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CONVERGENCE UNDER SOME CONDITIONS OF A GENERAL
ITERATIVE ALGORITHM FOR CONTINUOUS
PSEUDOCONTRACTIVE MAPPINGS

JONG SOO JUNG

ABSTRACT. In this paper, we consider a general iterative algorithm for a contin-
uous pseudocontractive mapping in a Hilbert space. Utilizing weaker control con-
ditions than previous ones, we establish the strong convergence of the sequence
generated by the proposed iterative method to a fixed point of the mapping,
which is the unique solution of a certain variational inequality.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and induced norm ||-||. Let
C be a nonempty closed convex subset of H and let S : C — C be a self-mapping
on C. We denote by F(S) the set of fixed points of S.

The class of pseudocontractive mappings is one of the most important classes of
mappings among nonlinear mappings. We recall ([2, 3]) that a mapping T : C — H
is said to be pseudocontractive if

|IT2 = Ty|* < llz —ylI* + I(I = T)z — (I = D)yl Va, yeC,

and T is said to be k-strictly pseudocontractive ([3]) if there exists a constant k €
[0,1) such that

|72 — Tyl < |l — y|]* + k| (I - T)a — (I — Tyl Va, y € C,

where [ is the identity mapping. The class of k-strictly pseudocontractive mappings
includes the class of nonexpansive mappings as a subclass. That is, T is nonexpan-
swe (i.e., ||Tz —Ty|| < ||z —vyl, Yz, y € C) if and only if T is 0-strictly pseudocon-
tractive. Clearly, the class of k-strictly pseudocontractive mappings falls into the
one between classes of nonexpansive mappings and pseudocontractive mappings.
Recently, many authors have been devoting the studies on the problems of finding
fixed points for pseudocontractive mappings, see, for example, [1, 5, 6, 7, 8, 10, 18]
and the references therein.

In 2019, by combining Yamada’s method [16] and Marino and Xu’s method [9],
Jung [8] considered the following general iterative algorithm for a continuous pseu-
docontractive mapping 71"

(1.1) Tny1 = PolonyVe, + (I — anuF)T,, x,), Yn >0,
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where xg € C is an arbitrary initial guess; {a,} C (0,1), {r,} C (0,00); Pc is
the metric projection of H ont C; F : C' — H is a p-Lipschitzian and n-strongly
monotone operator with constants p > 0 and n > 0 (i.e., |[Fz — Fy| < p|lz — y||
and (Fx — Fy,z —y) > nllz — y|?>, =z, y € H, respectively); V : C — H is an

[-Lipschitzian mapping with a constant [ > 0; 0 < p < i—’g and 0 < vyl < 7 =

1 —+/1—u(2n— pp?); and T;,, : H — C is a mapping defined by

1
T,nn:U:{szC’:(y—z,Tz)—<y—z,(1+7"n)z—33>SO7 VyGC’}

Tn

for 7, € (0,00). In particular, by using following control conditions on {ay,} and
{rn}

(C1) {an} C (0,1) and limy, 00 a, = 0,

(€C2) > 02g an = o0,

(C3) |ant1—om| < o(ant1)+0n, Y peyon < 00 (the perturbed control condition),

and

(C4) > g lrne1 —mn| < oo and 1, > b > 0 for n > 0,
he proved that the sequence {z,} generated by (1.1) converges strongly to a fixed
point ¢ of T', which is the unique solution of a certain variational inequality related
to the operator F'. His results improved the corresponding results of Ceng et al. [4],
Jung [6, 7] and Tian [13, 14] from the class of nonexpansive mappings or the class
of strictly pseudocontractive mappings to the class of continuous pseudocontractive
mappings.

The following problem arises:

Question. Can we relax the conditions (C3) and (C4) in [8] on control parameters
{an} and {r,} to the more weaker control condition?

In this paper, in order to give an affirmative answer to the above question, we
consider the following general iterative algorithm for a continuous pseudocontractive
mapping 1" in a Hilbert space:

(1.2) Tni1 = oYV, + (I — anuF)T,, x,, Yn >0,

where xg € C'is an arbitrary initial guess; {a,} C (0,1) and {r,} C (0, 00). By using
weaker control conditions than previous ones, we establish the strong convergence of
the sequence generated by the proposed algorithm (1.2) to a fixed point of T', which
is a solution of a certain variational inequality related to F', where the constraint set
is Fiz(T). The results in this paper improve and develop the corresponding results
given in [4, 5, 6, 7, 8, 9, 13, 14] and references therein.

2. PRELIMINARIES AND LEMMAS

Throughout this paper, when {z,} is a sequence in E, z, — x (resp., z, — x)
will denote strong (resp., weak) convergence of the sequence {z,} to x.
For every point © € H, there exists a unique nearest point in C, denoted by
P (x), such that
o = Po(@)|| <z —yll, VyeC.
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P¢ is called the metric projection of H onto C' ([12]). It is well known that Pg is
nonexpansive and that for z € H,

(2.1) z=PFPor <= (v —2z,y—2) <0, VyeC.
The following is proven easily by the property of inner product.
Lemma 2.1. In a real Hilbert space H, the following inequality holds:
2 +yl* < z)* +2(y, & +y), Yz, ye H

Let LIM be a Banach limit. According to time and circumstances, we use
LIM,(ay,) instead of LIM (a) for every a = {a,} € ¢>°. The following properties
are well-known ([12]):

(i) for all n > 1,ay, < ¢, implies LIMy,(a,) < LIM,(c,),
(ii) LIMy(anyn) = LIM,(ay) for any fixed positive integer NV,
(iii) liminf, o an < LIMy(ay,) < limsup,,_,. ay, for all {a,} € I*.
The following lemma was given in [11].
Lemma 2.2. ([11]) Let a € R be a real number and a sequence {a,} € I satisfy the

condition LIM, (ay) < a for all Banach limit LIM . If limsup,,_,..(an+1 —an) <0,
then limsup,, . an < a.

We also need the following lemmas for the proof of our main results.

Lemma 2.3. ([15]) Let {s,} be a sequence of non-negative real numbers satisfying
Snt1 < (L= Bn)sn + Bndn +m, Yn 20,
where {Bn}, {0n} and {y,} satisfy the following conditions:
(1) {Bn} C[0,1] and 3.7 Bn = oo,

(i) Hmsup,, o0 0 <0 or Y07 Buldn| < o0,
(ifi) 7 20 (n > 0), 32570 < 0.
Then lim,,_y00 S, = 0.

Lemma 2.4. ([17]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — H be a continuous pseudocontractive mapping. Then, for r > 0
and ¢ € H, there exists z € C' such that

1
<Tz,y—z>—;(y—z,(l+r)z—x>§0, Vy e C.
Forr >0 andx € H, definel,, : H— C by

TTx:{zeC:(Tz,y—z)—i(y—z,(l—i—r)z—x)SO, VyGC}.

Then the following hold:
(i) T, is single-valued;
(ii) T) is firmly nonexpansive, that is,

”Trx_TryHQ < <TT$_Try,$_y>v vz, y € H,;
(i) Fia(T}) = Fia(T);



374 J. S. JUNG

(iv) Fiz(T) is a closed convex subset of C.

The following lemmas can be easily proven, and therefore, we omit the proofs
(see [16]).

Lemma 2.5. Let H be a real Hilbert space. Let V : H — H be an l-Lipschitzian
mapping with a constantl > 0 and let F': H — H be a p-Lipschitzian and n-strongly
monotone operator with constants p > 0 and n > 0. Then for 0 < vl < un,

(uF = yV)x — (uF —yV)y,z —y) > (un =)z -yl vz, y € H.
That is, uF' —~V 1is strongly monotone with a constant un — .
Lemma 2.6. Let H be a real Hilbert space H. Let F': H — H be a p-Lipschitzian
and n-strongly monotone operator with constants p >0 andn > 0. Let 0 < p < i—g

and 0 <t <¢<1. Then S :=¢I —tuF : H — H is a contractive mapping with a
constant ¢ — tr, where T =1 — /1 — pu(2n — pp?).

Finally, we recall that the sequence {x,} in H is said to be weakly asymptotically
reqular if

w— lim (xp41 —x,) =0, thatis, zp41 — 2, —0
n—oo
and asymptotically reqular if
nh_ggo [Zn+1 — 2|l = 0,

respectively.

3. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:

e H is a real Hilbert space;
e T: H— H is a continuous pseudocontractive mapping with Fiz(T) # ();
e T,.: H— H is a mapping defined by

1
To={oetls(y-aTa) - Hy-a itz -y <0, wen]

for r € (0, 00);
e 7. : H — H is a mapping defined by

1

T, x = {z €eH: (y—=z2Tz)——(y—=z 1+ry)z—2x) <0, VyEH}
Tn

for r,, € (0,00) and lim,, o0 7, = 75

V : H — H is an [-Lipschitzian mapping with constant [ € [0, c0);

F : H — H is a p-Lipschitzian and 7-strongly monotone mapping with

constants p > 0 and n > 0;

Constants u, I, 7, and ~ satisfy 0 < p < i—’g and 0 < vl < 7, where

7=1— /1T~ pu(2n — pp?);

Fiz(T) # 0;
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By Lemma 2.4, T, and T,, are nonexpansive and Fiz(T) = Fiz(T,) = Fix(T,,).
In this section, we consider the following iterative algorithm which generates a
sequence in an explicit way:

(3.1) Tni1 = anYVan + (I — anuF)T, x,, VYn >0,

where {a,} C (0,1), r, € (0,00) and z9 € H is an arbitrary initial guess, and
establish strong convergence of this sequence to a fixed point ¢ of T', which is the
unique solution of the variational inequality:

(3:2) (WF =4V)g,q —p) <0, Vp € Fiz(T).

(Equivalently, by (2.1), we have Ppiyry(I — uF ++V)q) = q).
First, we consider the following iterative algorithm that generates a net {xt}te(o,l)
in an implicit way:

(3.3) xy =tyVay + (I — tuF)Trxy.
Indeed, for ¢t € (0,1), consider a mapping Q; : H — H defined by
Qix =tyVa + (I —tuF)T,x, Vz e H.

It is easy to see that (Q); is a contractive mapping with constant 1 —¢(7—~l). Indeed,
by Lemma 2.6, we have
1Qiz — Quyll < ty[IVe = Vyll + |(I — tpF)Trx — (I — tpF) Tyl
<tz =yl + 1 —t7)[lz =yl
=1 =t =yD))z -yl
Hence Q; has a unique fixed point, denoted x;, which uniquely solves the fixed point
equation (3.3).
By utilizing the same method as in Theorem 3.1 of Jung [8] along with r, = r for
t € (0,1), we obtain the following proposition for strong convergence of the net {z;}

as t — 0, which guarantees the existence of solutions of the variational inequality
(3.2). We omit its proof .

Proposition 3.1. ([8 , Theorem 3.1]) The net {x;} defined by (3.3) converges
strongly to a fived point q of T as t — 0, which solves the variational inequality
(3.2).

First, we give the following result in order to establish strong convergence of the
sequence generated by the explicit algorithm (3.1).

Theorem 3.2. Let {x,} be the sequence generated iteratively by the algorithm (3.1)
and let LIM be a Banach limit. If {c,} satisfies the following condition:
(C1) {an} € (0,1) and lim, o0 o, = 0,
then
LIM,({(pFq—Vq,q = zn)) <0,
where q = limy_,o+ x¢ with x; being defined by (3.3).
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Proof. First, note that from the condition (C1), without loss of generality, we as-
sume that a,7 < 1 for all n > 0.

Let {z;} be the net generated by (3.3). By Proposition 3.1, there exists lim;_, x¢
€ Fix(T). Denote it by q. Moreover ¢ is the unique solution of the variational
inequality (3.2). By (3.3), we have

ot = sl = [t9Vay + (1 = taF) Ty, — g
=||(I = tpuF)Trxy — (I — tpF)xp1 + t(YWay — pFapiq)].
Applying Lemma 2.1 and Lemma 2.6, we have
(34) Nzt —wp1? < (L= 87| Trwe — wna | + 2003V — pFappn, @0 — o).

First of all, we show that {z;} is bounded, and so {Va;}, {Ta}, {Trxi}, {Fai}
and {FT,x;} are bounded. To this end, let p € Fiz(T'). Then, observing Fix(T) =
Fix(T,) by Lemma 2.4, from (3.3), we derive that

e — pl| < [[tyVay + (I — tuF)Toay — p)|
= t(YVzy — uFp) + (I — tpF) Tz — (I — tuF)p||
< (1 —t7)||zy — pl| + |V — uFpl,
and hence

1
z: —pll < ;HW-’L‘t — pFp||
1
< ;[IHth —Vpl| + [[7Vp — pFpl|]

1
< ;thwt —pll + [[7Vp — uFpl|).
This implies that

lzs —pl| < vV — uFpl.

T—7l
Hence {x:}, {Vai}, {Txe}, {Tra}, {Fxt;and {FT,z:} are bounded.
Now we show that ||z, — p|| < max{||zo — p|, W} for all n > 0 and all
p € Fix(T). Indeed, let p € Fiz(T). Noticing p = T, p, we have
[#n+1 = pll = lan(YWan — pFp) + (I — anpF)Tr,xn — (I — anpF)15,pl|
< (1 —an7)|[zn —pll + anllVVn — pFp
< (1= an)llzn = pll + an(|VVan = Vol + 17V — nFpl))

YWp—uFp
< [L— (7 = ADalan — ol + (r — Al VP HEPI
T =l
—
Smax{,xn_pu,llvwﬂpll}_
T =7l

Using an induction, we have ||z, — p|| < max{|zo — p||, W}. Hence {x,} is
bounded, and so are {Vx,}, {Tz,} {1, xn}, {FT,xn}, and {Fz,}. As a conse-

quence of condition (C1), we get

(3.5) |Tnt1 — Tr,xn|| = an||yVa, — pFT. x|l = 0 (n — 00).
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First of all, we show that | 7,2, — Ty, || < 2|r—r,| K7, where K1 = sup{|| Tz, —
Znl|| : n > 1}. Indeed, let z, := T}, x, and 2z, = T,x,. Then, from definitions of T,
and 7T, , we deduce

1
(3.6) (y —2zp, Tzp) — ;(y —zp, (L4 1)z, —x,) <0, VyeH,
and

1
(3.7) (y — zn, Tzp) — r—(y — zZn, (L+71p)zn —xy) <0, Vye€ H.

Putting y = 2z, in (3.6) and y = z, in (3.7), we obtain

1
(3.8) (zn — 20, T2p) — ;(zn — 2z, (L4 1r)zp —x) <0,
and

1
(39) <Z'r - Zn,TZn> - 7<Z'r — Zn, (1 + rn)zn - $n> <0.

Adding up (3.8) and (3.9), we have
(zr—2n, Tzp — Tzp)

N )
T'n T

which implies that

(wy — Wy, (Wy — Twy) — (W, — Twy))

Wy — Ty Wy — T
— ( Wy — Wy, — <0.
Tn r

Now, using the fact that T is pseudocontractive, we deduce

Zn — Ip Zr — Iy
Zr = Zn, - > 07
Tn r

and hence
(3.10) <zr—zn,zn—zr—|—zr—xn—rn(zT—xn)> > 0.
r

By (3.10), we have

r
||Zr - Zn||2 S <2r — Zn; (1 - :) (Zr - xn)>

1
< lzn — Zr”;lr —ralllzr — @l
which implies

1
(3.11) Ty — Ty, x| < ;]r—ranl,
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where K1 = sup{||T,x, — 2| : n > 1}. Thus, by (3.11), we obtain

1Trzt — gl < (| Trxe — Trxn || + | Tozn — T, 2nll + |17, 00 — T |
1
< ||zt — xnl| + ;]7’ — rolllen — Trznl|| + | Tr, 20 — Tna ||
1
< ||we — xp| + ;]7‘ — | Ky + || Ty, 20 — o]
= th - xn” + éen,

K1

where e, = Zr — rp| + |2p41 — T 20| = 0 as n — oo (by limy, o0 7, = r and

(3.5)). Also observing that F' is n-strongly monotone, we have

(3.12) (WFzy — pFTp, 20 — x0) > |z — an2 > Tz — :an2

So, by combining (3.10) and (3.12), we obtain

lz¢ — zp41]
< (1= t7)* (||l — @nll + en)?

+2t(v\Vay — pFry, 2y — Tpg1) + 26(uFxy — puFan 1, 20 — Tpyr)
< (821 = 207z — @0 ||? + [zt — 20|

+ (1 = t1)%en (2] — 20| + €n)

+2t(YVay — pFay, 2y — Tpg1) + 26(uFzy — pFan g1, o6 — Tny1)
< (21 = 2t)(uFxy — pFy, x4 — ) + ||z — 20

+en(Ka+epn) +2t(yWWay — uFay, xp — Tpyr)

+ 2t{uFxy — pFapi1, 28 — Tpyr)

(3.13)

= 27 (uFx; — pF T, 2 — ) + ||2¢ — 20|
+en (Ko +epn) +2t(y\Way — uFay, xp — Tpyr)
+ 2t((uF 2y — pFani, 2 — Tny1) — (WF2y — pF g, 2 — ),

where Ky = sup{2||z; — x| : t,n > 0}. Applying the Banach limit LIM to (3.13)
together with lim,,_, o e, = 0, we have

LIMy(||zt—2n1]*)
< TLIM, ((uFxs — pFxy, xp — ) + LIM, (|2 — 2,]|?)
(3.14) + 2tLIM, ((YVx; — pFxy, 20 — Tpt))
+ 2t[LIM,((uFxy — pFrpi1, T — Tpt1))
— LIM, ({(uFxy — pFxp, v — x0))].
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Using the property LIM,(a,) = LIM,(a,+1) of Banach limit in (3.14), we obtain
LIM, ((uFxy — Vg, o — xy)) = LIM, ((uFxy — yVxy, 20 — Tpy1))

IN

t
%L[Mn((qut — pFxy, x — )

1
(3.15)  + —[LIM,(|2¢ — znl?) — LIMy (|2 — z0]?)]
2t
+ [LIM,({(pFxy — pFay, ve — xyn)) — LIM,((uFxt — pFxp, 1 — Tp))]

tT
= ELIMn«NFxt — pFxy, xp — ).

Since
bz — pFry,ze — 0)
< tupllze — @
(3.16) < tup(|lee —pll + llp — zal)
Vp— uF ’
< WP(W + ||zo —p\|> —0 (ast—0),

we conclude from (3.15) and (3.16) that

LIM,((uFz —~yVZ,T — xy,)) < limsup LIM, ((uFxs — YV, 2 — 20))
t—0

t

< limsup —TLIMn(QLth — pFxy, x — ) <O0.
t—0 2

This completes the proof. O

Now, using Theorem 3.2, we establish strong convergence of the sequence gener-
ated by the explicit iterative algorithm (3.1) to a fixed point ¢ of 7', which is the
unique solution of the variational inequality (3.2).

Theorem 3.3. Let {x,} be the sequence generated iteratively by the algorithm (3.1),
where {ay, } satisfies the following conditions:

(C1) {an} C (0,1) and lim, o0 oy, = 0.

(C2) Y2y ay = 0.
If {x,} is weakly asymptotically reqular, then {x,} converges strongly to q € Fix(T),
where is the unique solution of the variational inequality (3.2).

Proof. First, note that from the condition (C1), without loss of generality, we as-
sume that o, 7 < 1 and %T;Jll) < 1 for all n > 0.

Let z; be defined by (3.3), that is, z; = tyVx, + (I — tuF)T,x, for 0 < t < 1,
and let lim; oz := q € Fiz(T) = Fiz(T,) (by Lemma 2.4). Then ¢ is the unique
solution of the variational inequality (3.2).

We divides the proof into three steps:

Step 1. We see that ||z, — p|| < max{”xo =, W} for all n > 0 and
all p € Fiz(T) as in the proof of Theorem 3.2. Hence {z,} is bounded and so are
{T,,xn}, {FT, xn} and {Vzx,}.
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Step 2. We show that limsup,,_,. (uFq— vV q,q — x,) < 0. To this end, put
apn = (WFq—~vVq,q—x,)), Yn>0.

Then Theorem 3.2 implies that LIM,(a,) < 0 for any Banach limit LIM. Since
{xn} is bounded, there exists a subsequence {xn;} of {z,} such that

lim sup(anﬂ - an) = lim (aanrl - anj)
n—00 J—o0

and xz,, — v € H. This implies that x,,, 11 — v since {z, } is weakly asymptoticall
J ]+ y y y

regular. Therefore, we have

w — lim (g — xnj-i-l) =w — lim (¢ — x”j) = (¢ —v),
j—o0 j—00

and so

limsup(an+1 — an) = jl'ggoqu —7Vq,(q — Tn;41) — (¢ — 7n,)) = 0.

n—oo

Then Lemma 2.2 implies that lim sup,,_,,, an < 0, that is,

limsup(uFq —vVq,q — x,) <O0.

n—oo

Step 3. We show that lim,_,« ||zn — ¢|| = 0. By using (3.1), we have
Tn+1 — q = an(YWan — uFq) + (I — anpF) T, — (I — anpF)q.

Applying Lemma 2.1 and Lemma 2.6, we obtain

Zn+1 — ‘I||2 = [[(I = anpuF )Ty, 20 — (I — anpF)q + an(yV, — NFQ)HQ

< | — anpuF)T, w0 — (I — anﬂF)Tr,LQHQ
+ 20, (YVay — uFq, xpni1 — q)
(3.17) < (1 = ant)?||zn — q|]* + 200, (YWap — YV, 2pi1 — q)
+ 20, (YVq— puFq, xpi1 — q)
< (1= an?)*[len — ql” + anl(l|zn — gl + 2041 — qll?)
+ 20, (YVq— pFq,zp1 — q).

It then follows from (3.17) that

(3.18)
1 — an7)? + anyl Q
| Zns1 —ql* < ( 1”_())[ 7 |l — gl + m(ﬂ/q — pFq, 2pi1 — q)
n n
20, (17 — 7l
< (1= 220 o, -
n

200, (1 — A1) 1 a7
— pFq, a1 —q) + ———K3 |,
A p—— T_7l<’7Vq 1Eq, 2 q>+2(7_7l) 3
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where K3 = sup{||z, — ¢||* : n > 0}. Put

200, (T — ) 1 >
= " and 6, = —(uFq—Vq,q— o _n
e L anl ™ T_,YZOL a-V4,q w+1>+2(7_7l)

From (C1), (C2) and Step 2, it follows that 8, — 0, >° ; fn = 0o and

K.

limsup 6, < 0.

n—oo

Since (3.18) reduces to

||a7n+1 - QH2 < (1 - Bn)Hxn - Q||2 + Bnon,

from Lemma 2.3 with v,, = 0, we conclude that lim,,_,~ ||z, —¢|| = 0. This completes
the proof. O
Corollary 3.4. Let {x,} be the sequence generated iteratively by the algorithm
(3.1), where {a,} satisfies the following conditions:

(C1) {an} C (0,1) and lim, o0 oy, = 0.

(C2) Y02ty = 00.
If {z,} is asymptotically reqular, then {x,} converges strongly to T € F(T'), where
is the unique solution of the variational inequality (3.2).
Remark 3.5. If {a,,} and {r,} in Corollary 3.4 satisfy conditions (C1), (C2),

(C3) >02 0 lans1 — | < o0; or

(C4) limy, 00 aiil =1 or, equivalently, lim, . a”a_nicﬁ“ = 0; or,
(C5) |ant1 — an| < o(ant1) + 0n, Y pegon < 00 (the perturbed control condi-
tion); and

(C6) >0 |1 —rn] < oo and 0 < b < ry, for n >0,

then, by using method of [8], we can prove that the sequence {z,} generated by
(3.1) is asymptotically regular.

Remark 3.6. Theorem 3.3 extends the corresponding results of Ceng et al. [4],
Cho et al. [5], Jung [6, 7, 8], Marino and Xu [9] and Tian [13, 14] in the following
aspects:

(a) The class of strictly pseudocontractive mappings in [5, 6, 7] was extended
to the class of continuous pseudocontractive mappings.

(b) The class of nonexpansive mappings in [4, 9, 13, 14] was extended to the
class of continuous pseudocontractive mappings.

(c) The conditions a1 — an| < 0(nt1) + Ons Y opeOn < 00 (the perturbed
control condition) and > >° ;|rp41 — rm| < oo in [8] was relaxed to weak
asymptotic regularity on {z,} along with lim,, o r,, = 7.

(d) The condition Y 7 |ant1 — ap| < 00 in [4, 5, 9, 13, 14] was also weakened
to the weak asymptotic regularity on {x,}.

(e) A strongly positive bounded linear operator A in [5, 9] was extended to the
case of a p-Lipschitzian and 7-strongly monotone operator F. (In fact, from
the definitions, it follows that a strongly positive bounded linear operator A
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(i.e., there exists a constant 7 > 0 with the property: (Az, z) > 7||z||?, z €
H) is a || A||-Lipschitzian and 7-strongly monotone operator).
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