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A GENERAL IMPLICIT ITERATIVE METHOD FOR A
COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS IN
BANACH SPACES

JONG SOO JUNG

ABSTRACT. In this paper, we introduce a general implicit iterative method for
a countable family of nonexpansive mappings in a reflexive Banach space having
a weakly continuous duality mapping. A strong convergence theorem for the
sequence generated by the proposed method is established.

1. INTRODUCTION

Let E be a real Banach space with the norm || - ||, and let E* be the dual space
of E. Let J denote the normalized duality mapping from E into 2X" defined by

J(@) ={f € E": (z, f) = ll=[If1l, I = N=ll}, VzekF,

where (-,-) denotes the generalized duality pair between E and E*. Let C be a
nonempty closed convex subset of E. For the mapping T : C' — C, we denote the
fixed point set of T' by Fiz(T), that is, Fix(T) ={z € C : Tx = z}.

Recall that the mapping T : C' = C is said to be nonezpansive if

[Tx =Tyl <z —yll, vz, yeC.
T is said to be pseudocontractive if there exists j(x — y) € J(x — y) such that
(Tz —Ty,j(z—y) <z —yl?, Vo, yeC.

T is said to be strongly pseudocontractive it there exists a constant k € (0,1) and
j(x —y) € J(x — y) such that

(Tz — Ty, j(x —y)) < kllz -yl Vae,yeC.

In a Banach space F having a single-valued normalized duality mapping J, we
say that an operator A is strongly positive on E if there exists a 7 > 0 with the

property
(1.1) (Az, J(x)) > 72|,
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and
llal — bA|| = sup |{(al —bA)z,J(x))|, a€]0,1], be[-1.1],
[lzfI<1
for all x € E, where [ is the identity mapping. If F := H is a real Hilbert space,
then the inequality (1.1) reduce to

(1.2) (Az,z) > 7||z||?, Vz € H.

Within the past 40 years or so, many authors have been devoting their study
to the existence of fixed points and iterative construction of fixed points of nonex-
pansive mappings and pseudocontractive mappings. Also several iterative methods
for finding a common fixed point of a family of nonexpansive mappings and pseu-
docontractive mappings in Hilbert spaces and Banach spaces have been introduced
and studied by many authors (see [5,13-16,19-21,23,24] and references in therein).
The well-known convex feasibility problem reduces to finding a point in the inter-
section of the fixed point sets of a family of nonexpansive mappings (see [4,7]). The
problem of finding an optimal point which minimizes a given cost function over
the common set of fixed points of a family of nonexpansive mappings is of wide
interdisciplinary interest and practical importance (see [3,17,25]). An algorithm
solution to the problem of minimizing a quadratic function over the common set of
fixed points of a family of nonexpansive mappings is of value in many applications
including set theoretic signal estimation (see [10,25]).

In 2006, Marino and Xu [13] introduced the following general iterative method
for nonexpansive mapping 1" in a Hilbert space in an implicit way:

xr =ty f(ay) + (I —tA)Tay, Ve (0,min{l, HAH_I}),

where A : H — H is a strongly positive linear bounded operator with a coefficient
7 >0, and f: H— H is a contractive mapping (that is, there exists k € (0,1)
such that [|f(z) — f(y)|| < Ellz —y|, Vz,y € H). In 2011, Wangkeeree et al. [21]
extended the result of Marino and Xu [13] to a reflexive Banach space having a
weakly continuous duality mapping.

In 2007, Rafiq [18] introduced the following Mann type implicit iterative method
for a hemicontractive mapping 7" in a Hilbert space,

Tn =antp_1+ (1 —ay)Tx,, n>1,

where {a,} C [d,1—0] for some J € (0, 1), and proved a strong convergence theorem
under compactness assumption on domain of 7.

In 2007, Yao et al. [24] introduced the following Halpern type implicit itera-
tive method for a continuous pseudocontractive mapping 7" in a uniformly smooth
Banach space,

Tp = Qb+ BpTp_1 + Yl T,, VYn>1,

where {ay,}, {8} and {7,} are three sequences in (0, 1), and established a strong
convergence theorem under appropriate control conditions.

In 2016, Jung [11] considered the following viscosity implicit iterative method
for a continuous pseudocontractive mapping 7' in a reflexive Banach space having
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a weakly continuous duality mapping,
Tn = O‘nfxn + /ann—l + (1 — Op — 6n)Txn7 Vn > 17

where {a, } and {8,} are sequences in (0,1) and f : C' — C'is a continuous bounded
strongly pseudocontractive mapping, and obtained a strong convergence theorem
under suitable control conditions.

In this paper, as a continuation of study in this direction, we introduce a new
general implicit iterative method for a countable family of nonexpansive mappings
in a reflexive Banach space having a weakly continuous duality mapping. Then
we establish the strong convergence of the sequence generated by proposed iterative
method to a common fixed point of the mappings, which solves a ceratin variational
inequality. The main results extend, improve and develop some corresponding re-
sults in [13,21] and the references therein.

2. PRELIMINARIES

Throughout this paper, when {z,} is a sequence in E, then x,, — z (respectively
Tp — x, T, —* x) will denote strong (respectively weak, weak™) convergence of the
sequence {x,} to x.

This section collects some definitions and lemmas which will be used in the proofs
for the main results in the next section.

Recall that the norm of FE is said to be Gdteaux differentiable if

et gyl = o]

(2'1) t—0 t

exists for each =, y in its unit sphere U = {z € E : ||z|| = 1}. Such an E is called
a smooth Banach space. It is known that E is smooth if and only if the normalized
duality mapping J is single-valued.

By a gauge function we mean a continuous strictly increasing function ¢ defined
on R := [0, 00) such that ¢(0) = 0 and lim, _, ¢(r) = co. The mapping J,, : E —
2E" defined by

Jo(x) ={f € E": (. [) = [l=[IF1, 1l = wCllzl)}, Ve E

is called the duality mapping with gauge function . In particular, the duality
mapping with gauge function ¢(t) = ¢ denoted by J, is referred to as the normalized
duality mapping. It is known that a Banach space E is smooth if and only if the
normalized duality mapping J is single-valued. The following property of duality
mapping is also well-known:

p(AL- ll=])

(2.2) Jo(Ax) = sign )\< Iz >J(m) for all z € E'\ {0}, X €eR,
x
where R is the set of all real numbers; in particular, J(—z) = —J(x) for all z € E.
We say that a Banach space E has a weakly continuous duality mapping if there
exists a gauge function ¢ such that the duality mapping J, is single-valued and

continuous from the weak topology to the weak™ topology, that is, for any {z,} € E
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with z, — z, J,(xn) N Jy(x). For example, every [P space (1 < p < o0) has a
weakly continuous duality mapping with gauge function ¢(t) = t?~!. Set

O(t) = /0t<p(7')d7', vt € RT.

Then it is known that J,(z) is the subdifferential of the convex functional ®(|| - ||)
at « ( [1,6]).

A Banach space FE is said to satisfy Opial’s condition if, for any sequence {x,}
in E z, — x implies that liminf, , ||z, — z|| < iminf,_, ||z, — y|| for all y € E
with y # x. It is well-known that, if F admits a weakly continuous duality mapping
J, with gauge function ¢, then E satisfies Opial’s condition ( [9]).

The following Lemma is a variant of Lemma 2.1 of Jung [11].

Lemma 2.1 ([11]). Let E be a reflexzive Banach space having a weakly continuous
duality mapping J, with gauge function . Let {x,} be a bounded sequence of E
and let f : E — E be a continuous mapping. Let ¢ : E — R be defined by

¢(z) = limsup(f(z), Jp(z — zn))

n—oo

for z € E. Then ¢ is a real valued continuous function on E.
We need the following well-known lemmas for the proof of our main results.

Lemma 2.2 ([1,6]). Let E be a real Banach space and let ¢ be a continuous strictly
increasing function on RY such that ¢(0) = 0 and lim,_,o ©(r) = co. Define

t
d(t) = / o(t)dr for all t € RT.
0

Then (i) The following inequalities hold:
O(kt) < k®(t), 0< k<1,

O(llz +yll) < @(llzl) + (W, jp(x +y)) forall z,y € E,

where jo(x +y) € Jo(z +y).
(ii) Assume that a sequence {x,} in E is weakly convergent to a point x. Then
there holds the identity

lim sup (|2, — yll) = limsup ®(la — ) + @(|ly — ll), =, y € E.
n—0o0

n—o0

Lemma 2.3 ([8]). Let C' be a nonempty closed subset of a Banach space E, and let
T:C — FE be a continuous strongly pseudocontractive mappings with a pseudocon-
tractive coefficient k € (0,1) satisfying
d((1— A AT
L (1= e T, C)
A—0+ A

=0, Vrel,

where d denotes the distance to C' (equivalently, the weakly inward condition under
additional assumption that C is convex). Then T has a unique fixed point.
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Lemma 2.4 ([22]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 S (1 - )\n)sn + )\n5n7 vn Z 07

where {\n,} and {0, } satisfy the following conditions:
(i) {An} C[0,1] and X072 g Ap = o0 or, equivalently, [177 (1 — X\,) =0,
(i) Hmsup, o 0p <0 or Y07 o Ay|dn| < o0.

Then lim,,_yso Sp, = 0.

Lemma 2.5 ([6]). If E is a Banach space such that E* is strictly convex, then E
s smooth and any duality mapping is norm-to-weak® continuous.

Lemma 2.6 (][9] Demiclosedness principle). Let E be a reflezive Banach space with
Opial’s condition, let C' be a nonempty closed convex subset of E, and letT : C' — E
be a nonexapnsive mapping. Then the mapping I — T is demiclosed on C, where I
is the identity mapping; that is, x,, = x in E and (I — T)x, — y imply that x € C
and (I —T)z =vy.

Lemma 2.7 ([2]). Let C be a nonempty closed convex subset of a Banach space E.
Let {T;}32, be a sequence of mappings of C into itself. Suppose that

o

Zsup{HTnHm —T,||:xz€C} < oo.

n=1
Then, for each y € C, {T,y} converges strongly to some point of C'. Moreover, let
T be a mapping of C into itself defined by Ty = lim, 00y for ally € C. Then
lim,, o0 sup{||Tx — Tpz| : . € C} = 0.

3. GENERAL IMPLICIT ITERATIVE ALGORITHMS

In a Banach space E having a weakly continuous duality mapping J, with gauge
function ¢, we say that an operator A is strongly positive if there exists a constant
& > 0 with the property

(3.1) (Az, Jo(x)) = 7zl (]]])
and
H(II— bAH = sup ‘<(CLI— bA)l', J@($)>|7 S [Oa 1]7 be [_171]7
=<1
where [ is the identity mapping. If F := H is a real Hilbert space, then the
inequality (3.1) reduce to (1.2)
The following result is Lemma 3.1 of [21].

Lemma 3.1 ([21]). Let E be a Banach space having a weakly continuous duality
mapping J, with gauge function ¢ such that ¢ is invariant on [0, 1], i.e., ¢([0,1]) C
[0,1]. Assume that A is a strongly positive linear bounded operator on E with a
coefficient ¥ > 0 and 0 < p < p(1)||A||7L. Then ||I — pA| < p(1)(1 — p7).

We prepare the following result.
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Proposition 3.2. Let E be a Banach space having a weakly continuous duality
mapping J, with gauge function ¢ such that ¢ is invariant on [0,1]. LetT : E — E
be a nonexpansive mapping, and let h : E — E be a continuous bounded strongly
pseudocontractive mapping with a pseudocontractive coefficient k € (0,1). Let A :
E — FE be a strongly positive linear bounded operator with a coefficient 7 > 0.
Assume that 0 < v < @. Then the following hold:

(a) There exists a unique path t — x; € E, t € (0, min{1, ||A||71}), satisfying
xp = tyh(xy) + (I — tA)Tay.
(b) If v is a fired point of T, then for each t € (0,min{1, | A||~'})
((A=~h)xy, Jo(xe —v)) < (A = T)ay, Jp(xp — v)).

(¢) In particular, if T has a fized point in E, then the path {x.} is bounded and
|xt — Txe|| — 0 as t — 0.

Proof. First, we observe that .J,, is single-valued and so F is smooth.
(a) For each t € (0, min{1, ||A||~'}), the mapping G; : E — E defined by

Gi(z) :=tyh(x)+ (I —tA) Tz, x € H

is continuous strongly pseudocontractive with a pseudocontractive coefficient 1 —
t(p(1)y — vk) € (0,1). Indeed, from (2.2) and Lemma 3.1, for each z, y € E, we
derive

(Gir — Gry, Jp(z —y)) = ty(h(x) = h(y), Jo(z —y))
+ (I = tA)(Tz = Ty), Jo(z — y))

_ mwmm — h(y), J(z — 1))

At = )T - 1) 0o )

< tvkllz —ylle(llz = yll) + 11 = tATz — Tylle(lz - yll)

< tvkl|z — ylle(l|z — yl)) + 9(1)(1 = 9)[|z — ylle(lz — yl])
< (1 =ty — k) Iz — yllellz — ylD),

—+

and so,
(Gex — Gy, J(x —y)) < (1= t(p(1)7 —vk))l|lz — y|>.

Thus, by Lemma 2.3, there exists a unique fixed point z; € F of G such that

(3.2) xy = tyh(xy) + (I — tA)Tay.
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To see the continuity, let ¢, tg € (0, min{1, ||A]|~!}). Then we get

[t — 25 [0 ([ 2 — zol])

= (tyh(zy) + (I — tA) Tz — (tovh(zey) + (I — toA)Tw4y), Jo (2 — 24))

= ((t = to)vh(ws) + toy(h(ze) — h(xy,)) — (¢ = to) ATws, Jp(2r — 24y))
+ (I = toA) Ty — Txey), Jp(we — x45))

< (YAl + |AT ) (¢ = to)p(llze — 24 |1) + tovkllze — 2|l ([l — zol])
+ (1) (1 = toV)|lze — z4, |l (e — 2ol])

< (YAl + |AT ) (¢ = to)p(llze — 240 |1) + tovkllze — 2|l ([l — zol])
+ (1= top(F)llxe — oo [[l[o(llze — zol))-

It follows that
Y[z || + | AT 24|

to(p(1)7 — vk)
This shows that x; is locally Lipschitzian and hence continuous.
(b) Suppose that v is a fixed point of T". Since T" is nonexpansive, we have for all
z, yeFE
(I =Tz = I =Ty, Jo(z —y)) = |z —ylle(lz —yl) = Tz =Ty, Jo(z — y))
> [lz = yllellz —yll) = llz = yllelz —yll) = 0.

|2 — 24| < It — to).

Thus, from (3.2) we obtain
(A= Ah)zy, Jp(zr —v)) = —
(I -T)xy —(I—=T)v,Jy(zy —v))

+ (AL = T)ay, Jp(2r = v))
(A(I =Tz, Jp(xr — v)).

IN

(c) Let v € Fiz(T). From strong pseudocontractivity of h, it follows that
(h(x) = h(v), Jp(ze — 0)) < K|z — vllo(([z; — o))
Thus we have

[zt = vlle(llz: —vl)

= ((I = tA)(Tx — v) + t(vh(x) — Av), Jo(zy — v))

< ()1 = )z — vlle(lze — vll) + t{yh(z:) — Av, Jo(x; — v))

< (= to(WP)lee — vlle(lze — vll) + ty(h(ze) = h(v), Jo(z — v))
+ (vh(v) — Av, Jy(z; — v))

< (1 =tz — vlle(lze — vll) + tvklz — vlle(llze — vl])
+ tllvh(v) = Avfle(llze — o).

It follows that
[vh(v) — Av|

T —vf| < — .
e = ol < P(1)7 — vk
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Hence {x;} is bounded for ¢ € (0, min{1, ||A|~'}). Since ||Tz; — v| < ||z¢ — ]|,
{Tz;} is bounded and so are {ATx;} and {Az;}. Moreover, since h is a bounded
mapping, {h(x:)} is bounded. This implies that
|zt — Txe|| = t||yh(ze) — ATz — 0 ast — 0.
O

We prove the following result for the existence of a solution of a certain variational
inequality related to A.

Theorem 3.3. Let E be a a reflerive Banach space having a weakly continuous
duality mapping J, with gauge function ¢ such that ¢ is invariant on [0,1]. Let
T : E — FE be a nonexpansive mapping with Fix(T) # 0, and let h : E — E be
a continuous bounded strongly pseudocontractive mapping with a pseudocontractive
coefficient k € (0,1). Let A: E — E be a strongly positive linear bounded operator

with a coefficient ¥ > 0. Assume that 0 < v < W(l . Let {z;} be defined by
(3.3) xp = tyh(ze) + (I — tA)Txy.

Then, as t — 0, {x¢} converges strongly to a fized point p of T, where p is the
unique solution in Fix(T) to the variational inequality

(3.4) ((A=~h)p,Jo(p—q)) <0, Vqe Fiz(T).

Proof. First, we notice that the definition of weak continuity of duality mapping J,
implies that E is smooth. Since FE is reflexive, E* is strictly convex. By Lemma
2.5, J, is norm-to-weak® continuous.

Also, we note that by Proposition 3.2 (c), {z:}, {h(z)}, {Tz:}, {Az} and
{ATz} are bounded for ¢ € (0, min{1,||A||~'}). As a consequence, we have

(3.5) |z — Txy|| = t||vh(z) — ATze|| — 0 ast — 0.
Now, let t,, € (0, min{1, ||A||~!}) be such that t,, — 0 and let {z,,} := {z, } be
a subsequence of {z:}. It follows from (3.3) that
T = tmyh(@m) + (I =t A) Tz,
Let p € Fiz(T). Then we deduce
—p=I —tnA) T2y —Tp) + tm(vh(zm) — Ap)
and
[2m = plleUlzm —pll) = (Tm = p; Jo(xm = p))
< tm <’Yh(xm) Ap, Jo(zm — p))
+ (I = tmA)(Tzm — Tp), Jo(xm — p))
< tm(YP(wm) — Ap, Jo(xm — p))
+eM)A = tw)|l2m = plle(lzm = pl)
< tm(YP(m) — Ap, Jo(xm — )
+ (L= tmp(WN)|zm = plle(lzm = pl)-
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Thus it follows that

(3.6) e(WFllem = plle(lzm —pll) < (yh(zm) — Ap, Jo(2m — p)).

On the other hand, since {x,,} is bounded and F is reflexive, {z,,} has a weakly
convergent subsequence {zy, }, say z,, — ¢ € E. From (3.5), it follows that

|Xm — Txm|| = tml|Yh(xm) — AT 2| — 0.

Thus, by Lemma 2.6, ¢ € Fiz(T). Therefore, by (3.6) and the assumption that J,
is weakly continuous, we get

1
e(1)

[2m = alle(lzm — qll) < (Yh(xm) = Ag, Jo(xm — q)) = 0.

2|

Since ¢ is continuous and strictly increasing, we must have z,,, — gq.

Now, we will show that every weakly convergent subsequence of {z,,} has the
same limit. Suppose that z,,, — ¢ and z;,,; — p. Then, by the above argument,
we have ¢, p € F(T), and xp,,, — q and x,,,; — p. From (3.6), we derive

Jm, =Bl = p1) € —= ({2, = 4p. To(wi, =)
and

s, = allelein, = al) € = (o, = Ag, Tyl =)
Taking limits, we obtain
(3.7) ®(llg —2l) = llg = pllela —pll) < (p(i),y (vh(q) — Ap, Jo(q — p))
and
(3.8) (llp —qll) = llp — alle(llp — qll) < w(ll,yhh(p) —Aq, Jo(p — q))

Moreover, by Proposition 3.1 (b), we have

(Ag = vh(a), Jp(a = p)) = lim (Azm, —V(zm,), Jp(@m, = D))
(3.9) < lim (A = )y, Jo(tm, — ) = 0.
and

(3.10) (Ap — vh(p), Jp(p — q) < 0.
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Adding up (3.7) and (3.8) yields
29([lp — qll) = 2[lp — alle(llp — qll)

= ﬁK h(q) — Ap, Jy(q — p)) + (vh(p) — Agq, J,(p — q))]

= 7)[< h(q) = vh(p), Jo(q — p)) + (vh(p) — Ap, Jo(q — p))
(Yh(p) = vh(a), Jo(p — @) + (vh(a) — Aq, J,(p — @))]
= W[%vh(p) —h(q), Jy(p — @) + (Ap — vh(p), Jo(p — @)
+ (Aq — vh(q), J,(q — p))]-
From (3.9) and (3.10), we obtain

S S
= 4+ == == X
] ]

2|

23(|lp — q]) < g0<217)7<h<p> — hlg), To(p — @)
2k~ 2ky
< -l —alelp = al) = 7= (1o~ ).

That is,
(p(1)7 — ky)@(|lp — qll) < 0.

Since ¢(1)7 — kv > 0, this implies that ®(||p — ¢||) < 0, that is, p = q. Hence {z,,}
is strongly convergent to a point in Fiz(T') as t,, — 0.

The same argument shows that if t;, — 0, then the other subsequence {x;} := {4, }
of {x;} is strongly convergent to the same limit. Thus, as t — 0, {x;} converges
strongly to a point in Fiz(T'). Denote p := limy_,gx¢. By Proposition 3.1 (b), we
have for g € Fix(T)

(3.11) ((A — yh)zy, Jw(CEt - Q)> < (A = T)ay, Jtp(xt —q)).

Since (I — T)x; — 0 by Proposition 3.1 (c), noting that .J, is norm-to-weak* and
taking the limit as ¢ — 0 in (3.11), we obtain

(3.12) (A=Ah)p, Jo(p—q)) <0, Vqe Fiz(T).

The above same argument may be used to conclude that p is the unique solution of
the variational inequality (3.12). This completes the proof. O

By using Lemma 2.7 and Theorem 3.3, we have the following main result for a
countable family of nonexpansive mappings.

Theorem 3.4. Let E be a a reflerive Banach space having a weakly continuous
duality mapping J, with gauge function ¢ such that ¢ is invariant on [0,1]. Let
{T;}32, be a countable family of nonexpansive mappings from E into itself such that
N2, Fiz(T;) # 0. Let h : E — E be a continuous bounded strongly pseudocon-
tractive mapping with a pseudocontractive coefficient k € (0,1). Let A: E — E be
a strongly positive linear bounded operator with a coefficient 7 > 0. Assume that
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0<y< @O < @(1)¥ — vk < 1. For arbitrary initial value xo € E, let {x,} be a
sequence generated by the following iterative algorithm:

(3.13) Ty = apyh(zy) + Bpen—1 + (1 — Bp)] — anA)Thzy,, n>1,

where {an} and {Bn} are two sequences in (0, 1) satisfying the conditions:

(C1) limy o0 oy, = 0 and limy, o By, = 0;
(02) ZTL 1a a_ﬁﬁn = Q.

Assume that Y>> sup,ep || Tht12 —Thx|| < 0o for any bounded subset D of E. Let
T be a mapping from E into itself defined by Tx = lim,_,o0 Tz for all x € E and
suppose that F = Fix(T) = (\;2, Fiz(T;). Then {x,} converges strongly to a point
p in (Nooy Fiz(T;), which is the unique solution in (\;=y Fiz(T;) of the variational
mequality

o0
(3.14) ((A=~h)p,Jo(p—q)) <0, Vqe ﬂ Fix(T,
i=1
Proof. Let p € F = Fix(T) = (;2, Fiz(T;) be the unique solution of the variational
inequality (3.14) (The existence of p follows from Theorem 3.3). In fact. p :=
limy_,o x; with z; € F being defined by x; = tyh(xt) + (I — tA)Txy.
From now, by condition (C1), we may assume, without loss of generality, that
< (1=B)eM)[JA||7t and By, +an(p(1)7—7k) < 1. Since A is a strongly positive
linear operator on F, we have

[A]l = sup{[(Au, Jp(u))| : v € E, [Jul| =1},

So, it follows that for u € E and ||ul| = 1,

(1= B — anA)u, Jp(u)) = (1 = Bu)(u, Jp(u)) — an(Au, Jp(u))
= (1 = Ba)llulle([ull) — an{Au, Jy(u))
= (1= Bn)e(1) — an(Au, Jp(u))

> (1= Bn)p(1) — aynl|A]
>0

that is, (1 — 8,)] — A is positive, and

(1 = Bu)I — anAll = sup{((1 = Bn)I — anA)u, Jo(u)) : v € E, ||ul =1}

= sup{((1 = Bn)p(1) — an{Au, Jo(uw)) : u € E, [Jul| = 1}
e(1)(1 = Bn — aw?)
1 = Bn — anp(1)7).

Next, we show that {z,} is well defined. For each n > 1, define a mapping
S:FE — Eby

<
<

Sz = Oén'yh(x) + Bnp_1 + ((1 - /Bn) — Qn )Tn.%', Vo e FE.
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Then, for every z,y € E, we have
(Sz = Sy, Jo(x —y)) = any(h(@) — h(y), Jo(z — y))
+ (1= B — anA) Tz — Thy), Jo(x —y))
anykllz = ylle(llz —yll)
+ (1 = Bn — anp(1)7) Iz = ylle(llz — yll)
= (1= Bn — anl(1)7 —vk) |z — ylle(llz = yl).
Therefore, S is a continuous strong pseudocontractive mapping with a pseudocon-

tractive coeflicient 0 < 1 — 8, — an(p(1)7 — vk) < 1 for each n > 1 . By Lemma
2.3, we see that there exists a unique fixed point x,, for each n > 1 such that

Tn = O‘n’}’h(xn) + Bnmn—l + ((1 - 5n)l - anA>Tnmn-

That is, the sequence {z,,} is well defined.
Now, we divide the proof into several steps as follows.

Step 1. We show that {z,} is bounded. To this end, let ¢ € (.2, Fiz(T;). Then,
noting that

Tp — q = an(vh(zn) — Aq) + Bu(rn-1—q) + (1 = Bu)I — anA)(Trzn — q),

IN

and
(h(xn) — h(q), Jp(xn — q)) < kllzn — qlle(lzn — qll),
we induce

zn — qlle(lzn —ql]) = (0 — ¢, Jo(zn — q))
= an{vh(zn) — Aq, Jo(zn — q))
+ 5n<5'3n71 - q, Jcp(fvn - Q)>
+{((1 = Bu)I — anA)(Twy — q), Jcp(xn —q))
< any(h(zn) — h(q), Jso(xn -q))
+ an{vh(q) — Agq, Jp(xn — q))
+ Bullzn—1 — qlle(llzn — qll)
+ 11 = Bp)I — Al Tzn — qlle([|2n — ql])
< anvklzn — qlle(llzn — ql])
+ (1 = Bn — anp(L)F)||2n — glle(llzn — qll)
+ anllvh(q) — Aglle(llzn — qll)
+ Ballzn-1 — qlle(llzn — qll)
= (1= Bn — an(e(L)¥ —vk)|lzn — qlle(llzn — qll)
+ anllvh(q) — Aglle(llzn — ql|)
+ Bullzn—1 — qlle(llzn — qll),
which implies

Bn

qll < an(p(1)y — k) |lvh(g) — Aq|
= Bntan(p(1)y —

B+ an(p(1)7 — k) (p(1)7 — 7k)

Jzn— e —al+
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By induction, we have

[vh(q) — Aq||
Ty —( Smax{a;—q,
I —all lzo = all,

Hence {z,} is bounded. Moreover, since h is a bounded mapping, {h(z,)} is
bounded. Also, since [Tz, — q|| < ||zn — ¢, {Thxn} and {AT,x,} are bounded.

} for n > 1.

Step 2. We show that lim,,_, ||z, — Tz, || = 0. First, since
|2n — Than| = llon(vh(zn) — AThzn) + Bp(zn-1 — Tnzs)||
< an|[yh(an) — ATpan || + Balln—1 — Tnzal|-
it follows from the condition (C1) and boundedness of {z,}, {h(xy)}, {Thz,} and
{AT,x,} that

(3.15) |2 — T = 0.

lim
n—oo
Now, since

[#n = T < |lon — Than|| + [[Tozn — Ton||
< sup{||Tz — Tnz|| : z € {xn}} + ||lxn — Thznll,

by assumption on 7" and (3.15), we have

lim ||z, — Tz,|| = 0.
n—oo

Step 3. We show that limsup,,_,.((vh — A)p, J,(zn, — p)) < 0. To show this, we
first note that

xp — Ty = tyh(zy) + Ty — tATxy —
= t(yh(z) — Axy) + (Txy — Txy) + (Taxy — xy) + tA(Tzy — 24)
= t(yh(xy) — Axy) + (Txy — Tay) + (T — 2) + t2A(AT 2y — yh(ay)).
It follows that
[z = zn [ ((lze — znl])
= t{yh(xs) — Az, Jp(xp — xp)) + (Txy — Ty, Jo(xr — 1))
+ (Txy — T, Jp(wr — ) + 2 (A(AT 2 — Yh(21)), (20 — 7))
< t(yh(ze) — Az, Jp(wr — xn)) + |20 — znlle(llze — 2nl])
+ 1 Tzn — anllo(llze — zal)
+ | A(AT 2 — yh(e) @[l — zal)),
which implies that

1
(vh(w1) = Az, To(n = 20)) < I Tw0 = allp(la = o)

+ A ATz — yh(z) ez — znll)-
Hence, by limsup,, .. ¢(||x: — z,||) < co and Step 2, we have

limsup(yh(zs) — Axy, Jo(xn — ) < M,
n—oo
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where M > 0 is a constant such that || Al|||ATx; — yh(zy)||e(||z: — zp|) < M for all
n>1and t € (0,min{1, ||A]|~*}). Thus, by Lemma 2.1, we conclude

lim sup(yh(p) — Ap, Jo(xn — p)) = lim limsup(yh(z:) — Az, Jo(xn — x¢))
n—o00 =0 nooo

< limtM = 0.
t—0

Step 4. We show that lim,,_, ||z, — p|| = 0, where p € F' is the unique solution of
the variational inequality (3.14). Indeed, using the equality

Tp —p = an(Yh(2zn) — Ap) + Bu(xn—1 —p) + (1 = Bp)I — anA)(Tnzy — p)
= an(vh(zn) — vh(p)) + an(vh(p) — Ap)
+ Bn(n-1—p) + (1 = Bu)I — anA)(Tnzn — p)
and the inequality (h(xy) — h(p), Jo(xn — p)) < kl|zn — plle(||zn — p|), we have
([|lzn —pl) < @(1Bn(@n—1 = P)I) + any(h(zn) — h(p), Jo(zn — p))
+ an{yh(p) — Ap, Jo(zn — p))
+ (1 = Bu)] — anA)(Tzn — p), Jp(an — p))
< Bn®([[zn—1 = pll) + anvklzn — plle(llzn — pll)
+ an(yh(p) — Ap, Jo(2n — p))
+ (1= Bn = anp(1)7)|#n — plle(llzn — plI)
= Bn®([lzn — pll) + (1 = Bn — anle(1)7 — vk)2(lzn — pl))
+ an(vh(p) — Ap, Jo(zn — p)).
This implies that
Bn

D(||zn, — pll) < Bt o (o1 = vk)<1>(|!wn-1—p\|)
Lol —9k)  {h(p) — Ap, Jo(zn — p))
Bn + an(p(1)7 — 7k) @(1)7 — k)
(3.16) B an(p(1)y — 7k)
B (1 N Bn +an(p(1)7 - W))cp(”mn_l ~7l
an(p(1)y — k)  {(yh(p) — Ap, Jp(zn — p))
Bn + an(0(1)7 — 7k) e(1)7 — k)
= (1 - /\n)q)(Hxnfl - p”) + Andn,
:Ilhire An %M and 6, = W(yh( p) — Ap, Jo(xn — p)). We note
0< ey =nk) o (A7 —vk)an _ an(e(1)7 — k)

T Bt an(e(L)y — k) an + Bn an(p(1)7 — vk) + Bn
From the condition (C2) and Step 3, it is easily seen that Y > A, = oo and
limsup,, ,o 6n < 0. Thus, applying Lemma 2.4 to (3.16), we conclude that

lim z, = p.
n—oo

This completes the proof. O
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As an immediate result of Theorem 3.4, we have the following result.

Corollary 3.5. Let E be a a reflexive Banach space having a weakly continuous
duality mapping J, with gauge function ¢ such that ¢ is invariant on [0,1]. Let
T : E — E be a nonexpansive mapping with Fix(T) # 0, and let h : E — E be
a continuous bounded strongly pseudocontractive mapping with a pseudocontractive
coefficient k € (0,1). Let A: E — E be a strongly positive linear bounded operator
with a coefficient 57 > 0. Assume that 0 < v < @ and p(1)7 — vk < 1. For
arbitrary initial value xy € E, let {x,} be a sequence generated by the following
iterative method:

T = apyh(zy) + Bpepn—1+ (1 — Bp) — ayA)Txzy, n>1,

where {ay} and {5} are two sequences in (0,1) satisfying the conditions (C1) and
(C2) in Theorem 3.4. Then {x,} converges strongly to a fixed point p of T, which
is the unique solution in Fix(T') of the variational inequality (3.4).

Remark 3.6. 1) Theorem 3.3 extends and improves the corresponding results
of Marino and Xu [13] and Wangkeeree et al. [21] in the following aspects:
(a) The contractive mapping f in [13, 21] is replaced by a continuous
bounded strongly pseudocontractive mapping h.
(b) The Hilbert space H in [13] is extended to a reflexive Banach space E
having a weakly continuous duality mapping J, with gauge function ¢.
(c) One nonexpansive mapping in [13] is replaced by a countable family of
nonexpansive mappings.

2) Theorem 3.3 also says that Theorem 3.2 of Jung [12] in case of closed sub-
space C' = F holds in a reflexive Banach space E having a weakly continuous
duality mapping J, with gauge function ¢ such that ¢ is invariant on [0, 1].

3) It is worth pointing out that the general implicit iterative method in Theo-
rem 3.4 is a new ones for finding a common fixed point of a countable family
of nonexpansive mappings in a reflexive Banach space E having a weakly
continuous duality mapping J, with gauge function ¢.
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