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where x0 ∈ C is an arbitrary initial guess; {αn} ⊂ (0, 1), {rn} ⊂ (0,∞); PC is
the metric projection of H ont C; F : C → H is a ρ-Lipschitzian and η-strongly
monotone operator with constants ρ > 0 and η > 0 (i.e., ∥Fx − Fy∥ ≤ ρ∥x − y∥
and ⟨Fx − Fy, x − y⟩ ≥ η∥x − y∥2, x, y ∈ H, respectively); V : C → H is an

l-Lipschitzian mapping with a constant l ≥ 0; 0 < µ < 2η
ρ2

and 0 ≤ γl < τ =

1−
√

1− µ(2η − µρ2); and Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : ⟨y − z, Tz⟩ − 1

rn
⟨y − z, (1 + rn)z − x⟩ ≤ 0, ∀y ∈ C

}
for rn ∈ (0,∞). In particular, by using following control conditions on {αn} and
{rn}
(C1) {αn} ⊂ (0, 1) and limn→∞ αn = 0,
(C2)

∑∞
n=0 αn = ∞,

(C3) |αn+1−αn| ≤ o(αn+1)+σn,
∑∞

n=0 σn < ∞ (the perturbed control condition),
and

(C4)
∑∞

n=0 |rn+1 − rn| < ∞ and rn > b > 0 for n ≥ 0,

he proved that the sequence {xn} generated by (1.1) converges strongly to a fixed
point q of T , which is the unique solution of a certain variational inequality related
to the operator F . His results improved the corresponding results of Ceng et al. [4],
Jung [6, 7] and Tian [13, 14] from the class of nonexpansive mappings or the class
of strictly pseudocontractive mappings to the class of continuous pseudocontractive
mappings.

The following problem arises:

Question. Can we relax the conditions (C3) and (C4) in [8] on control parameters
{αn} and {rn} to the more weaker control condition?

In this paper, in order to give an affirmative answer to the above question, we
consider the following general iterative algorithm for a continuous pseudocontractive
mapping T in a Hilbert space:

(1.2) xn+1 = αnγV xn + (I − αnµF )Trnxn, ∀n ≥ 0,

where x0 ∈ C is an arbitrary initial guess; {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞). By using
weaker control conditions than previous ones, we establish the strong convergence of
the sequence generated by the proposed algorithm (1.2) to a fixed point of T , which
is a solution of a certain variational inequality related to F , where the constraint set
is Fix(T ). The results in this paper improve and develop the corresponding results
given in [4, 5, 6, 7, 8, 9, 13, 14] and references therein.

2. Preliminaries and Lemmas

Throughout this paper, when {xn} is a sequence in E, xn → x (resp., xn ⇀ x)
will denote strong (resp., weak) convergence of the sequence {xn} to x.

For every point x ∈ H, there exists a unique nearest point in C, denoted by
PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥, ∀y ∈ C.
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PC is called the metric projection of H onto C ([12]). It is well known that PC is
nonexpansive and that for x ∈ H,

(2.1) z = PCx ⇐⇒ ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

The following is proven easily by the property of inner product.

Lemma 2.1. In a real Hilbert space H, the following inequality holds:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

Let LIM be a Banach limit. According to time and circumstances, we use
LIMn(an) instead of LIM(a) for every a = {an} ∈ ℓ∞. The following properties
are well-known ([12]):

(i) for all n ≥ 1, an ≤ cn implies LIMn(an) ≤ LIMn(cn),
(ii) LIMn(an+N ) = LIMn(an) for any fixed positive integer N ,
(iii) lim infn→∞ an ≤ LIMn(an) ≤ lim supn→∞ an for all {an} ∈ l∞.

The following lemma was given in [11].

Lemma 2.2. ([11]) Let a ∈ R be a real number and a sequence {an} ∈ l∞ satisfy the
condition LIMn(an) ≤ a for all Banach limit LIM . If lim supn→∞(an+1−an) ≤ 0,
then lim supn→∞ an ≤ a.

We also need the following lemmas for the proof of our main results.

Lemma 2.3. ([15]) Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− βn)sn + βnδn + γn, ∀n ≥ 0,

where {βn}, {δn} and {γn} satisfy the following conditions:

(i) {βn} ⊂ [0, 1] and
∑∞

n=0 βn = ∞,
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 βn|δn| < ∞,

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn < ∞.

Then limn→∞ sn = 0.

Lemma 2.4. ([17]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → H be a continuous pseudocontractive mapping. Then, for r > 0
and x ∈ H, there exists z ∈ C such that

⟨Tz, y − z⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : ⟨Tz, y − z⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
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(iv) Fix(T ) is a closed convex subset of C.

The following lemmas can be easily proven, and therefore, we omit the proofs
(see [16]).

Lemma 2.5. Let H be a real Hilbert space. Let V : H → H be an l-Lipschitzian
mapping with a constant l ≥ 0 and let F : H → H be a ρ-Lipschitzian and η-strongly
monotone operator with constants ρ > 0 and η > 0. Then for 0 ≤ γl < µη,

⟨(µF − γV )x− (µF − γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2, ∀x, y ∈ H.

That is, µF − γV is strongly monotone with a constant µη − γl.

Lemma 2.6. Let H be a real Hilbert space H. Let F : H → H be a ρ-Lipschitzian
and η-strongly monotone operator with constants ρ > 0 and η > 0. Let 0 < µ < 2η

ρ2

and 0 < t < ς ≤ 1. Then S := ςI − tµF : H → H is a contractive mapping with a
constant ς − tτ , where τ = 1−

√
1− µ(2η − µρ2).

Finally, we recall that the sequence {xn} in H is said to be weakly asymptotically
regular if

w − lim
n→∞

(xn+1 − xn) = 0, that is, xn+1 − xn ⇀ 0

and asymptotically regular if

lim
n→∞

∥xn+1 − xn∥ = 0,

respectively.

3. Main results

Throughout the rest of this paper, we always assume the following:

• H is a real Hilbert space;
• T : H → H is a continuous pseudocontractive mapping with Fix(T ) ̸= ∅;
• Tr : H → H is a mapping defined by

Trx =

{
z ∈ H : ⟨y − z, Tz⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ H

}
for r ∈ (0,∞);

• Trn : H → H is a mapping defined by

Trnx =

{
z ∈ H : ⟨y − z, Tz⟩ − 1

rn
⟨y − z, (1 + rn)z − x⟩ ≤ 0, ∀y ∈ H

}
for rn ∈ (0,∞) and limn→∞ rn = r;

• V : H → H is an l-Lipschitzian mapping with constant l ∈ [0,∞);
• F : H → H is a ρ-Lipschitzian and η-strongly monotone mapping with
constants ρ > 0 and η > 0;

• Constants µ, l, τ , and γ satisfy 0 < µ < 2η
ρ2

and 0 ≤ γl < τ , where

τ = 1−
√

1− µ(2η − µρ2);
• Fix(T ) ̸= ∅;
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By Lemma 2.4, Tr and Trn are nonexpansive and Fix(T ) = Fix(Tr) = Fix(Trn).
In this section, we consider the following iterative algorithm which generates a

sequence in an explicit way:

(3.1) xn+1 = αnγV xn + (I − αnµF )Trnxn, ∀n ≥ 0,

where {αn} ⊂ (0, 1), rn ∈ (0,∞) and x0 ∈ H is an arbitrary initial guess, and
establish strong convergence of this sequence to a fixed point q of T , which is the
unique solution of the variational inequality:

(3.2) ⟨(µF − γV )q, q − p⟩ ≤ 0, ∀p ∈ Fix(T ).

(Equivalently, by (2.1), we have PFix(T )(I − µF + γV )q) = q).
First, we consider the following iterative algorithm that generates a net {xt}t∈(0,1)

in an implicit way:

(3.3) xt = tγV xt + (I − tµF )Trxt.

Indeed, for t ∈ (0, 1), consider a mapping Qt : H → H defined by

Qtx = tγV x+ (I − tµF )Trx, ∀x ∈ H.

It is easy to see that Qt is a contractive mapping with constant 1−t(τ−γl). Indeed,
by Lemma 2.6, we have

∥Qtx−Qty∥ ≤ tγ∥V x− V y∥+ ∥(I − tµF )Trx− (I − tµF )Try∥
≤ tγl∥x− y∥+ (1− tτ)∥x− y∥
= (1− t(τ − γl))∥x− y∥.

Hence Qt has a unique fixed point, denoted xt, which uniquely solves the fixed point
equation (3.3).

By utilizing the same method as in Theorem 3.1 of Jung [8] along with rt = r for
t ∈ (0, 1), we obtain the following proposition for strong convergence of the net {xt}
as t → 0, which guarantees the existence of solutions of the variational inequality
(3.2). We omit its proof .

Proposition 3.1. ([8 , Theorem 3.1]) The net {xt} defined by (3.3) converges
strongly to a fixed point q of T as t → 0, which solves the variational inequality
(3.2).

First, we give the following result in order to establish strong convergence of the
sequence generated by the explicit algorithm (3.1).

Theorem 3.2. Let {xn} be the sequence generated iteratively by the algorithm (3.1)
and let LIM be a Banach limit. If {αn} satisfies the following condition:

(C1) {αn} ⊂ (0, 1) and limn→∞ αn = 0,

then

LIMn(⟨µFq − γV q, q − xn⟩) ≤ 0,

where q = limt→0+ xt with xt being defined by (3.3).
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Proof. First, note that from the condition (C1), without loss of generality, we as-
sume that αnτ < 1 for all n ≥ 0.

Let {xt} be the net generated by (3.3). By Proposition 3.1, there exists limt→0 xt
∈ Fix(T ). Denote it by q. Moreover q is the unique solution of the variational
inequality (3.2). By (3.3), we have

∥xt − xn+1∥ = ∥tγV xt + (I − tµF )Trxt − xn+1∥
= ∥(I − tµF )Trxt − (I − tµF )xn+1 + t(γV xt − µFxn+1)∥.

Applying Lemma 2.1 and Lemma 2.6, we have

(3.4) ∥xt − xn+1∥2 ≤ (1− tτ)2∥Trxt − xn+1∥2 + 2t⟨γV xt − µFxn+1, xt − xn+1⟩.

First of all, we show that {xt} is bounded, and so {V xt}, {Txt}, {Trxt}, {Fxt}
and {FTrxt} are bounded. To this end, let p ∈ Fix(T ). Then, observing Fix(T ) =
Fix(Tr) by Lemma 2.4, from (3.3), we derive that

∥xt − p∥ ≤ ∥tγV xt + (I − tµF )Trxt − p∥
= ∥t(γV xt − µFp) + (I − tµF )Trxt − (I − tµF )p∥
≤ (1− tτ)∥xt − p∥+ t∥γV xt − µFp∥,

and hence

∥xt − p∥ ≤ 1

τ
∥γV xt − µFp∥

≤ 1

τ
[∥γV xt − γV p∥+ ∥γV p− µFp∥]

≤ 1

τ
[γl∥xt − p∥+ ∥γV p− µFp∥].

This implies that

∥xt − p∥ ≤ 1

τ − γl
∥γV p− µFp∥.

Hence {xt}, {V xt}, {Txt}, {Trxt}, {Fxt} and {FTrxt} are bounded.

Now we show that ∥xn − p∥ ≤ max{∥x0 − p∥, ∥µFp−γV p∥
τ−γl } for all n ≥ 0 and all

p ∈ Fix(T ). Indeed, let p ∈ Fix(T ). Noticing p = Trnp, we have

∥xn+1 − p∥ = ∥αn(γV xn − µFp) + (I − αnµF )Trnxn − (I − αnµF )Trnp∥
≤ (1− αnτ)∥xn − p∥+ αn∥γV xn − µFp∥
≤ (1− αnτ)∥xn − p∥+ αn(∥γV xn − γV p∥+ ∥γV p− µFp∥)

≤ [1− (τ − γl)αn]∥xn − p∥+ (τ − γl)αn
∥γV p− µFp∥

τ − γl

≤ max

{
∥xn − p∥, ∥γV p− µFp∥

τ − γl

}
.

Using an induction, we have ∥xn − p∥ ≤ max{∥x0 − p∥, ∥γV p−µFp∥
τ−γl }. Hence {xn} is

bounded, and so are {V xn}, {Txn} {Trnxn}, {FTrnxn}, and {Fxn}. As a conse-
quence of condition (C1), we get

(3.5) ∥xn+1 − Trnxn∥ = αn∥γV xn − µFTrnxn∥ → 0 (n → ∞).
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First of all, we show that ∥Trxn−Trnxn∥ ≤ 1
r |r−rn|K1, where K1 = sup{∥Trxn−

xn∥ : n ≥ 1}. Indeed, let zn := Trnxn and zr = Trxn. Then, from definitions of Tr

and Trn , we deduce

(3.6) ⟨y − zr, T zr⟩ −
1

r
⟨y − zr, (1 + r)zr − xn⟩ ≤ 0, ∀y ∈ H,

and

(3.7) ⟨y − zn, T zn⟩ −
1

rn
⟨y − zn, (1 + rn)zn − xn⟩ ≤ 0, ∀y ∈ H.

Putting y = zn in (3.6) and y = zr in (3.7), we obtain

(3.8) ⟨zn − zr, T zr⟩ −
1

r
⟨zn − zr, (1 + r)zr − xn⟩ ≤ 0,

and

(3.9) ⟨zr − zn, T zn⟩ −
1

rn
⟨zr − zn, (1 + rn)zn − xn⟩ ≤ 0.

Adding up (3.8) and (3.9), we have

⟨zr−zn, T zn − Tzr⟩

−
⟨
zr − zn,

(1 + rn)zn − xn
rn

− (1 + r)zr − xn
r

⟩
≤ 0,

which implies that

⟨wr − wn, (wr − Twr)− (wn − Twn)⟩

−
⟨
wr − wn,

wn − xn
rn

− wr − xn
r

⟩
≤ 0.

Now, using the fact that T is pseudocontractive, we deduce⟨
zr − zn,

zn − xn
rn

− zr − xn
r

⟩
≥ 0,

and hence

(3.10)

⟨
zr − zn, zn − zr + zr − xn − rn

r
(zr − xn)

⟩
≥ 0.

By (3.10), we have

∥zr − zn∥2 ≤
⟨
zr − zn,

(
1− rn

r

)
(zr − xn)

⟩
≤ ∥zn − zr∥

1

r
|r − rn|∥zr − xn∥,

which implies

(3.11) ∥Trxn − Trnxn∥ ≤ 1

r
|r − rn|K1,
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where K1 = sup{∥Trxn − xn∥ : n ≥ 1}. Thus, by (3.11), we obtain

∥Trxt − xn+1∥ ≤ ∥Trxt − Trxn∥+ ∥Trxn − Trnxn∥+ ∥Trnxn − xn+1∥

≤ ∥xt − xn∥+
1

r
|r − rn|∥xn − Trxn∥+ ∥Trnxn − xn+1∥

≤ ∥xt − xn∥+
1

r
|r − rn|K1 + ∥Trnxn − xn+1∥

= ∥xt − xn∥+ en,

where en = K1
r |r − rn| + ∥xn+1 − Trnxn∥ → 0 as n → ∞ (by limn→∞ rn = r and

(3.5)). Also observing that F is η-strongly monotone, we have

(3.12) ⟨µFxt − µFxn, xt − xn⟩ ≥ µη∥xt − xn∥2 ≥ τ∥xt − xn∥2.

So, by combining (3.10) and (3.12), we obtain

(3.13)

∥xt − xn+1∥2

≤ (1− tτ)2(∥xt − xn∥+ en)
2

+ 2t⟨γV xt − µFxt, xt − xn+1⟩+ 2t⟨µFxt − µFxn+1, xt − xn+1⟩
≤ (t2τ − 2t)τ∥xt − xn∥2 + ∥xt − xn∥2

+ (1− tτ)2en(2∥xt − xn∥+ en)

+ 2t⟨γV xt − µFxt, xt − xn+1⟩+ 2t⟨µFxt − µFxn+1, xt − xn+1⟩
≤ (t2τ − 2t)⟨µFxt − µFxn, xt − xn⟩+ ∥xt − xn∥2

+ en(K2 + en) + 2t⟨γV xt − µFxt, xt − xn+1⟩
+ 2t⟨µFxt − µFxn+1, xt − xn+1⟩

= t2τ⟨µFxt − µFxn, xt − xn⟩+ ∥xt − xn∥2

+ en(K2 + en) + 2t⟨γV xt − µFxt, xt − xn+1⟩
+ 2t(⟨µFxt − µFxn+1, xt − xn+1⟩ − ⟨µFxt − µFxn, xt − xn⟩),

where K2 = sup{2∥xt − xn∥ : t, n ≥ 0}. Applying the Banach limit LIM to (3.13)
together with limn→∞ en = 0, we have

(3.14)

LIMn(∥xt−xn+1∥2)
≤ t2τLIMn(⟨µFxt − µFxn, xt − xn⟩) + LIMn(∥xt − xn∥2)

+ 2tLIMn(⟨γV xt − µFxt, xt − xn+1⟩)
+ 2t[LIMn(⟨µFxt − µFxn+1, xt − xn+1⟩)

− LIMn(⟨µFxt − µFxn, xt − xn⟩)].
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Using the property LIMn(an) = LIMn(an+1) of Banach limit in (3.14), we obtain

(3.15)

LIMn(⟨µFxt − γV xt, xt − xn⟩) = LIMn(⟨µFxt − γV xt, xt − xn+1⟩)

≤ tτ

2
LIMn(⟨µFxt − µFxn, xt − xn⟩)

+
1

2t
[LIMn(∥xt − xn∥2)− LIMn(∥xt − xn∥2)]

+ [LIMn(⟨µFxt − µFxn, xt − xn⟩)− LIMn(⟨µFxt − µFxn, xt − xn⟩)]

=
tτ

2
LIMn(⟨µFxt − µFxn, xt − xn⟩).

Since

(3.16)

t⟨µFxt − µFxn,xt − xn⟩
≤ tµρ∥xt − xn∥2

≤ tµρ(∥xt − p∥+ ∥p− xn∥)2

≤ tµρ

(
∥γV p− µFp∥

τ − γl
+ ∥x0 − p∥

)2

→ 0 (as t → 0),

we conclude from (3.15) and (3.16) that

LIMn(⟨µF x̃− γV x̃, x̃− xn⟩) ≤ lim sup
t→0

LIMn(⟨µFxt − γV xt, xt − xn⟩)

≤ lim sup
t→0

tτ

2
LIMn(⟨µFxt − µFxn, xt − xn⟩) ≤ 0.

This completes the proof. □
Now, using Theorem 3.2, we establish strong convergence of the sequence gener-

ated by the explicit iterative algorithm (3.1) to a fixed point q of T , which is the
unique solution of the variational inequality (3.2).

Theorem 3.3. Let {xn} be the sequence generated iteratively by the algorithm (3.1),
where {αn} satisfies the following conditions:

(C1) {αn} ⊂ (0, 1) and limn→∞ αn = 0.
(C2)

∑∞
n=0 αn = ∞.

If {xn} is weakly asymptotically regular, then {xn} converges strongly to q ∈ Fix(T ),
where is the unique solution of the variational inequality (3.2).

Proof. First, note that from the condition (C1), without loss of generality, we as-

sume that αnτ < 1 and 2αn(τ−γl)
1−αnγl

< 1 for all n ≥ 0.

Let xt be defined by (3.3), that is, xt = tγV xt + (I − tµF )Trxt for 0 < t < 1,
and let limt→0 xt := q ∈ Fix(T ) = Fix(Tr) (by Lemma 2.4). Then q is the unique
solution of the variational inequality (3.2).

We divides the proof into three steps:

Step 1. We see that ∥xn − p∥ ≤ max

{
∥x0 − p∥, ∥γV p−µFp∥

τ−γl

}
for all n ≥ 0 and

all p ∈ Fix(T ) as in the proof of Theorem 3.2. Hence {xn} is bounded and so are
{Trnxn}, {FTrnxn} and {V xn}.
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Step 2. We show that lim supn→∞⟨µFq − γV q, q − xn⟩ ≤ 0. To this end, put

an := ⟨µFq − γV q, q − xn)⟩, ∀n ≥ 0.

Then Theorem 3.2 implies that LIMn(an) ≤ 0 for any Banach limit LIM . Since
{xn} is bounded, there exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

(an+1 − an) = lim
j→∞

(anj+1 − anj )

and xnj ⇀ v ∈ H. This implies that xnj+1 ⇀ v since {xn} is weakly asymptotically
regular. Therefore, we have

w − lim
j→∞

(q − xnj+1) = w − lim
j→∞

(q − xnj ) = (q − v),

and so

lim sup
n→∞

(an+1 − an) = lim
j→∞

⟨µFq − γV q, (q − xnj+1)− (q − xnj )⟩ = 0.

Then Lemma 2.2 implies that lim supn→∞ an ≤ 0, that is,

lim sup
n→∞

⟨µFq − γV q, q − xn⟩ ≤ 0.

Step 3. We show that limn→∞ ∥xn − q∥ = 0. By using (3.1), we have

xn+1 − q = αn(γV xn − µFq) + (I − αnµF )Trnxn − (I − αnµF )q.

Applying Lemma 2.1 and Lemma 2.6, we obtain

(3.17)

∥xn+1 − q∥2 = ∥(I − αnµF )Trnxn − (I − αnµF )q + αn(γV xn − µFq)∥2

≤ ∥(I − αnµF )Trnxn − (I − αnµF )Trnq∥2

+ 2αn⟨γV xn − µFq, xn+1 − q⟩
≤ (1− αnτ)

2∥xn − q∥2 + 2αn⟨γV xn − γV q, xn+1 − q⟩
+ 2αn⟨γV q − µFq, xn+1 − q⟩

≤ (1− αnτ)
2∥xn − q∥2 + αnγl(∥xn − q∥2 + ∥xn+1 − q∥2)

+ 2αn⟨γV q − µFq, xn+1 − q⟩.

It then follows from (3.17) that
(3.18)

∥xn+1 − q∥2 ≤ (1− αnτ)
2 + αnγl

1− αnγl
∥xn − q∥2 + 2αn

1− αnγl
⟨γV q − µFq, xn+1 − q⟩

≤
(
1− 2αn(τ − γl)

1− αnγl

)
∥xn − q∥2

+
2αn(τ − γl)

1− αnγl

(
1

τ − γl
⟨γV q − µFq, xn+1 − q⟩+ αnτ

2

2(τ − γl)
K3

)
,
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where K3 = sup{∥xn − q∥2 : n ≥ 0}. Put

βn =
2αn(τ − γl)

1− αnγl
and δn =

1

τ − γl
⟨µFq − γV q, q − xn+1⟩+

αnτ
2

2(τ − γl)
K3.

From (C1), (C2) and Step 2, it follows that βn → 0,
∑∞

n=0 βn = ∞ and

lim sup
n→∞

δn ≤ 0.

Since (3.18) reduces to

∥xn+1 − q∥2 ≤ (1− βn)∥xn − q∥2 + βnδn,

from Lemma 2.3 with γn = 0, we conclude that limn→∞ ∥xn−q∥ = 0. This completes
the proof. □

Corollary 3.4. Let {xn} be the sequence generated iteratively by the algorithm
(3.1), where {αn} satisfies the following conditions:

(C1) {αn} ⊂ (0, 1) and limn→∞ αn = 0.
(C2)

∑∞
n=0 αn = ∞.

If {xn} is asymptotically regular, then {xn} converges strongly to x̃ ∈ F (T ), where
is the unique solution of the variational inequality (3.2).

Remark 3.5. If {αn} and {rn} in Corollary 3.4 satisfy conditions (C1), (C2),

(C3)
∑∞

n=0 |αn+1 − αn| < ∞; or

(C4) limn→∞
αn

αn+1
= 1 or, equivalently, limn→∞

αn−αn+1

αn+1
= 0; or,

(C5) |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed control condi-
tion); and

(C6)
∑∞

n=0 |rn+1 − rn| < ∞ and 0 < b ≤ rn for n ≥ 0,

then, by using method of [8], we can prove that the sequence {xn} generated by
(3.1) is asymptotically regular.

Remark 3.6. Theorem 3.3 extends the corresponding results of Ceng et al. [4],
Cho et al. [5], Jung [6, 7, 8], Marino and Xu [9] and Tian [13, 14] in the following
aspects:

(a) The class of strictly pseudocontractive mappings in [5, 6, 7] was extended
to the class of continuous pseudocontractive mappings.

(b) The class of nonexpansive mappings in [4, 9, 13, 14] was extended to the
class of continuous pseudocontractive mappings.

(c) The conditions |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed
control condition) and

∑∞
n=0 |rn+1 − rn| < ∞ in [8] was relaxed to weak

asymptotic regularity on {xn} along with limn→∞ rn = r.
(d) The condition

∑∞
n=0 |αn+1 − αn| < ∞ in [4, 5, 9, 13, 14] was also weakened

to the weak asymptotic regularity on {xn}.
(e) A strongly positive bounded linear operator A in [5, 9] was extended to the

case of a ρ-Lipschitzian and η-strongly monotone operator F . (In fact, from
the definitions, it follows that a strongly positive bounded linear operator A
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(i.e., there exists a constant γ > 0 with the property: ⟨Ax, x⟩ ≥ γ∥x∥2, x ∈
H) is a ∥A∥-Lipschitzian and γ-strongly monotone operator).
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