is nonempty. Define a sequence
{7 (M) },>n, of natural numbers as follows:

7(n) =max{k € N: k <ng, Xp < Xgy1} for alln > ng.
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Then, the following hold:
(a) 7(n) — o0 as n — oc;
(b) X, < XT(n)+1 and X.,.(n) < XT(n)+1 fOT’ all n > nyg.

3. MAIN RESULTS

In this section, we present two alternative iterations under which sequences con-
verge strongly to common attractive and fixed points. The proofs have been devel-
oped in [32], [16], [18], [6], and [25].

Theorem 3.1. Let C' be a nonempty and convexr subset of H, let S and T be
normally 2-generalized hybrid mappings from C into itself with A(S)NA(T) # 0,
and let Py be the metric projection from H onto A(S)N A(T). Let a,b € (0,1)
such that a < b, and let {\,}, {an}, {bn}, and {c,} be sequences of real numbers in
the interval (0,1) such that

o
A =0, ) Ay =00,
n=1

an+b,+cp=1, 0<a<aybyc, <b<1l forallneN.

Let {w,} be a sequence in C' such that w, — w. Define a sequence {x,} in C as
follows:

x1 € C': given,

1< 1<
Tpt1 = AMwp + (L= Np) <anxn + bnﬁ ; Sk, + Cno ; Tkxn)

for all n € N. Then, the sequence {x,} converges strongly to a common attractive
point w € A(S)N A(T), where W = Paw. Additionally, if C is closed, then {x,}
converges strongly to a common fized point W = Ppw € F (S) N F (T), where P is
the metric projection from H onto F (S)NF (T).

Proof. Define

n

1
Yn = E ;Skl‘?%

1 n
k
zn:nkng T,, and

hn = anZn + bpyn + cn2n.
Then, z,4+1 = Aywy, + (1 — Ap) hy. First, observe that
(3.1) 1y = gqll < llzn =gl and [lz, — gl| < [zn — 4|
forall g€ A(S)NA(T) and n € N. It can be easily ascertained as follows:
1 n n
nkzlskxn—q ;Skxn—nq

1
n

lyn —all =
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G B [CE]

1 n
< n Z Hxn - QH = Hxn - QH .
k=1

1

n

Similarly, the other part ||z, — ¢|| < ||z, — ¢|| can be verified. It follows from (3.1)
that

(3.2) 1 = qll < llzn — 4
forall g € A(S)NA(T) and n € N. Indeed,
[l

llan®n + bpyn + cnzn — q||

an ||Tn — qll + bn [|yn — qll + cn [[2n — 4|
an ||zn — qll + bp |20 — gl + cn [lzn — 4|
lzn —ql|-

IN A

Next, we show that {z,} is bounded by using the mathematical induction.
Choose ¢ € A(S)N A(T) arbitrarily, and define

M = max {sup e —all, e - qr} .
keN

Since {wy,} is bounded, M is a real number. We prove that ||z, — ¢|| < M for all
n € N. (i) For the case of n = 1, it obviously holds. (ii) Assume that ||z —q|| < M
for some k € N. It follows from (3.2) that

[zk+1 —gll = [[Awn + (1= Ap) by — 4]
< Ak llwe — gl + (1 = Xe) [ —
< Ak llwe —all + (1= M) lzw — 4
< MM A4 (1=XNg) M =M.

Hence, {z,} is bounded.

The following inequality is crucial for our purpose:
(3.3) anbp |20 — yn||2 + bncy [lyn — ZnH2 + Cntn |20 — $n||2
< A llwn — QHQ + lzn — Q||2 —llzn+1 — qH2
forallg € A(S)NA(T) and n € N. By using Lemma 2.1 and (3.1), we obtain
2
[2n+1 — 4l
[An (wn — @) + (1 = An) (hp — Q)H2
An ||lwn — q||2 + (1= An) A — qH2
An [lwn — q||2 + [lan (Tn — @) + bn (Yn — @) + cn (20 — Q)H2

INIA

= Ao llwn — Q||2 +an Hxn - Q||2 + bn Hyn - QH2 +cn ||lzn — Q||2

—anbp |2y — ynH2 — bncn [|yn — Zn”2 — Cnlnp ||2n — anQ
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< Anllwn = all? + an llzn — gl + b [z — al* + e ll2n — all®

—anby [Ty — Z/n||2 — bncn [lyn — Zn”2 — Cnlnp ||2n — mn||2

= nllwn = ql* + |20 — qlf?
2 2 2
—anbn |20 — yull” = bncn [|Yn — 20ll” — cnan (|20 — 20"

Thus, (3.3) follows.
Next, we show that

(3.4) [Znt1 — 2nll < An flwn — zall + [[yn — znll + (|20 — 24|
for all n € N. This inequality can be ascertained as follows:

241 — 2n]|
[Antwn + (1= M) By — 2

< Anllwn =2l + (1= An) [|Bn — 20|
< A Jlwn — xp|| + [|an®n + bnyn + cnzn — (an + by, + ) Tn |
< Anllwn = @all + 0 |yn — znll + en |20 — 24|
< Anllwn =@l + lyn — zull + 20 — 24| -
Let X, = |z, — w||*, where w = Pqw. Our purpose is to demonstrate that

X, — 0 as n — oo. The rest of the proof is divided into two cases.

Case (A). Suppose that there exists a natural number n’ such that X, 11 < X,
for alln > n’. In this case, the sequence { X, } is convergent. Since w € A (S)NA (T),
it holds from (3.3) that
(3.5) anbn [|z5 — yn||2 + bncn [|yn — ZnH2 + cnan [|zn — anz

< N llwy = @) + |2 = W) = |21 — @]

= \oljwn — @) + X — X1

for all n € N. Since {wy} is bounded, A\, — 0, and {X,} is convergent, we have
that

(3.6) Tn—Yn— 0 and =z, — 2z, — 0.
Since {wy,} and {z,} are bounded, we have from (3.4) that
(3.7) Tpa1 — T — 0.
We have from (2.1) and (3.2) that
Xp1 = @t -
[An (wn = W) + (1 = An) (hn — w)”Q
(1= 2)? || — | + 2 (Tps1 — W, wy — W)
(1= M) |2 — @|* 4 200 (@ns1 — W, W, — W)
(1= Xp) X 4+ 2\, (Xpy1 — W, w,, — W)

IN N
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for all n € N. From Lemma 2.5, it suffices to prove that

limsup (xp4+1 — W, w, —w) < 0.
n—o0

Since the sequences {z,} is bounded, we can assume, without loss of generality,
that there exists subsequence {x,,} of {z,}such that

limsup (zp41 — W, w, — W) = lim (@, — W, Wy,—1 — W)
n—00 100

and x,, — u for some v € H. Therefore, it follows from (3.6) that y,, — u and
Zn; — u. From Lemma 2.3, we obtain u € A(S) N A(T). Since w,, — w and

(3

w = Pjyw, we have that

limsup (zp+1 — W, wy, —w) = lim (z,, — W, wp,—1 — W)
n—oo 1—00

= (u—w, w—w) <0.
This completes the proof for Case (A).

Case (B). Suppose that there exists a subsequence {X,, } of {X,} such that
Xpn;, < Xp,+1 for all i € N. Let ng be a natural number such that {k € N: k& < ny,
X < Xk+1} 75 (). Define

7(n) =max{k e N: k <n, Xy < Xp11} forall n> ny.
From Lemma 2.6, it holds that
(3.8) 7(n) — o0 asn — oo
(3.9) X, <
(3.10) XT(n) < XT(n)+1 for all n > ng.

Xrmy+1 for all n > ng;

From (3.9), it suffices to demonstrate that X ;1 — 0. From (3.2)-(3.4), the
following hold:

(3.11) Fer iy = @] < [y =]

(3.12) () br () ) = Yr ) | + BrmyCriny |Urm) — 2o ||
2
+Cr(n)r(n) || 27(n) = Tr(m) |

Aoy [y =B + |2y =B = |2y 1 — ]

)\T(n) HwT(n) - WHZ + XT(n) - XT(n)+17 and

(3.13) [Zr )41 = T2 ()|
< Ary [[0rny = Trmy || + [9rm) = ey | + [|27m) = 2o |
for all n > ng. It holds from (3.10) and (3.12) that

Gr()br(ny [|2rm) = Yr )| + brwyCriny |Urm) — 2o ||

+ Crm)r(n) || Zr(n) = Trmy || < Aty [[10rey — B
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Since {wT(n)} is bounded and A;(,) — 0, we obtain that
(3.14) Tr(n) — Yr(n) — 0, Tr(n) = Zr(n) —7 0,
as n — 0o. Thus, we have from (3.13) that
Tr(n)+1 — Tr(n) 0.
Since {xT(n)} and {xT(n)H} are bounded, it holds that
XT(n)Jrl - XT(n) — 0.
Thus, it suffices to prove that X,y — 0. Using (2.1) and (3.11), we obtain

XT(n)-l—l = H:L'T (n)+1 — @HQ
—\ 112
= M@ ( r) — ) + (1= Arwy) (hrgy — )|
< (1= 20w) ey = @I + 22000 <=’ﬂ ny+1 — By Wr(n) = W)
< (- )fo = [|" + 2270 (T (1 — B wr ) — )
= (1= ) Xo(m) + 20em) (Trny1 = W, w7<n> ~ W),
and hence,
Arm) Xrn) < Xr(n) = Xr(myr1 + 2Ar(m) (Zr(m)41 = W, Wrn) =)
From (3.10),
Ar(n)Xfr(n) < 2)‘7—(77,) <$T(n)+1 —w, Wr(n) — @> >
and hence,

Xrn) < 2(Er(n)+1 =W, Wr(n) = W)
We prove that
lim sup <w7(n) — W, Wr(n)-1 — @> <0.

n—oo
Since {xT(n)} is bounded, we can assume, without loss of generality, that there is a
subsequence {%(ni)} of {mT(n)} such that

lim sup <337—(n) —w, Wr(n)—1 — @> = lim <$T(m) —w, Wr(ng)—1 — @>
n—00 i—o0

and ,(,,) — u for some v € H. From (3.14), we obtain
Yr(n) — u and z-(,,) — u.
Using Lemma 2.3, we have that uw € A(S)N A(T). Since W = Paw, we obtain
hrrzn—ilip <xT(n) — W, Wr(n)-1 —@> = zli>ngo <$T(m) w, W, w>
= (u—w, w—w) <0.

This completes the proof for Case (B), and we have shown that =, - w = Paw.

Suppose, in addition to the other assumptions, that C is closed in H. We show
that =, — @ (= Ppw). Since z,, — w = Pjaw and C is closed, it holds that
we CNA(S)NA(T). We have from Lemma 2.2 that w € F (S) N F(T), and
hence, F'(S) N F(T) # (. Since S and T are quasi-nonexpansive, F'(S) N F(T) is
closed and convex. Consequently, there exists the metric projection Pr from H onto
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F(S)NF(T). We prove that (W =) Prw = W (= Pqw). Since w € F (S)N F(T),
it suffices to demonstrate that ||w —w| < ||lw — || for all v € F(S)N F (T). Let
v e F(S)NnF(T). Since S and T are quasi-nonexpansive, it holds that F (S) N
F(T)c A(S)NA(T). Thus, we have that

lw—w| = inf{llw—ql|:qeAS)NA(T)}
< it {Jw—ql: g€ F(S)NF(T)}
< lw = woff
This means that w = Ppw (= w). This completes the proof. O

Theorem 3.2. Let C' be a nonempty and conver subset of H, let S and T be
normally 2-generalized hybrid mappings from C' into itself with A(S)NA(T) # 0,
and let Py be the metric projection from H onto A(S)NA(T). Leta,b € (0,1) such
that a < b, and let {\,}, {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval (0,1) such that

o
Ao =0, ) Ay =00,
n=1

an+bp+cp+dy =1, 0<a<ay by, cn,dy, <b<1 forallnéeN.

Let {wy} be a sequence in C such that w, — w. Define a sequence {x,} in C as
follows:

x1 € C': given,

1 n
Tpt1 = Apwn + (1= Ap) (an:nn + b, STy + cnS%x, + dnﬁ ZTkl"n>
k=1

for all n € N. Then, the sequence {x,} converges strongly to a common attractive
point w € A(S)NA(T), where W = Paw. Additionally, if C is closed, then {z,}
converges strongly to a common fized point W = Ppw € F (S) N F (T), where Pp is
the metric projection from H onto F (S)NF (T).

Proof. Let us define z,, and h,, as follows:
1 n
Zn = - ;T’Czn, and

hp = anTn + bp Sty + cnS2xn + dpzn.

Then, we have that z,11 = Apw, + (1 — A\p) hy. As in the proof of Theorem 3.1,
we can verify that

(3.15) lzn = qll < llzn — 4l
for all ¢ € A(T) and n € N. From (3.15), the following holds:
(3.16) 1P = gl < [lzn — 4|

forall g€ A(S)N A(T) and n € N. Indeed,
[hn =gl = ||an®n + bpSzp + cnS%xy + dpzy — q|
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< anllen — gl +bn [|Sz0 — all + e [[S%zn — q|| + dn |20 — gl
< anzn = qll + bn [lon — gl + en llzn — gl + dn [|2n — g
[n — ql| -
Using this inequality, as in the proof of Theorem 3.1, we can prove that {z,} is
bounded.
We show that

(3.17) anbn |2y — S:an2 + ancn H:cn — SchnH2 + andy, ||zn — anQ
Fbncn || Sz — S%n|” + budn 520 — 2|2 + cady || S% 0 — 2|
< Anllwn =gl + e = gl = [@nt1 — glf?
forall g € A(S)NA(T) and n € N. By using Lemma 2.1-(c) and (3.15), we obtain

Zn41 — qlf”
[An (W —q) + (1= Ap) (hn — Q)H2

< A llwn = gl 4+ (1= Xn) 7 — g]?
— Mo fwn — a2+ (1= M) [|an@n + baSan + 0?20 + dnza — q|°
< A llwn — Q||2
+ ||an (0 — @) + bn (S0 — @) + 0 (520 — q) + dn (20 — 9)||°
= Anllwn — QHQ
+an ||z, — q”2 + by || Sz — QH2 +cn HS2$n - QHZ +dn |20 — Q||2
—anby ||xn — S:l7n||2 — ancn Hxn — S2mnH2 — andy, ||zn — an2
—bncn HS:En - S2an2 — bpdy ||Sxn — an2 — cndy, HSan — anQ
< A llwn — gl

+an |0 — all® + b [0 — all® + enllzn — all* + dn 20—l
2
—anby |20 — Sn | — ancy H:z:n - S2an — andy |20 — zn

—bycn Han — SQl'nHQ — bpdy, || Sz, — anz — cpdy, HSan — anQ

= Mnllwn —ql* + l2n — gl
—anby |0 — S:L‘n”2 — ancn Hxn — 52$n||2 — apdy ||xn — zn||2
—b,ch, Han - S2an2 — bpdy, || Sz — zn||2 — cpdy, HSzxn - an2 .

Therefore, we obtain (3.17).
Our next aim is to prove that

(3.18)  [[pt1 — znll < An lwn — |l + [[Szp — 20l + HS2xn - an + llzn — @4l
for all n € N. Indeed, we have that

[ 241 = 2nl|
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[Anwn + (1 = Ap) by, — 4|

< A lwn = 2|+ (1= An) [|hn — 24|
< A flwp — @
+ Hanazn + bp S + cnS?n + dpzn — (an + b + cn +dy) an
< A llwn — 2| + bn || S0 — 20| + cn HSan — l’nH +dy, ||zn — x|
< A Jwn — xp|| + || ST — 20| + HSan — an + ||zn — x| -

Define X, = ||&, — ||, where @ = Pqw. Our goal is to prove that X, — 0 as
n — 0o. We divide the rest of the proof into two cases.

Case (A). Suppose that there exists a natural number n’ such that X, 11 < X,
for all n > n’. In this case, the sequence { X, } is convergent. Sincew € A (S)NA(T),
it holds from (3.17) that

2
anbn || 20 — S20||? + ancy Hxn - SanH + andy || — 20|

+bncCn HSmn — S2mnH2 + bupdy, || Sz — zn||2 + cpdn HS2xn — an2

IN

M lwn =0l + & = ]|° = |znt1 — |
= \oljwn — @) + X — X1

for all n € N. Since {wy} is bounded, A\, — 0, and {X,} is convergent, we have
that

(3.19) Tp— Stn =0, xn—S%x, >0, xp— 25— 0,
Since {wy} and {z,} are bounded, it follows from (3.18) and (3.19) that
Tn+1 — Tp — 0.
We obtain from (2.1) and (3.16) that
Xn1 = a1 — |
1A (wi = @) + (1= An) (ho — @)
(1= A0)? [[hn = B + 2An (@01 — @, wy, — W)
(1= An) llon — @) + 22 (Tna1 — @, wy — )
(1= Ap) X+ 2\, (Tpy1 — W, wy, — W)

IA A

for all n € N. From Lemma 2.5, it suffices to prove that

limsup (41 — @, w, —w) < 0.
n—oo

Since the sequences {z,} is bounded and {w,} is convergent, we can assume, with-
out loss of generality, that there exists subsequence {x,,} of {x,}such that

limsup (zp41 — W, wy, — W) = lim (x,, — W, Wy,—1 — W)
n—oo 12— 00

and x,, — u for some v € H. From Lemma 2.4 and (3.19), we have that u € A (S).
Furthermore, it follows from (3.19) that z,, — u. From Lemma 2.3, we obtain
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u€ A(T). Thus, u € A(S)N A(T). Since w, — w and W = Pjyw, we have that

limsup (zp+1 — W, wy, —w) = lim (z,, — W, wy,—1 — W)
n—ro0 12— 00

= (u—w, w—w) <0.

This completes the proof for Case (A).

Case (B). Suppose that there exists a subsequence {X,,} of {X,} such that
Xpn, < Xp,41 for all ¢ € N. Let ng be a natural number such that {k € N: k < ny,
Xk < Xki1} is nonempty. Define

7(n) =max{k e N: k <n, Xy < Xp1} forall n> ny.

From Lemma 2.6, it holds that

(3.20) T(n) — o0 asn — oo
3.21 X, < Xymy41 forall n > ng;
(n)+
3.22 Xy < Xomyp forall n > nyg.
(n) (n)+

From (3.21), it suffices to demonstrate that X )41 — 0. Since w (= Paw) €
A(S)NA(T), we have from (3.16)—(3.18) that

(3.23) 1Pery = ]| < [l7 )
2
(3:24) r(nybrn) |22y = Seul|” + aryrm 2oy = 5*2no |
+ar(n)d o [#rm _zT(n)HQ
2
o+ bty 12y = 82 |” + bruy oty 1522y = 22|
+ eruyrtoy 1520y = 2o ||

< AT<n> HwT(m ~wf*+ Hﬂ%(m ] TR

= et [[wry = ]| + Xrwy = X1, and

(325) Hx‘r(n)-ﬁ-l — Zr(n) H
< Ao [[0rm) = 2|
+ stf(n) Loy || T H52 Loy ™ Loy || T |[Fremy ~ Frmy

for all n > ng. It follows from (3.22) and (3.24) that

2
s )by | ) = S| + Gy Cri) [|2r () — S2@ (|

+ Gy r(m) [ Trm) = 2eo)]|”
+br n)c V182 2) = 822 ||* + bruydrny || Sy — 2o ||
+ oy r(n) || ST () — e ||

< Mn) HwT(m —u.
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Since {wT(n)} is bounded and A;(,) — 0, we obtain that
(3.26) Tr(n) — S.TUT(n) — 0, Tr(n) — SQZ‘T(n) — 0, Tr(n) — Zr(n) —7 0
as n — oo. Thus, we have from (3.25) that
Tr(n)+1 — Tr(n) — 0.
Consequently, it holds that
XT(n)—l—l - XT(n) — 0.
Thus, our goal is to prove that X,y — 0. From (2.1) and (3.23), we obtain

_n2
Xemyr1 = |ormy — @
A ey (Wriny =) + (1= Arny) (Brny) — @) ||
(1= Arw) |y = B + 200y (a1 — B, W) — )

2

IAN

IN

(1= M) ooy = B + 200y (o1 = B, ey = W)
(1= Ar() Xrim) + 20() (Tr (41 = Wy Wri) = W)

This yields that

M) Xr(n) < Xrn) = Xry41 1 220 (n) (Tr(n)41 — W, Wr(p) — W)
We have from (3.22) that

)\T(H)XT(H) < 2)‘7'(11) <37‘r(n)+1 —w, Wr(n) — w> )
Dividing it by A,y (> 0), we obtain

Xrn) < 2(@r(n)1 =) Wr(n) — )
We show that

lim sup <x7(n) — W, Wr(n)—1 — @> <0.
n—oo

Since {xT(n)} is bounded, we can assume, without loss of generality, that there is a
subsequence {aﬁﬂ.(ni)} of {xT(n)} such that
lim sup <337(n) — W, Wr(p)—1 — w> = lim <1'7'(n1) — W, Wr(n)—1 — @>
n—oo 1—00

and z,(,,) — u for some v € H. From (3.26) and Lemma 2.4, we have that
u € A(S). Furthermore, from (3.26), it holds that

Zr(ng) — U
As a consequence from Lemma 2.3, we have that u € A (T). Thus, u € A(S)NA(T).

Since w = P4w, we obtain

lim sup <x7(n) — W, Wr(n)y—1 — @> = lim <$T(m) — W, Wr(n;)—1 — E>
n—00 100

= (u—w, w—w) <0.

This completes the proof for Case (B), and we have shown that z,, » w = Paw as
claimed.
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Additionally, suppose that C is closed in H. As in the proof of Theorem 3.1, we
can show that z,, — @ (= Prw), where Pp is the metric projection from H onto
F (S)N F(T). This completes the proof. O

4. APPLICATIONS

In this section, using Theorems 3.1 and 3.2, we obtain well-known and new strong
convergence theorems which are connected with normally 2-generalized hybrid map-
pings in a Hilbert space. We can first prove the following two results from Theorems
3.1 and 3.2.

Theorem 4.1. Let C be a nonempty and convex subset of H, let S be a normally
2-generalized hybrid mapping from C into itself with A(S) # 0, and let Py(g) be
the metric projection from H onto A(S). Let a,b € (0,1) such that a < b, and let
{A\n}, {an} and {d,} be sequences of real numbers in the interval (0,1) such that

[e.e]
A =0, Y Ay =00,
n=1

an+dp,=1, 0<a<ay,d, <b<1l forallnéeN.

Let {w,} be a sequence in C' such that w, — w. Define a sequence {x,} in C as
follows:

x1 € C : given,

n
Tnt1 = Apwp + (1= N\p) (anxn + dnl Zskxn)
" k=1
for all n € N. Then, the sequence {x,} converges strongly to an attractive point
w € A(S), where w = Pygyw. Additionally, if C is closed, then {z,} converges
strongly to a fired point W = Ppsyw € F (S), where Pp(g) is the metric projection
from H onto F (S).

Proof. Putting b, = ¢, = %” and T'= S in Theorem 3.1, we have the desired result
from Theorem 3.1. g

Theorem 4.2. Let C be a nonempty and convex subset of H, let S be a normally
2-generalized hybrid mapping from C into itself with A(S) # 0, and let Pys) be
the metric projection from H onto A(S). Let a,b € (0,1) such that a < b, and let
{\n}s {fn}, {bn}, and {cn} be sequences of real numbers in the interval (0,1) such
that

A — 0, i)\n = 00,
n=1

fotbnt+en=1 0<a< fr,by,cn <b<1l forallneN.

Let {wy} be a sequence in C such that w, — w. Define a sequence {xn} in C as
follows:

x1 € C: given,
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Tn1 = AWy + (1= Np) (fazn + bpSzp + cnSan)

for all n € N. Then, the sequence {x,} converges strongly to an attractive point
w € A(S), where W = Pygyw. Additionally, if C is closed, then {x,} converges
strongly to a fired point W = Ppgyw € F (S), where Pp(g) is the metric projection
from H onto F (S5).

Proof. Putting a, = d, = %” and T' = I in Theorem 3.2, we have the desired result
from Theorem 3.2. U

We have that a generalized hybrid mapping is a normally 2-generalized hybrid
mapping. As direct results of Theorems 3.1 and 3.2, we have the following two
theorems.

Theorem 4.3. Let C be a nonempty and convex subset of H, let S and T be
generalized hybrid mappings from C into itself such that A(S) N A(T) # 0, and
let Py be the metric projection from H onto A(S)N A(T). Let a,b € (0,1) such
that a < b, and let {\,}, {an}, {bn}, and {c,} be sequences of real numbers in the
interval (0,1) such that

o
Ao =0, ) Ay =00,
n=1

an+by+cepn=1 0<a<anbyc, <b<1l forallneN.

Let {wy,} be a sequence in C' such that w, — w. Define a sequence {xy} in C as
follows:

x1 € C: given,

1< 1<
Tnt1 = AMwn + (1 —Ap) (anzn + b"ﬁ ; Skxn + cnﬁ ; Tkxn>

for all n € N. Then, the sequence {x,} converges strongly to a common attractive
point w € A(S)NA(T), where W = Pyw. Additionally, if C is closed, then {x,}
converges strongly to a common fized point W = Prw € F (S)NF (T'), where Pr is
the metric projection from H onto F (S)NF (T).

Theorem 4.4. Let C be a nonempty and convex subset of H, let S and T be
generalized hybrid and normally 2-generalized hybrid mappings from C' into itself,
respectively, such that A(S)NA(T) # 0, and let Py be the metric projection from
H onto A(S)NA(T). Let a,b € (0,1) such that a < b, and let {\,}, {an}, {bn},
{cn}, and {d,} be sequences of real numbers in the interval (0,1) such that

o
A =0, ) Ay =00,
n=1

an+bp+tcepn+dy=1, 0<a<ap, by, cndy <b<1l forallnéeN.

Let {wy} be a sequence in C' such that w, — w. Define a sequence {xy} in C as
follows:

x1 € C': given,
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1 n
Tnt1 = Mwn + (1= Ap) | anzy + 0y Sxn + cnS%x, + dnﬁ ZTka:n
k=1

for all n € N. Then, the sequence {x,} converges strongly to a common attractive
point w € A(S) N A(T), where w = Paw. Additionally, if C is closed, then {xy}
converges strongly to a common fized point w = Ppw € F (S) N F (T), where P is
the metric projection from H onto F (S)NF (T).
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