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SOLUTIONS OF GENERAL VARIATIONAL INEQUALITY
PROBLEMS IN BANACH SPACES

JONG KYU KIM, SALAHUDDIN, AND WON HEE LIM

ABSTRACT. In this paper, we introduce a new iterative process which converges
strongly to a solution of general variational inequality problems for n—inverse
strongly accretive mappings in the set of common fixed point of finite family of
strictly pseudocontractive mappings in Banach spaces.

1. INTRODUCTION

Let E be a real normed linear space with dual E*. Let J, : F — 2F" be a
generalized duality mapping defined by
(11 Jolz) ={a" € B« (z,2%) = ||zl [|l2"]| = =] "},1 < ¢ < o0,

where (-,-) denotes the duality pairing between E and E*. In particular, J = Jy is
called the normalized duality mapping. It is well known that J; is single-valued, if
FE is smooth and

Jlw) = |2 (), x # 0.

A mapping A with domain D(A) C E and range R(A) in E is called a-strongly
accretive if there exists an a € (0,1) and j,(z —y) € Jy(x — y) such that

(Az — Ay, jo(x —y)) = allz —y|*.

A is called n-inverse strongly accretive if there exists an n € (0,1) and jy(z—y) €
Jq(x —y) such that

(Az — Ay, jo(z — y)) > nl|Ar — Ay||?,Va,y € D(A).

Let C' be a nonempty closed convex subset of E and A : C' — E be a nonlinear
mapping. The general variational inequality problem is to find z* € C such that
(1.2) (Az*,j(x — %)) >0, Ve € C, j(x — z*) € J(x — z¥),

studied by Aoyama et al. [7] and the set of solution of general variational inequality
problems is denoted by S(A,C). If E = H is a real Hilbert space, the general
variational inequality problem is reduced to finding 2* € C such that

(1.3) (Az*,x —2*) >0, Vo e C
which was studied by Lions and Stampacchia [20].
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In 1976, Korpelevic [17] introduced the following well-known extragradient method

Yn = PC’(:I:n - f)/Axn)
(1.4) Tnt1 = Po(xn — YAYn),n > 0,
where P¢ is the metric projection from R"™ onto its subset C' for some +v > 0 and

A: C — R" is an accretive operator. He proved that the sequence {z,} converges
to a solution of the variational inequality (1.3).

Yao et al. [34] presented the following modified Korpelevich method for solving
(1.3)
Yn = P0<xn - VAxn - anxn)
(1.5) Tnt1 = Po(tn — YAYn + p(yn — n)),n > 0.

Aoyama et al. [7] introduced the iterative algorithm

(1.6) Tpt1l = Ty + (1 — an)Qo(zy, — ynAx,),n >0,

where Q)¢ is a sunny nonexpansive retraction from E onto C and {a,} C (0,1),
{7} C (0, 00) are two real number sequences. Motivated by (1.6), Yao and Maruster
[33] presented a modification of (1.6) as follows:

(1.7) Tnt1 = Bnn + (1 = Bn)Qc((1 — an)(zn — YnAzy)),n > 0.

Motivated and inspired by the above algorithms and recent works [1, 2, 3, 4, 5,
6, 14, 15, 16, 19, 27, 37], in this paper we suggest an extragradient type method
via the sunny nonexpansive retraction for solving the general variational inequality
problems (1.2) in Banach spaces. It is shown that the presented algorithms con-
verges strongly to a special solutions of the general variational inequality problems
(1.2).

2. PRELIMINARIES

Let E be a real Banach space. The modulus of smoothness of E is the function
pE = [0,00) — [0,00) defined by

1
pi(r) =sup {5 (1w + Il + llo = yl)) = 1: ol = 1, gl = 7}.

If pp(r) > 0 for all 0, then E is said to be smooth. If there exists a constant
¢ > 0 and a real number 1 < ¢ < 2 such that pg(7) < 79, then E is said to be
g-uniformly smooth. If E is a real ¢g-uniformly smooth Banach space, then by [28§]
the following geometric inequality holds:

(2.1) 2+ yll? < =17 + q(y, jq(x)) + 2| Ky|[?; for j4(x) € Jy(x),
for z,y € F and K is the g-uniformly smoothness constant of ¥ and J, satisfying

the equation (1.1). It is well known that

p — uniformly smooth if 1 <p < 2

L,(l,) or WP is
o(ly) " {2 — uniformly smooth if p > 2.
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The Banach space E is said to be uniformly convex if given € > 0 there exists
d > 0 such that for all z,y € E with ||z|| <1,[ly[| <1 and ||z — y|| > ¢,

1
o1
It is well known that L,,l, and Sobolev spaces Wi, (1 < p < 00) are uniformly
convex.

Let C C F be a closed convex and @) : £ — C be a mapping. Then (@ is said to

be sunny if
QQ(z) +t(z — Q(x))) = Q).

Moreover Q(z) + t(x — Q(x)) € C for x € C and t > 0. A mapping Q : E — C'is
said to be a retraction if Q? = Q. If a mapping @ is a retraction, then Q(z) = z
for every z € R(Q). A subset C of FE is said to be sunny nonexpansive retract of
E if there exists a sunny nonexpansive retraction of F onto C and it is said to be
a nonexpansive retract of F if there exists a nonexpansive retraction of £ onto C.
If E = H, the metric projection P¢ is a sunny nonexpansive retraction from H to
any closed convex subset of H. Moreover if C' is a nonempty closed convex subset
of an uniformly convex and uniformly smooth real Banach spaces F and T is a
nonexpansive mapping of C' into itself with F(T) :={z € C': Tz = x} # () (the set
of all fixed points of T') then the set F/(T') is a sunny nonexpansive retract of C.

Lemma 2.1 ([10]). Let E be a smooth Banach space and let K be a nonempty
subset of E. Let Q : E — K be a retraction and let J be the normalized duality
mapping on E. Then the following are equivalent:

(i) @ is sunny nonerpansive;

(ii) (z - Q(2),j(y — Q(x))) <0,Vz € E and y € K.

Lemma 2.2 ([7]). Let C be a nonempty closed convex subset of a smooth Banach
space E. Let Q¢ be a sunny nonexpansive retraction from E onto C and let A be
an accretive operator of C' into E. Then for all v > 0,

5(4,0) = F(Qo(I —~A)),

where
S(A,C)={z* e C: (Ax",j(xz — 2")) > 0,Vx € C}.

Lemma 2.3 ([10]). Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space E and let T be a nonexpansive mapping of C into itself.
If {x,} is a sequence of C' such that x,, — x weakly and x, —Tx, — 0 strongly then
x 1s a fized point of T'.

Lemma 2.4 ([22]). Let E be a real Banach space. Then for any given x,y € E,
the following inequality holds:

lz+y|* < |lzl]* + 2(y, j(z + y)), Vi(z +y) € J(z +y).
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Lemma 2.5 ([26]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let A : C — X be an a-inverse strongly accretive mapping.
Then we have

(I = vA)z — (I —vA)y|* < ||z — yl|> + 27(K?y — a) || Az — Ay||*.

In Particular, if 0 <~y < 325 then I — A is nonezpansive.

Lemma 2.6. Let C be a nonempty closed convex subset of a real qg-uniformly smooth
Banach space E for 1 < q < 2. Let T : C — E be a vy-strictly pseudo-contractive
mapping. Then for 0 < p < po = min{1, 125} where K is satisfying the inequality
(2.1), the mapping T),(x) = (1 — p)x + pT'x is nonexpansive and F(T,) = F(T).

Lemma 2.7. Let C be a nonempty closed convex subset of a real g-uniformly smooth
Banach space E for 1 < q < 2. Let A: C — E be an n-inverse strongly accretive
mapping. Then for 0 <~y < 325, the mapping

Az = (v — yAzx)

1S MONETPansive.

Lemma 2.8 ([21]). Let {a,} be a sequence of real numbers such that there exists
a subsequence {n;} of {n} such that a,, < an,41 for i € N. Then there ezists a
nondecreasing sequence {my} C N such that my — oo and the following properties
are satisfied by all (sufficiently large) numbers k € N :

Uy, < Ay41, Ok < Q41

In fact my, = max{j < K : aj < aj41}.

Lemma 2.9 ([29]). Let {a,} be a sequence of nonnegative real numbers satisfying
the following relations:

Ap+1 < (1 - an)an + an5n7 n = ng
where {an} C (0,1) and {d,} C R satisfying the following conditions:

[o@)
lim «, =0, Zan =00 and limsupd, < 0.

n—00 n—00
n=1

Then, we have
lim a, = 0.

n—oo

3. MAIN RESULTS

In this section, we presented our Korpelevich like algorithm and consequently, we
will show its strong convergence.
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Assumption A:

(Al) E isa uniformly convex and 2-uniformly smooth Banach space with a weakly
sequentially continuous duality mapping;

(A2) C is a nonempty closed convex subset of F;

(A3) A:C — E is an a-strongly accretive and L-Lipschitz continuous mapping
with S(A,C) # 0;

(A4) Q¢ is a sunny nonexpansive retraction from E onto C.

Parametric Restrictions:

(P1) A, p and ~ are three positive constant satisfying
(i) v € (0,1), A € [a,b] for some a,b with 0 < a < b < z573;
(ii) % < g5z where K is the smooth constant of E;
(P2) {ay,} is a sequence in (0,1) such that lim,, o o, = 0 and Y 7 | @, = 0.

Algorithm 3.1. For given zy € C define a sequence {z,,} iteratively by

Yn = QC[(l - an)l‘n - )\Al'n]a
(3-1) Tn+1 = (1 - 7)1'71 + VQC[xn - )\Ayn + N(yn - xn)] + vén,

where n = 0,1,..., and e, is an error to take into account of a possible inexact
computation of a sunny nonexpansive retraction.

Theorem 3.2. The sequence {xy,} generated by (3.1) converges strongly to Q'(0),
where Q' is a sunny nonexpansive retraction of E onto S(A,C).

Proof. Let p € S(A,C). First from Lemma 2.1, we have
p=Qclp — Mp], VA > 0.

In particular

p=Qclp — AMp| = Qc [aanr(l—an) <p— Apﬂ ,¥n > 0.

1—qa,

Since A : C' — F is an a-strongly accretive and L-Lipschitzian ontinuous mapping,
it must be fz-inverse strongly accretive mapping. Thus by Lemma 2.5 we have

(6%
1= M)z = (1= 2| < o =yl + 2 (KA = 75 ) Az - Ay,

since o, — 0 and A € [a,b] C (0, z57z), we get a, <1 — @ for enough large n.

Without loss of generality, we may assume that for all n € N, o, < 1 — £ 252’\, that

. by o A . .
Is, 75~ € (0, W) Hence I — EA is nonexpansive.
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From (3.1) we have

Hyn_p”:HQC[@_%)%—AA%]—QC {anp+(1—an)< - Ap>]H

n

o= (5= 2 ) (s 2 )|

(-=a) - (e
1—a, 1—ay,

(3.2) < anlpll + (1 = an)llzn —pll.

<

< an[pll + (1 = an)

By (3.1) and (3.2) we have

[#n41 = pll < (L =Y)llzn = pll + Y Qclen — AAyn + p(yn — xn)] — [ + 7llen]
A
< (1 - 7)”3771 _pH + Y HQC’ |:(1 - N)xn + 1% (yn - MAyn>:|

~qc |- wp+n (p-2a0)] H +lleal

< (1 =zn =2l

) \ NS
+ v H(l —p)(xn —p) + <yn - “Ayn> — <p — MAp) H +vllen||
< (T =zn —pl
A A
+ (1 = p)l|zn = pll + v ||| Yn — ;Ayn —|p— ;Ap + vllenll

(L = )| = pll + vellyn — pll +vllenll

(1 = p)llzn = pll + ypan|lpl + 1y (1 = an)llzn — pll + vllenl|
(1 — pyom) ||z — pll + ypom|[pll + vllen|

max{||z, — pll, [p[l, [lenl}

<
<
<
<

(3-3) < max{|[zo — pl|, [Ill, lleoll}-

Hence {x,} is bounded.
Set z, = Qclxn — Mypn, + 1(yn — zp)]. From (3.1) we have

Tny1 = (L —y)zn + 20 + ven, Yn > 0.
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Then, we have

||yn - yn71||
= 1Qc[(1 — an)zn — AMwy] — Qcl(1 — an—1)Tn—1 — AAzn1]]

S S TR Y (A S W

— Qp, 1—ap

A A
n - A n - n—1 A n—
(x I—ay ! ) (x Pl Qn ! 1)

+ | Qp — Op—1 ’ Hzn—l”

< (l_an)

<(1- an)Hxn - xn—IH‘i‘ ‘ Qp — Q1 | H$n—1||7
and thus

|20 — 2n—1l|

= [|Qclzn — AMyn + p1(yn — 20)] — QcTn-1 — AMAyn—1 + p(Yn—1 — Tn_1)]|
A A

(1= 1) ln — 2nos ]| + 1 H (y - Ayn> - (yn_l _ Ay) H
u 7

(= llzn = zn-1ll + llyn = yn-l

(1 = pom)|zn — zp—all + p | o — an—1 | lzn-1ll-

IN

(VANVAN

It follows that
limsup(||zn, — zn-1l| — [|zn — zn-1]|) < 0.
n—oo
This together with Lemma 2.9 implies that
lim ||zp4+1 — 2n|| = 0.
n—oo

From (3.2) we have

yn — plI?

%FM+O_%JK%_1j%A%>_<_1j%m0]
K%lj%A%)@lf%moz

K2\ o
B <alplP+ 0 anlo ol 42 (0 - 5 ) e, - aplP

2
<

< anlpl* + (1 - an)
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From (3.1),(3.3) and (3.4), we obtain
[
< (1 =) llan - pl?
A A
+7 H(l — ) (zn —p) + 4 [(yn - MAyn> - <p— Mz‘h@)]

< (1 =)|lzn — plI> +v(1 — p)llzn — p||?

A A 2
+ py H (yn - Ayn> - (p - Ap>
% %

< (1= p)lzn = ol + velllyn — pl1?
2\ (K2\  « 9 9
252 = 12) Vs — 4plP1+ el
K2\ «
<p anllpl? + (1= an)llzn = pl* +2X (| -—— — =5 | [l Az, — Ap||?
1—a, L

K2\ a
+ (1= yp)||zn — pl* + 2)y (u — L2> | Ayn — Apl|* + vlen?

2
+7llenl®

+’Y||enH2

< ypan|p|* + (1 = ypow)||zn — pl|?

K2\ o}
+ 2 ({2 = £ o — Al

K2\«
w2 (52 = ) N = AplP e

Therefore, we have

K2\ o
0= 2y ({0 = £ ) o — A

K2\« 9
~2ion (2 = 25 ) w4l
< anyulpl® + llzn = plI* = llznrs = pl* + el
< anypllp? + (e = pll + lzne1 = 2D (20 = pll = 12541 = p])
+lenl
< an'YﬂHpH2 + (lzn = 2l + 2041 — pID |20 — Tt | + 7”en||2-
Since a;, — 0, |len|| = 0 and ||z, — xp41]] — 0 as n — oo, we have
lim ||Az, — Ap|| = lim ||Ay, — Ap|| = 0.
n—oo n—oo
It follows that
lim [|Ay, — Az,|| = 0.
n—oo
Since A is a-strongly accretive, we obtain

| Ayn — Azp|| > allyn — zn ||
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which implies that
lim ||y, —z,| =0,
n—oo
that is,
lim || Qc[(1 — an)xn — Nxy] — x| = 0.
n—oo

It follows that

(3.5) li_>m |Qclzn — Nxy,] — || = 0.
Now, we show that
(3.6) lim sup(Q'(0), j(zn — Q'(0))) > 0.
n—oo

To show that (3.6), since {x,} is bounded, we can choose a sequence {zp,} of {z,}
converging weakly to z such that

(3.7) lim sup(Q'(0), j(zn — Q'(0))) = limsup(Q'(0), j(zn, — Q(0))).

n—00 1—00
We first prove that z € S(A, C). It follows that
(3'8) lim HQC’(I - AA):L'M — Tn, H =0.
1—00

By Lemma 2.3 and (3.8) we have
z € F(Qe(I — AA)),

it follows from Lemma 2.2 that z € S(A4, C).
Now from (3.7) and Lemma 2.1, we have

lim sup(Q'(0), ji(zn — Q'(0))) = lim sup(Q'(0), j(zn, — Q'(0)))

n—00 i—00

= (Q'(0),5(z — Q(0)))
> 0.

Note that ||z, — yn| — 0, we deduce that
lim sup(Q’(0), j(yn — Q'(0))) > 0.
n—oo

Since y, = Qc[(I — ap)(xy — ﬁf‘mn)] and
A

1—a,

Q'(0) = Qclan@'(0) + (1 — an)(Q'(0) — AQ'(0))],¥n > 0,

we can deduce from Lemma 2.1 that

(oo e )]

[ an (o0 2 am) i - @) <0

1— oy
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and

(Jon0 @+ a-an (@O - 2 -a00)]

1—a,
A

1—a,

~Qc [0, Q0+ (1= an) (Q0) - 24 0))] it - @10)) <0,

Therefore we have

lyn — Q'(0)]1?
= ‘ Qc [(1 — an) <$" 1 _)‘%Amnﬂ
—Qc | Q'(0) + (1 — ) <Q/(0) 1 _)‘anAQ( )>] 2

< <Oén(_Ql(0)) + (1 —an) [(x" 1 —/\an Aa:n)

—(Q’(O) — AQ(0)>]7J(yn—Q’(0))>

an(Q'(0),5(yn — Q'( )>

ra-an]| (o= i) - (@) - 240 0) |1 - @0
a0, 0~ O + 1 )l ~ Dl O

(@ (0). iy — QO)) + T (len ~ QO + 13 ~ QOI),

which implies that
3:9) g —QO)> < (1 = an)[zn — Q'(0)|* + 20 {~Q'(0), j(yn — Q(0)))-

Finally, we will prove that the sequence x,, — Q'(0). As a matter of fact from (3.1)
and (3.9) we have

lnsr — QO < (1= )z — QO
#aa = wen - Qo)+ | (3 - Fam) - @0 - 3400

2
+7llen]”

2

< (1= y)lln — QO + H (30— 24 ) = (@0 - 24Q0)) | +lleal?

< (L =vp)|zn — QO)|* + vuellyn — Q' (0)||* + v enl?
< (1= ypan) ||z — Q' (0)|* + 2vpan(—Q'(0), j (yn — Q'(0))) +7lenl)?

< (1= ) — QO)? + 2y { (- Q0) - QO) + 2,

Applying Lemma 2.9 to the last inequality we conclude that {x,} converges
strongly to @'(0). This completes the proof O
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