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INERTIAL VISCOSITY-TYPE ALGORITHMS FOR A CLASS OF
SPLIT FEASIBILITY PROBLEMS AND FIXED POINT
PROBLEMS IN HILBERT SPACES

NARIN PETROT AND MONTIRA SUWANNAPRAPA*

ABSTRACT. In this paper, we introduce a new iterative algorithm based on the
inertial method and vicosity-type algorithm for finding a common solution of a
class of split feasibility problem and fixed point problem in Hilbert spaces. By
assuming the existence of solutions, we show the strong convergence theorems of
the constructed sequences and some applications of the considered problem are
also discussed.

1. INTRODUCTION

Split feasibility problem (SFP) was first introduced by Censor and Elfving [7],
which is the problem of finding a point

(1.1) z* € C suchthat La* € Q,

where C' and () are nonempty closed convex subsets of R”, and L is an n X n matrix.
SFP problems have many applications in various fields of science and technology,
such as in signal processing, medical image reconstruction, and intensity-modulated
radiation therapy; for more information, see [3, 4, 6, 7] and the references therein.
The popular algorithm for solving the problem (1.1) is the following CQ algorithm,
suggested by Byrne [3]: for arbitrary z; € R",

(1.2) Tni1 = Po(vn —yL'(I - Pg)Lx,), VYneN,

where v € (0,2/||L||?), L is a real m x n matrix and L' is the transpose of the
matrix L. Subsequently, in 2010, Xu [26] considered SFP in infinite-dimensional
Hilbert spaces: let H; and Hy be real Hilbert spaces, C' and ) be nonempty closed
convex subsets of Hy and Ho, respectively, and L : Hy — Hs be a bounded linear
operator. They proposed the following algorithm: for a given x1 € Hi,

(1.3) Tnt1 = Po (a:n —~yL*(I — PQ)La:n), Vn e N,

where v € (0,2/||L||*) and L* is the adjoint operator of L. In [26], the conditions
to guarantee the weak convergence of the sequence {x,} to a solution of SFP was
considered. In addition, by considering the CQ algorithm (1.2), Lépez et al. [11]
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suggested to use the stepsizes 7, without the norm of operator L,

Sull(I — Po) Ly, ||
(1.4) o= Dl = Po) L
2| L*(I — Pg) Ly ||

where 0 < 6,, < 4 and L*(I — Pg)Lx, # 0, and proved weakly convergence theorem.
They point out that, the higher dimensions of L may be hard to compute the
operator norm and it may affect the computing in the iteration process, for example,
the CPU time, and the algorithm with stepsizes (1.4) gives faster results.

On the other hand, for a Hilbert space H, variational inclusion problem (VIP)
has the following formal form: find * € H such that

(1.5) 0 € Ba™,

where B : H — 2" is a set-valued operator. The problem (1.5) was introduced by
Martinet [15], and the popular method for solving the problem (1.5) is the proximal
point algorithm: for a given x; € H,

Tyt :Jﬁxn, Vn € N,

where {\,} C (0,00) and J)i = (I + \,B)7! is the resolvent of the maximal
monotone operator B corresponding to A,; see [9, 14, 25, 27| for more details.
Subsequently, by using the concept of SFP in Hilbert spaces, Byrne et al. [5]
proposed the following split null point problem (SNPP): let By : H; — 2H1 and
By : Hy — 2"2 be set-valued mappings, then SNPP is the problem of finding a
point * € H; such that

(1.6) 0 € Bi(z*) and 0 € Bo(Lz™).

They considered the following iterative algorithm: for A > 0 and an arbitrary
T € H 1,

(1.7) Tpi1 = IO (2 — LY (I — JP?)Lay),  Yn €N,

where v € (0,2/]|L||?), and JAB ! and Jf 2 are the resolvent of maximal monotone
operators B; and By, respectively. They showed that, under some suitable control
conditions, the sequence {x,} converges weakly to a point in the solution set of
problem (1.6). Furthermore, in 2015, Takahashi et al. [23] considered the problem
of finding a point

(1.8) ¥ € BT'on L1F(T),

where B : H; — 271 is a maximal monotone operator and T : Hy — Hy is a
nonexpansive mapping. They considered the following iterative algorithm: for any
r1 € H 1,

(1.9) Tpi1 = Iy (I —wL*(I —T)L)z,, VnéeN,

where {\,} and {v,} satisfy some suitable control conditions, and J fn is the re-
solvent of a maximal monotone operator B associated to A,. They provided the
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weak convergence theorem of algorithm (1.9) to a solution set of the problem (1.8).
Moreover, in [23], Takahashi et al. also considered the problem of finding a point

(1.10) ¥ € F(S)NBloNL'F(T) =: Q,

where S : H; — H; is a nonexpansive mapping. They suggested the following
iterative algorithm: for any z; € Hy,

Yo = Jo (zn — AL (I —T)Lay),
(1.11) Tntl = uTn+ (1 —ap)Syn, YneN,

where {a, } and {\,} satisfy some suitable control conditions and provided the weak
convergence theorem of algorithm (1.11) to a solution point of the problem (1.10).

For the study of the inertial technique, was first presented by Polyak in 1964, to
speed up the rate of convergence; see [18]. The inertial method is a two-step iterative
method, in which each iteration involves the previous two iterates. Recently, many
authors used this technique because of the faster convergence rate of the algorithm;
see [1, 2, 8, 19, 24| for more information.

In 2001, Alvarez and Attouch [1] proposed the inertial proximal point method
for solving the problem (1.5): for arbitrary =g, x; € H,

Yn = xn"‘ﬂn(mn_xnfl)v
(1.12) Tpyl = Jﬁyn, Vn € N,

where {\,} and {u,} satisfy some suitable control conditions with > > | fi, ||z —
Tp_1]|? < 0o, and proved weakly convergence theorem.

In 2017, Dang et al. [8] proposed the following innertial relaxed CQ algorithms
for solving SFP in Hilbert spaces: for arbitrary xg, 1 € Hy,

Yn = Tp+ Mn(-rn - xn—l)u
(1.13) Tni1 = Po,(yn —wmL"(I-Py,)Ly,), VYneN,
and
Yn = Tp+ ,U/n(ZUn - 557171)7
(1.14) Zop1 = (1= B)yn + BuPo, (yn — Wl (I = Po,)Lya),  Vn €N,

where i € [0, fin], fin = min {p1, (max{n?|z, — wn1ll, 2|20 — wn-1l?}) "}, 1€
[0,1) and S, € (0,1). They proved that both sequences {z,} converge weakly to a
point in the solution set of SFP.

Recently, by combining the inertial method, the algorithm (1.7) and Mann iter-
ation [13], Anh et al. [2] proposed the following algorithm for solving the problem
(1.6): for arbitrary xo, 1 € Hy,

Zn = xn+ﬂn($n _$n—1)7
Yo = JI (2 — Ll (I - JP?)Lz,),
(1.15) Tna1 (1 -0, —ap)ey + 0y, VneN,
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where {pu,} C [0, ) for some p > 0, {6,} C (a,b) C (0,1 — o) and {v,} satisfies
limy, o0 Z—Z |lxn —zn—1|| = 0 and some suitable conditions. They provided the strong
converges theorem of algotirhm (1.15) to a solution set of the problem (1.6).

In this paper, motivated and inspired by the above literature, we are going to
consider a class of SFP problems and fixed point problems, the problem (1.10). We
alm to suggest a new algorithm, based on the inertial method and viscosity-type
algorithm [16], for finding a solution of the problem (1.10). In our main Theorem,
we provide some suitable conditions to guarantee that the constructed sequence
{xn} converges strongly to a point in €.

2. PRELIMINARIES

Throughout this paper, we denote by N for the set of positive integers, and R
for the set of real numbers. Let H be a real Hilbert space with the inner product
(-,-) and the norm || - ||, respectively. When {x,} is a sequence in H, we denote
the strong convergence and weak convergence of {z,} to z in H by x,, — = and
Ty, — x, respectively.

Let T : H — H be a mapping. We say that T is a Lipschitz mapping if there
exists L > 0 such that

[Tz =Tyl < Lz —yll, Va,yeH.

The number L, associated with T, is called a Lipschitz constant. If L € [0,1), we
say that T is a contraction mapping, and 7" is a nonexpansive mapping if L = 1.
We will say that T is firmly nonexpansive if

<1ﬂ"r - Ty,x - y) > ||T‘T - Ty||27 vxvy € H.

The set of fixed points of a self-mapping T will be denoted by F(T'), that is
F(T)={x € H:Tx = x}. It is well known that if T is nonexpansive, then F(T)
is closed and convex.

Let A: H — H be a single-valued mapping. For a positive real number 5, we
will say that A is S-inverse strongly monotone (/3-ism) if

Notice that, A mapping T : H — H is nonexpansive if and only if I — T is %—ism.

Let B : H — 2" be a set-valued mapping. The effective domain of B is denoted
by D(B), that is, D(B) = {z € H : Bx # (}. Recall that B is said to be monotone
if

(x —y,u—v) >0, Vzx,ye€ D(B),u€ Bzx,v € By.
A monotone mapping B is said to be maximal if its graph is not properly contained

in the graph of any other monotone operator. To a maximal monotone operator
B:H — 2" and X\ > 0, its resolvent J)]? is defined by

JP .= (I+\B)™': H - D(B).
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It is well known that if B is a maximal monotone operator and A is a positive
number, then the resolvent Jf is a single-valued and firmly nonexpansive, and
F(JP)=B'0={z € H:0€ Bx}, VA>0;see |21, 23].

The following fundamental results and inequalities are needed in our proof.

Let C be a nonempty closed convex subset of H. For every point x € H, there
exists a unique nearest point in C, denoted by Pgx, such that

lz = Poz| <[lz —yl, VyeC.

P is called a metric projection of H onto C; see [22]. The following property of
Pc is well known and useful:

(x — Pox,y — Pox) <0, Vxe€ H,yeC.

For each x,y, 2 € H, then the following equalities are valid for inner product spaces,
2.1) ez + (1= a)yl? = afz® + (1 - o)lly|* — a(l — a) ||z - y|?,
and

lax + By +2I = allz]* + Blyl* +vll=|*
(2.2) —aflz —yl* - arllz — 2> = Brlly — z]1%,

for any «, 8, € [0, 1] such that o + 5 + v = 1; see [17, 21].

We also use the following lemmas for proving the main results.

Lemma 2.1 ([20]). Let C be a closed convex subset of a Hilbert space H and
T :C — C be a nonexpansive mapping. Then, U := I — T is demiclosed, that is,
T, — xg and Uz, — yo imply Uz = 1.

Lemma 2.2 ([10, 25]). Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

apt1 < (1 - an)an + oy + Op, Vn €N,

where {an}, {on} and {6, } are sequences of real numbers satisfying

(i) {an} C[0,1], 3232 om = oo;
(ii)  limsup,,_,. on < 0;
(i) 6, >0, 32,6, < oo.

Then, a, — 0 as n — oo.
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3. MAIN RESULTS

We start by introducing the following assumptions and our main algorithm that
will be used to provide the convergence theorems.

(A1) B: H; — 2"t is a maximal monotone operator;

(A2) L: Hy — Hs is a bounded linear operator;

(A3) T : Hy — Hj is a nonexpansive mapping;

(A4) S: Hy — H; is a nonexpansive mapping;

(A5) f: Hy — Hj is a contraction mapping with coefficient s € (0, 1).

Algorithm 3.1. Let {a,}, {fn} and {60, } be sequences in (0, 1) with o, + S, +6,, =
1 and the initial xg,x1 € Hy be arbitrary, define

Zn = ITp Tt Mn(xn - xn—l)v
Yn = J)\B (Zn - ’YnL*(I - T)LG)7
(3.1) Tpt1 = anf(zn) + Bnxn + 0,Syn, Yn €N,
where {u,} C [0, ) with g € [0,1) and {v,} is depend on 6, € [a,b] C (0,1) by
2
aulla=mreall i per - yna, 20
Yo = |21 Lz |
v, otherwise,

where 7 is any nonnegative value.

Remark 3.2. The sequence {7,} is bounded. Indeed, for each n € N,
|L*(I = T)Lzy|| < ||IL*||||(I = T) Lz

)

which implies

(1 = T) Lz, 1
> .
|L*(I = T) Lz~ I1E¥[?

Let wy = ikl and L*(1 — T)Lz, # 0, for each n € N. Tt follows from
the definition of {v,}, we can see that sup~y, < infw, < oco. This means {7,} is

bounded.

By considering the above assumptions and Algorithm 3.1, we will show the fol-
lowing strong convergence theorem.

Theorem 3.3. Let Hy and Hy be two real Hilbert spaces. Let {x,} be generated
by Algorithm 3.1. Suppose that the assumptions (A1)-(A5) hold, Q # 0 and the
following control conditions are satisfied:
(i) limpyeo ap =0;
(i) > o5y an = ooy
(i) 0<a<pyand0<a<0,;
)

(iv)  limpeo Z—ZHxn — zp—1|| = 0.
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Then, {x,} converges strongly to T € Q, where T = Pqof(Z).

Proof. Firstly, we will prove that {x,} is bounded. Let p € Q, we have that

p € F(S), p=JPp and Lp = TLp. We note that I — T is %-ism. It follows that,
for each n € N,

(I—-T)Lz, — (I —T)Lp,Lz, — Lp) > %H(I —~T)Lz, — (I — T)LpHQ.

Since Lp = T Lp, the above inequality is reduced to

2
3

(3.2) ((I—=T)Lzyp, Lzn — Lp) > %H(I—T)LG\

for each n € N. By using (3.2), we see that

lyn = pI? = |7 (20— L*(I = T)Lz,) — p|”
< [Gzn=p) = 9L (I = )Lz
< lzn = pl* = 2va(z0 = p. L*(I = T)Lzn) + 97| L°(1 = T) Lz
=z — plI? = 29a(Lzn — Lp, (I — T)Lzy) + A2||L*(I = T) Lz, ||
< om = pl2 = (T = T)Lzn||” + 2|15 (T = T) Lz
(33 = low =l =2 (10 = D)2 =270 = 7)),

for each n € N. By the definition of ~,, we have
%<H(I — )Lz ||” — | L*(T — T)LGH2> >0,

for each n € N. Thus, from (3.3) we get

lyn — pll < llzn —pll,

for each n € N. Furthermore, for each n € N,

lzn —pl| = H"En“‘ﬂn(xn_xnfl)_pH

|zn — oIl + pnllzn — 21|

|2 — pl| + an 22 2 — 201
Qp

(3-4) < lzn = pll + an M,

IN

for some M; > 0. Now, by the definition of x,,11 and (3.4), we have

chm—l —pH = Hanf(xn) + Bnn + 0nSYyn — pH
< Oéan(xn) _pH + Bullwn — pll + 0nl|Syn — pl|
< an[f(@n) = f@)|| + anl| f(p) = pl| + Ballzn — pll + Onllyn — pll
< ankllzn = pll + an| f(0) = p|| + Bullzn — pll + Onllzn — pll + Onc M

< (anf@ + B + Qn)HfUn —p| + an<Hf(p) —pH + Ml)
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< (1= an(l ) 2n — g +an(}|f(p) )| +M1)

_ [f(p) —p|| + M
— (1= anlL = W)llen = pl + a1 — ) (I ZPLEED)
| f(p) — p|| + M1
gmaX{Hxn—pH, 11—k
(3.5) < max{Hxl -, Hf(p) 1—_19['1‘ M } )

for each n € N. Therefore, {||z, — p||} is a bounded sequence. This implies that
{zy} is bounded. Consequently, {z,}, {yn} and {f(z,)} are also bounded.

Next, we notice that Pqf(-) is a contraction mapping. Let Z be a unique fixed
point of Pqf(-), that is z = Pof(z). Consider,

20 — 2> = ||&n + pn(@n — 2a1) — ||’
< H:rn—:Z"H2—I-,u,%Hxn—xn_1]\2+2un<xn—f,xn—xn_1>
(36) < low =2+ 2t = @ucsl2+ 2palen = 2lon — 20l

for each n € N. By the definition of x4 and (3.6), we obtain
|Znir — 2|2 = (anf(zn) + Bnan + OnSYn — T, Tns1 — T)
= an<f(xn) - f(f)aanrl - i‘> + Oln<f(j) — T, Tp41 — j>
+ﬁn<xn =T, Tpy1 — j> + 9n<Syn — T, Tpy1 — j'>

< G (@) - @I + onia - )
+O£n<f(f) — T, Tpt1 — 3_3>
5 (o =P + s - a]?)
Or _ _
(18 =7l + o1~ )
2
< (%45 )l -2
eTL — TL+ n+9n —
=2+ 2 B
+an<f(j) — T, Tp41 — j>
n 2 n 07’1/ — ]- —
(3.7 < (SR o -l 4 5llon o

en/‘%
2

+ ”xn_xn—1||2+0nﬂn”xn_fHHxn_xn—lu
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+an(f(Z) = Z,2n41 — T),
for each n € N. Then,
s — 212 < (1= an(l = £2)ll2n — 712 + 120 — 0|

24tz = Fll2n — Tamil| + 200 (F(@) — 7, 2011 — 7)

< (1 - an(1 = #2) o — 2]
+ tallen = @uoal (allen - @aoal + 2w - )
+ 200, (f(Z) — &, Zpy1 — T)

< (1 - an(l = #2) 2, — 2|1
+ 8Moptn 0 — ]| + 200 (f (&) — F 2001 — 7)

< (1—ap(1— HQ)) |2z, — Z||?

3M. 2
2 2 Mn
(3.8) +an(1—k )<1_K2an||$n—xn1|+1_%2

<f(i‘)_ja $n+1_$>) )
where M = sup,, {ptl|#n — zn—1], |zn — Z||} > 0, for each n € N.
We will consider the following two cases.

Case 1: Suppose that there exists ng € N such that {||z,, —Z||} is monotonically
non-increasing. By the boundedness of {||z, — Z||}, it is a convergent sequence.
Now, consider

lzn =2l = (lon — 2]+ ands)’
= |lzn — Z|* + 20, My ||, — T + a2 M7
= |lzn, — i’Hz + ozn(QMlen —I|| + aan)
(3.9) = |lzn — EH2 + a, Ms,
where Ms = sup,, {2Mi|zn, — Z|| + 0, M7} > 0, for each n € N. By using (2.2),
(3.3) and (3.9), we have
|zni1 — 2l = [lanf(@n) + Butn + 0nSyn — 7|
= |lan(f(zn) = Z) + Balzn — ) + 6u(Syn — 7|
< anl|f(xn) = @|* + Bullzn — 2l + 0nl|Syn —
—anBu|| f(@n) = 2 ||* = cnbn| F () = Synl]® = Babullzn — Synll?
| £ (wn) = Z||° + Bullzn — Z)* + 0n]|Syn — 7]
anl| £ (@n) = Z||° + Bullwn — 2|2 + Onllyn — 2|
| £ (@) = Z||° + Bullzn — 2l + Onllzn — 7]

(0 =)Ll = 21 = T2 )

IN

(3.10)

IN

IN
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< an|f@n) = Z||° + Bullwn — 2|2 + Opllwn — 2|® + anbn M
—an%(H(I D)L | L7 - T)LGH2>,
for each n € N. It follows that

0 (HU D)L | L7 - T)LGH2>

IN

lzn = 2|* = llznss — 2|

+ap || f(zn) — a‘c||2 + a0, M3
< lwn = 2l = |#ngr — 2]
+on (|1 f (an) — ZI* + Ms),

for each n € N. Consequently, by condition (i) and (iii), we have
2 X 2
%<||(1 1)L |? — || (I T) L ) S,
as n — 00. Moreover, by the definition of ~,,, we see that

(1 —T)Lz|"
|LA(I = T) Lz, ||*

”"(”“Tﬂzn!!? vnHL*UT)LGHQ) =1 =)

for each n € N. This implies
(1 = T) Lz ||*
|L#(I = T)Lz||”
as n — 0o. Since 0y, € [a,b] C (0,1), we get
N (O 922
(3.11) o LT =T)Lz|]

In addition, we observe that the fact ||L*(I — T)Lz,|| < |L*||[[(I — T)Lz,
implies

on(1—9,)

)

)

* H(I — T)LGHQ
H(I - T>L2nH < HL H HL*(I _ T)LG s
for each n € N. Thus, by (3.11), we obtain
(3.12) lim [[(I = T)Lzn|| = 0.
This forces
(3.13) lim [|L*(I = T)Lan|| = 0.

At this point, we note that J /{9 is firmly nonexpansive. Then, we have
_ 2
lyn —2l? = (I8 (20— 9al*(I = T)Lz,) — 2
< (JP(zn —L*(I = T)Lzy) — %, 20 — ¥ L*(I = T)L2, — T)
= (Yn—2,20 —Z) — Y (yn — T, L*(I = T)L2,)
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= Sl =P+ Sl = 72 = 3l — 2l
—n(yn — &, L*(I — T)Lz),
for each n € N. This gives,
lgo =22 < llzn— 212 = g — 2ll” = 270 (g — & L*(I — T)Lz,)
20 = 211 = llyn = 2l + 290 llyn — Z(L* (T = T) Lzn||

<
< lan = 2% + anMs — [lyn — 2all* + 29 llyn — ZIL*(I = T)Lzn],

(3.14)
for each n € N. From (3.10), by using (3.14) we have
_ ) _ _
|Zn+1 — xH2 < oanf(xn) - xH + Bullzn — tz + Onllyn — x||2

_112 _ _
< an||f@n) — 2|7 + Bullzn — &) + Onllzn — E|? + @b Ms
—Onllyn = 2all” + 20570 llyn — Z|[L*(I = T) Lz,

for each n € N. Thus

= - _12
Onllyn = 2ll® < ||xnx||2||xn+1x||2+an<uf<xn>wH +M3>
+20u3allyn = FNL* (L = T) Lzl

for each n € N. By the convergent of the sequence {||z, —Z||}, (3.13) and condition
(i) and (iii), we obtain that
(3.15) lim |y, — zn|| = 0.

n—o0

From above relation, we know that

_ 12 _ _
Tt — xHQ < O‘an(xn) - xH + Bullzn — x||2 + 0| Syn — xHQ
—nSBul| f(2n) — j||2 — anbn | f(n) — SynH2 — Bubnllzn — Syn”Qa
for each n € N. It follows that

_112 _ _
ﬁnennwn_synHZ < aan(xn)_xH +/8n”$n_$H2+9nHSyn_x||2

(3.16) — 1 — 2|2,
for each n € N. Moreover, we have
1Sy = ZII* < llyn = 2I* < ll2n — 21 < [lon — Z[|* + on Ms,
for each n € N. Thus, from (3.16) we obtain
Bubnllzn — Synl®> < | f(@n) — Z|* + Bullzn — 2% + On|zn — 72

+a, 0, M3 — Hxn+1 - j||2

(3.17) < (@) ol + M5 ) + o = 2l = enss 2P,
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for each n € N. By the convergent of the sequence {||x,, — Z||} and conditions (i)
and (iii), we get

(3.18) lim ||z, — Syx| = 0.
n—oo

Using the definition of x,41, we have

||$n+1 - SynH = Hanf(-fn) + Bnxn + 0,5y — SynH
(319) < an“f(l'n) - SynH + Bn”xn - Syn”v
for each n € N. By using (3.18) and condition (i), we get
(3.20) lim ||zp41 — Syn| = 0.
n—oo
Next, we will show that limy, oo ||y —Syn|| = 0. Consider the following inequality

B-2Dllyn = Synll < lyn = znll + 120 — znll + 120 — 2ngall + 12041 — Syall;
for each n € N. In the second term of (3.21), we consider

ln = zall = [0 + sl — 7n-1) = 2

< anﬁnxn - xn—lH7
o

n

for each n € N. Thus, by conditions (i) and (iv) we get
(3.22) lim ||z, — x,|| = 0.

n—o0

And, in the third term of (3.21), we consider

||:L'n+1 - $n|| = Hanf(l‘n) + /Bn$n + HnSyn - xn”
< Oén”f(fn)*an+9n||5yn*xn||a
for each n € N. By using (3.18) and condition (i), we get

(3.23) lim |[zp41 — 2| = 0.
n—o0

Therefore, by (3.15), (3.20), (3.22) and (3.23) we get
(3.24) tim [lyn — Syn] = 0.
n—oo

Next, since {z,} is bounded on Hj, there exists a subsequence {z,,} of {z,}
that converges weakly to «* € H;. We will prove that z* € Q. From (3.24) and
Yn, — =¥, we obtain from Lemma 2.1 that z* € F(S). Next, we will show that
x* € B~10. Consider, for each i € N,

H:J;*—J)]\B:c*w < (aF = JPx* 2 — ) + (2F — TP 2, — TP 2,)

(3.25) +{a* — JPa*, Tl wn, — Ja*).
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Observe that

o= Paall < 98 on =~ D)) — TP
(3.26) < low = zall + LN = T)Lz|
for each n € N. By (3.12) and (3.22) we have
(3.27) nh_}rgo Hyn - Jf:nnH =0.

Consider the following inequality

20 = IPza|| < llwn = zall + 120 = yall + llyn = TS 2all,
for each n € N. Thus, by (3.15), (3.22) and (3.27) we get
(3.28) nh_)rgo Hazn — JY @] = 0.

Since {xy,} is a subsequence of {z,}, so consequence from (3.28) we have

(3.29) lim me — JBz,,

1—00

=0.

From (3.25), by using (3.29) and together with z,,, — x*, we obtain

lim ||z* — JZz*|| = 0.
1—00

Therefore, z* = J/{Ba:* and hence z* € B~10.

Next, we will show that Lz* € F(T). Similarly, we consider, for each ¢ € N,
|La* — TLa*|? < (La&* - TLa* La* — Lay,)
+(La* — TLa*, Ly, — TLwy,)
(3.30) +(Lz* — TLa*,TLx,, — TLx").
To estimate the second term in (3.30), we first consider the following inequality,
|(I = T)La,|| |(I = T)Lan, — (I = T)Lzn|| + ||(I = T)Lz||

|Lan — Lzn|| + ||TLayn — TLzy|| + ||(I = T)Lzy||

2/ Lllllzn = zall + ||(T = T)L2n
for each n € N. Then, by (3.12) and (3.22), we have

lim [|(I = T)Lan| =0.

ININ TN

)

Thus, for any subsequence {z,,} of {z,}, we also have
lim ||(I = T)Lay,|| = 0.
71— 00

*

Moreover, by the linearity and continuity of L, Lx,, — Lx*, as i — oco. Hen

from (3.30) we obtain that
lim ||Lz* — TLz*|| = 0.

1—00

397

ce,
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Therefore, Lz* = T La*, that is Lz* € F(T'). Consequently, we have x* € .

Finally, we will prove that {z,,} converges strongly to z = P f(Z). Now, we know
that {z,} is bounded and from (3.23) we have ||x,+1 — z,| — 0, as n — co. With
loss of generality, we may assume that a subsequence {zp,4+1} of {zp4+1} converges
weakly to x* € Hy. Thus, we obtain

hTII,Ii)Solip 1 — g2 <f E — T, Tp41 — J_:> = Zli>nc;lo 1 — K2 <f('1_"> - :fvxnrH. - j>
2 _ I
By using (3.31) and together with condition (iv) we get
. 3SM  py, 2 _ _ _
h?rln_)solép (1 — RQa—onn — Tp1l| + m@”(m) — T, Tpt1 — x>> <0.

From (3.8), by using Lemma 2.2, we can conclude that ||z, — Z|| — 0, as n — co.
Thus z,, — Z, as n — oo.

Case 2: In the case that {|z, — Z||} is not monotonically decreasing sequence.
Set 'y, = ||z, — Z||, Vn € N and let 7 : N — N be a mapping for all n > nq (for some
no large enough) by

T(n) == max{k: eEN:k<n, Tp< Fk+1}.
Then, {7(n)} is a nondecreasing sequence, such that 7(n) — oo as n — oo and
0<TI'm <T@yt Vn > ne.
Consequently, we have ||z, () — z||? - 177 (ny4+1 — z||? <0, for each n > ng. From

(3.11) we obtain the following relation,

Sr 1o (10T = Vo = 1|20 = D))

< Nzry — 21 = 27y — 2|
tor () (1 (@r(ny) — Z)|* + Ms)
(332) < Qr(n) (”f(xT(TL)) - j'H2 =+ M3)7

for each n > ng. By the similar argument as in Case 1, we can conclude that

lirn H(I - T)sz(n)H = 0,

lim ||L*(I = T)Lz.(y || =0,
n—oo
i {27y 1 = 2ol = 0

and

: 3M Pr(n 2 o= .
lim sup < ) ||x’r(n) - x’r(n)—l“ + 1_71%2<f(l‘) — L, Tr(n)+1 — :L'>> <0

n—oo 1 - HQ ar(n)
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Since {x,(,} is bounded, we can find a subsequence of {z,,}, still denoted by
{2(n)}, which converges weakly to z* € F(S)N B~ 10N L~ 'F(T) . It follows from
(3.8) that

Hx‘r(n)Jrl - j"||2 < (1 - a'r(n)(l - H2)) ||‘r‘r(n) - jHQ
(333) +aT(n)(1 - ,{'2)TT(?’L)7

2z ar sy = 2rmy-1ll + 122 (f(@) = 2,241 — T), for cach

where T7.(,,) =
n > ng. Then,

aT(n)(l - K‘Q)H'rT(n) - jH2 < HxT(n) - f||2 - Hx'r(n)-i-l - j:HQ
+a’r(n)(1 - HQ)TT(TL)
(334) < CVT(n)(l - HQ)TT(nﬁ

for each n > ng. We note that a,,)(1 — x?) > 0. Thus, from (3.34) we get
limsup ||z,(n) — z? <o0.
n—oo

This implies that

. a2
nlggo Hx‘r(n) $H =0,

and hence

n—oo

Using limy, o0 |7+(n)41 — Tr(n)l| = 0 and (3.35), we obtain that
(336) |’$T(n)+1 - iH < ”xr(n)—l—l - xT(TL)H + Hx’r(n) - 'TH — 0,

as n — oo. Furthermore, for each, n > ng, if 7(n) < n, we can see that Iy <

L (n)+1, because I'; > T'j44 for 7(n) +1 < j < n. As a consequence, we obtain for
each n > nyg

0<TI) <max {F’T(n)7r7‘(7’l)+1} = FT(TZ)+1'

By using (3.36), we obtain lim,_,~, ', = 0. That is, we can conclude that {x,}
converges strongly to Z. This completes the proof.

Remark 3.4. (a) The condition (iv) is easily implemented in numerical computa-
tion because we can find the valued of ||x,, — x,,—1]|| before choosing u,,. Indeed, we
can choose the parameter u, such that 0 < u,, < fi,,, where

w
~ fmin {u, } if 2 # 2
Hn = [ — &n—1]]

73 otherwise,

where w, is a positive sequence such that w,, = o(a,). The readers may see the
reference [19] for more detail.
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(b) The following choice is the special case of (a); we choose a,, =

m and pu = ni;ll € [0,1). Then, we have

1 —
ntir Wn =

n—1
. 1 . .
mln{ — 1’ (12 lzn—2n—_1]] }’ if @y, 7& Tn-1;
otherwise.

(c) If S = I (the identity operator), then problem (1.10) reduces to problem (1.8).
And, if L = I, we see that problem (1.10) reduces to a type of common fixed points
of nonexpansive mappings (see [12] for more detail).

4. APPLICATIONS
In this section, we will show some applications of the problem (1.10) via Theorem

3.3.

4.1. Split feasibility problem.

Recall that the normal cone to C' at v € C' is defined as
No(u)={z€ H: (z,y—u) <0, YyeC},

where C' is a nonempty closed convex subset of H. It is well known that N¢ is a
maximal monotone operator. So, in the case B := N¢ : H; — 2H1 we get Jf =: Po
(Pc is the metric projections onto C). Also, we get F(JP) = F(P¢) = C. By the
setting T' =: Py (Pgp is the metric projections onto @), we can verify that the
problem (1.8) is reduced to the split feasibility problem (1.1). Subsequently, the
problem (1.10) is reduced to a problem of finding a point

¥ € F(S)NCNL'Q=:1Q¢
By following Algorithm 3.1, we introduce the following algorithm.

Algorithm 4.1. Let {a,}, {f,} and {6,,} be sequences in (0, 1) with c, + 3, +6,, =
1 and the initial xg,x1 € Hy be arbitrary, define

Zn = Tp+ Nn(l'n - l'nfl)a
Yy = Fc (Zn - 'VnL*(I - PQ)LZn)7
(4.1) Tnt1 = anf(Tn) + Bnn + 0nSyn, VneN,
where {pn} C [0, ] with g € [0,1) and {~,} is depend on d,, € [a,b] C (0,1) by
5u || 1—Po) Lz ||

i LI — Po) Lz, #0:
Py A

Tn = ‘
v, otherwise,

where v is any nonnegative value.
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Subsequently, by applying Theorem 3.3, we obtain the following theorem.

Theorem 4.2. Let Hy and Hy be two real Hilbert spaces and let C' and @ be a
nonempty closed convex subset of Hy and Ha, respectively. Let {x,} be generated by
Algorithm 4.1. Suppose that the assumptions (A2), (A4) and (A5) hold, ngQ # ()

and the following control conditions are satisfied:
(i) limy—eo ay =0;
(i) >only am = ooy
(iii) 0<a<pB, and0<a<0,;
(iv)  limy e Z*Z”l”n —xp—1|| = 0.

Then, {x,} converges strongly to T € QgQ, where T = Pqs Qf(i:).

Proof. It follows immediately from Theorem 3.3 and the above setting.
4.2. Split variational inclusion problem.

We will consider a maximal monotone operator B : Hy, — 22 By setting
T :=JP = (I +AB)™!, we obtain F(T) := B~!0. In this case, we can verify that
the problem (1.8) is reduced to the split null point problem (1.6). Subsequently,
the problem (1.10) is reduced to a problem of finding a point

¥ e F(SynBlonL~Y(B~10) = Qg’é

Then, we obtain the following results.

Algorithm 4.3. Let {a,}, {6,} and {6, } be sequences in (0, 1) with v, + 5, +6, =
1 and the initial xg,x1 € Hy be arbitrary, define

Zn = Tp+ ,Un($n - $n—1)a
Yo = J2 (20— L (I — J{)Lz,),
(4-2) Tn+l = anf($n) + Bnxn + 0,.Syn, Vn € N,

where {pn} C [0, ] with p € [0,1) and {v,} is depend on d,, € [a,b] C (0,1) by

on| (IfJf)LGH2

. . if L*(I — JB)Lz, # 0;
Y = ‘ L*([—Jf)LG‘ : ( A MLz #

v, otherwise,

where v is any nonnegative value.

Theorem 4.4. Let Hy and Ho be two real Hilbert spaces and let B: Hy — 22 pe
a mazimal monotone operator. Let {x,} be generated by Algorithm 4.3. Suppose
that the assumptions (A1)-(A2) and (A4)-(A5) hold, Q%,B # 0 and the following
control conditions are satisfied:

(i)  limpoeoan =0;

(ii)  Doniiom = oo;
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(i) 0<a<p,and0<a<6,;
(iv) ity soo 2|2 — 201 ]| = 0.

Then, {x,} converges strongly to T € Q; -, where T = Pqs _f(Z).

B}

s

Proof. By the above setting, we get this result follows from Theorem 3.3.

5. CONCLUDING REMARKS

In this work, we present an algorithm for finding a solution of a class of split

feasibility problems and fixed point problems in Hilbert spaces. We suggest the
inertial viscosity-type algorithm and provide some suitable control conditions to
the process. The strong convergence theorem of the proposed algorithm, Theorem
3.3, is presented. We showed some applications of the considered problem and the
presented main result to the split feasibility problem and split variational inclusion
problem in Hilbert spaces.
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