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and

∥aI − bA∥ = sup
∥x∥≤1

|⟨(aI − bA)x, J(x)⟩|, a ∈ [0, 1], b ∈ [−1.1],

for all x ∈ E, where I is the identity mapping. If E := H is a real Hilbert space,
then the inequality (1.1) reduce to

(1.2) ⟨Ax, x⟩ ≥ γ∥x∥2, ∀x ∈ H.

Within the past 40 years or so, many authors have been devoting their study
to the existence of fixed points and iterative construction of fixed points of nonex-
pansive mappings and pseudocontractive mappings. Also several iterative methods
for finding a common fixed point of a family of nonexpansive mappings and pseu-
docontractive mappings in Hilbert spaces and Banach spaces have been introduced
and studied by many authors (see [5,13–16,19–21,23,24] and references in therein).
The well-known convex feasibility problem reduces to finding a point in the inter-
section of the fixed point sets of a family of nonexpansive mappings (see [4,7]). The
problem of finding an optimal point which minimizes a given cost function over
the common set of fixed points of a family of nonexpansive mappings is of wide
interdisciplinary interest and practical importance (see [3, 17, 25]). An algorithm
solution to the problem of minimizing a quadratic function over the common set of
fixed points of a family of nonexpansive mappings is of value in many applications
including set theoretic signal estimation (see [10,25]).

In 2006, Marino and Xu [13] introduced the following general iterative method
for nonexpansive mapping T in a Hilbert space in an implicit way:

xt = tγf(xt) + (I − tA)Txt, ∀t ∈ (0,min{1, ∥A∥−1}),

where A : H → H is a strongly positive linear bounded operator with a coefficient
γ > 0, and f : H → H is a contractive mapping (that is, there exists k ∈ (0, 1)
such that ∥f(x) − f(y)∥ ≤ k∥x − y∥, ∀x, y ∈ H). In 2011, Wangkeeree et al. [21]
extended the result of Marino and Xu [13] to a reflexive Banach space having a
weakly continuous duality mapping.

In 2007, Rafiq [18] introduced the following Mann type implicit iterative method
for a hemicontractive mapping T in a Hilbert space,

xn = αnxn−1 + (1− αn)Txn, n ≥ 1,

where {αn} ⊂ [δ, 1−δ] for some δ ∈ (0, 1), and proved a strong convergence theorem
under compactness assumption on domain of T .

In 2007, Yao et al. [24] introduced the following Halpern type implicit itera-
tive method for a continuous pseudocontractive mapping T in a uniformly smooth
Banach space,

xn = αnu+ βnxn−1 + γnTxn, ∀n ≥ 1,

where {αn}, {βn} and {γn} are three sequences in (0, 1), and established a strong
convergence theorem under appropriate control conditions.

In 2016, Jung [11] considered the following viscosity implicit iterative method
for a continuous pseudocontractive mapping T in a reflexive Banach space having
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a weakly continuous duality mapping,

xn = αnfxn + βnxn−1 + (1− αn − βn)Txn, ∀n ≥ 1,

where {αn} and {βn} are sequences in (0, 1) and f : C → C is a continuous bounded
strongly pseudocontractive mapping, and obtained a strong convergence theorem
under suitable control conditions.

In this paper, as a continuation of study in this direction, we introduce a new
general implicit iterative method for a countable family of nonexpansive mappings
in a reflexive Banach space having a weakly continuous duality mapping. Then
we establish the strong convergence of the sequence generated by proposed iterative
method to a common fixed point of the mappings, which solves a ceratin variational
inequality. The main results extend, improve and develop some corresponding re-
sults in [13,21] and the references therein.

2. Preliminaries

Throughout this paper, when {xn} is a sequence in E, then xn → x (respectively
xn ⇀ x, xn ⇀∗ x) will denote strong (respectively weak, weak∗) convergence of the
sequence {xn} to x.

This section collects some definitions and lemmas which will be used in the proofs
for the main results in the next section.

Recall that the norm of E is said to be Gâteaux differentiable if

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y in its unit sphere U = {x ∈ E : ∥x∥ = 1}. Such an E is called
a smooth Banach space. It is known that E is smooth if and only if the normalized
duality mapping J is single-valued.

By a gauge function we mean a continuous strictly increasing function φ defined
on R+ := [0,∞) such that φ(0) = 0 and limr→∞ φ(r) = ∞. The mapping Jφ : E →
2E

∗
defined by

Jφ(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥∥f∥, ∥f∥ = φ(∥x∥)}, ∀x ∈ E

is called the duality mapping with gauge function φ. In particular, the duality
mapping with gauge function φ(t) = t denoted by J , is referred to as the normalized
duality mapping. It is known that a Banach space E is smooth if and only if the
normalized duality mapping J is single-valued. The following property of duality
mapping is also well-known:

(2.2) Jφ(λx) = sign λ

(
φ(|λ| · ∥x∥)

∥x∥

)
J(x) for all x ∈ E \ {0}, λ ∈ R,

where R is the set of all real numbers; in particular, J(−x) = −J(x) for all x ∈ E.
We say that a Banach space E has a weakly continuous duality mapping if there

exists a gauge function φ such that the duality mapping Jφ is single-valued and
continuous from the weak topology to the weak∗ topology, that is, for any {xn} ∈ E
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with xn ⇀ x, Jφ(xn)
∗
⇀ Jφ(x). For example, every lp space (1 < p < ∞) has a

weakly continuous duality mapping with gauge function φ(t) = tp−1. Set

Φ(t) =

∫ t

0
φ(τ)dτ, ∀t ∈ R+.

Then it is known that Jφ(x) is the subdifferential of the convex functional Φ(∥ · ∥)
at x ( [1, 6]).

A Banach space E is said to satisfy Opial’s condition if, for any sequence {xn}
in E xn ⇀ x implies that lim infn→∞ ∥xn − x∥ < lim infn→∞ ∥xn − y∥ for all y ∈ E
with y ̸= x. It is well-known that, if E admits a weakly continuous duality mapping
Jφ with gauge function φ, then E satisfies Opial’s condition ( [9]).

The following Lemma is a variant of Lemma 2.1 of Jung [11].

Lemma 2.1 ([11]). Let E be a reflexive Banach space having a weakly continuous
duality mapping Jφ with gauge function φ. Let {xn} be a bounded sequence of E
and let f : E → E be a continuous mapping. Let ϕ : E → R be defined by

ϕ(z) = lim sup
n→∞

⟨f(z), Jφ(z − xn)⟩

for z ∈ E. Then ϕ is a real valued continuous function on E.

We need the following well-known lemmas for the proof of our main results.

Lemma 2.2 ([1,6]). Let E be a real Banach space and let φ be a continuous strictly
increasing function on R+ such that φ(0) = 0 and limr→∞ φ(r) = ∞. Define

Φ(t) =

∫ t

0
φ(τ)dτ for all t ∈ R+.

Then (i) The following inequalities hold:

Φ(kt) ≤ kΦ(t), 0 < k < 1,

Φ(∥x+ y∥) ≤ Φ(∥x∥) + ⟨y, jφ(x+ y)⟩ for all x, y ∈ E,

where jφ(x+ y) ∈ Jφ(x+ y).
(ii) Assume that a sequence {xn} in E is weakly convergent to a point x. Then

there holds the identity

lim sup
n→∞

Φ(∥xn − y∥) = lim sup
n→∞

Φ(∥xn − x∥) + Φ(∥y − x∥), x, y ∈ E.

Lemma 2.3 ([8]). Let C be a nonempty closed subset of a Banach space E, and let
T : C → E be a continuous strongly pseudocontractive mappings with a pseudocon-
tractive coefficient k ∈ (0, 1) satisfying

lim
λ→0+

d((1− λ)x+ λTx,C)

λ
= 0, ∀x ∈ C,

where d denotes the distance to C (equivalently, the weakly inward condition under
additional assumption that C is convex). Then T has a unique fixed point.
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Lemma 2.4 ([22]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnδn, ∀n ≥ 0,

where {λn} and {δn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞ or, equivalently,
∏∞

n=0(1− λn) = 0,
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 λn|δn| < ∞.

Then limn→∞ sn = 0.

Lemma 2.5 ([6]). If E is a Banach space such that E∗ is strictly convex, then E
is smooth and any duality mapping is norm-to-weak∗ continuous.

Lemma 2.6 ([9] Demiclosedness principle). Let E be a reflexive Banach space with
Opial’s condition, let C be a nonempty closed convex subset of E, and let T : C → E
be a nonexapnsive mapping. Then the mapping I − T is demiclosed on C, where I
is the identity mapping; that is, xn ⇀ x in E and (I − T )xn → y imply that x ∈ C
and (I − T )x = y.

Lemma 2.7 ([2]). Let C be a nonempty closed convex subset of a Banach space E.
Let {Ti}∞i=1 be a sequence of mappings of C into itself. Suppose that

∞∑
n=1

sup{∥Tn+1x− Tn∥ : x ∈ C} < ∞.

Then, for each y ∈ C, {Tny} converges strongly to some point of C. Moreover, let
T be a mapping of C into itself defined by Ty = limn→∞ y for all y ∈ C. Then
limn→∞ sup{∥Tx− Tnx∥ : x ∈ C} = 0.

3. General implicit iterative algorithms

In a Banach space E having a weakly continuous duality mapping Jφ with gauge
function φ, we say that an operator A is strongly positive if there exists a constant
γ > 0 with the property

(3.1) ⟨Ax, Jφ(x)⟩ ≥ γ∥x∥φ(∥x∥)

and

∥aI − bA∥ = sup
∥x∥≤1

|⟨(aI − bA)x, Jφ(x)⟩|, a ∈ [0, 1], b ∈ [−1, 1],

where I is the identity mapping. If E := H is a real Hilbert space, then the
inequality (3.1) reduce to (1.2)

The following result is Lemma 3.1 of [21].

Lemma 3.1 ([21]). Let E be a Banach space having a weakly continuous duality
mapping Jφ with gauge function φ such that φ is invariant on [0, 1], i.e., φ([0, 1]) ⊂
[0, 1]. Assume that A is a strongly positive linear bounded operator on E with a
coefficient γ > 0 and 0 < ρ ≤ φ(1)∥A∥−1. Then ∥I − ρA∥ ≤ φ(1)(1− ργ).

We prepare the following result.
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Proposition 3.2. Let E be a Banach space having a weakly continuous duality
mapping Jφ with gauge function φ such that φ is invariant on [0, 1]. Let T : E → E
be a nonexpansive mapping, and let h : E → E be a continuous bounded strongly
pseudocontractive mapping with a pseudocontractive coefficient k ∈ (0, 1). Let A :
E → E be a strongly positive linear bounded operator with a coefficient γ > 0.

Assume that 0 < γ < φ(1)γ
k . Then the following hold:

(a) There exists a unique path t 7→ xt ∈ E, t ∈ (0,min{1, ∥A∥−1}), satisfying

xt = tγh(xt) + (I − tA)Txt.

(b) If v is a fixed point of T , then for each t ∈ (0,min{1, ∥A∥−1})

⟨(A− γh)xt, Jφ(xt − v)⟩ ≤ ⟨A(I − T )xt, Jφ(xt − v)⟩.

(c) In particular, if T has a fixed point in E, then the path {xt} is bounded and
∥xt − Txt∥ → 0 as t → 0.

Proof. First, we observe that Jφ is single-valued and so E is smooth.
(a) For each t ∈ (0,min{1, ∥A∥−1}), the mapping Gt : E → E defined by

Gt(x) := tγh(x) + (I − tA)Tx, x ∈ H

is continuous strongly pseudocontractive with a pseudocontractive coefficient 1 −
t(φ(1)γ − γk) ∈ (0, 1). Indeed, from (2.2) and Lemma 3.1, for each x, y ∈ E, we
derive

⟨Gtx−Gty, Jφ(x− y)⟩ = tγ⟨h(x)− h(y), Jφ(x− y)⟩
+ ⟨(I − tA)(Tx− Ty), Jφ(x− y)⟩

= tγ
φ(∥x− y∥)
∥x− y∥

⟨h(x)− h(y), J(x− y)⟩

+
φ(∥x− y∥)
∥x− y∥

⟨(I − tA)(Tx− Ty), J(x− y)⟩

≤ tγk∥x− y∥φ(∥x− y∥) + ∥I − tA∥∥Tx− Ty∥φ(∥x− y∥)
≤ tγk∥x− y∥φ(∥x− y∥) + φ(1)(1− tγ)∥x− y∥φ(∥x− y∥)
≤ (1− t(φ(1)γ − γk))∥x− y∥φ(∥x− y∥),

and so,

⟨Gtx−Gty, J(x− y)⟩ ≤ (1− t(φ(1)γ − γk))∥x− y∥2.

Thus, by Lemma 2.3, there exists a unique fixed point xt ∈ E of Gt such that

(3.2) xt = tγh(xt) + (I − tA)Txt.
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To see the continuity, let t, t0 ∈ (0,min{1, ∥A∥−1}). Then we get

∥xt − xt0∥φ(∥xt − x0∥)
= ⟨tγh(xt) + (I − tA)Txt − (t0γh(xt0) + (I − t0A)Txt0), Jφ(xt − xt0)⟩
= ⟨(t− t0)γh(xt) + t0γ(h(xt)− h(xt0))− (t− t0)ATxt, Jφ(xt − xt0)⟩

+ ⟨(I − t0A)(Txt − Txt0), Jφ(xt − xt0)⟩
≤ (γ∥h(xt)∥+ ∥ATxt∥)(t− t0)φ(∥xt − xt0∥) + t0γk∥xt − xt0∥φ(∥xt − x0∥)

+ φ(1)(1− t0γ)∥xt − xt0∥∥φ(∥xt − x0∥)
≤ (γ∥h(xt)∥+ ∥ATxt∥)(t− t0)φ(∥xt − xt0∥) + t0γk∥xt − xt0∥φ(∥xt − x0∥)

+ (1− t0φ(1)γ)∥xt − xt0∥∥φ(∥xt − x0∥).

It follows that

∥xt − xt0∥ ≤ γ∥h(xt)∥+ ∥ATxt∥
t0(φ(1)γ − γk)

|t− t0|.

This shows that xt is locally Lipschitzian and hence continuous.
(b) Suppose that v is a fixed point of T . Since T is nonexpansive, we have for all

x, y ∈ E

⟨(I − T )x− (I − T )y, Jφ(x− y)⟩ = ∥x− y∥φ(∥x− y∥)− ⟨Tx− Ty, Jφ(x− y)⟩
≥ ∥x− y∥φ(∥x− y∥)− ∥x− y∥φ(∥x− y∥) = 0.

Thus, from (3.2) we obtain

⟨(A− γh)xt, Jφ(xt − v)⟩ = − 1

t
⟨(I − tA)(I − T )xt, Jφ(xt − v)⟩

= − 1

t
⟨(I − T )xt − (I − T )v, Jφ(xt − v)⟩

+ ⟨A(I − T )xt, Jφ(xt − v)⟩
≤ ⟨A(I − T )xt, Jφ(xt − v)⟩.

(c) Let v ∈ Fix(T ). From strong pseudocontractivity of h, it follows that

⟨h(xt)− h(v), Jφ(xt − v)⟩ ≤ k∥xt − v∥φ(∥xt − v∥).

Thus we have

∥xt − v∥φ(∥xt − v∥)
= ⟨(I − tA)(Txt − v) + t(γh(xt)−Av), Jφ(xt − v)⟩
≤ φ(1)(1− tγ)∥xt − v∥φ(∥xt − v∥) + t⟨γh(xt)−Av, Jφ(xt − v)⟩
≤ (1− tφ(1)γ)∥xt − v∥φ(∥xt − v∥) + tγ⟨h(xt)− h(v), Jφ(xt − v)⟩

+ ⟨γh(v)−Av, Jφ(xt − v)⟩
≤ (1− tφ(1)γ)∥xt − v∥φ(∥xt − v∥) + tγk∥xt − v∥φ(∥xt − v∥)

+ t∥γh(v)−Av∥φ(∥xt − v∥).

It follows that

∥xt − v∥ ≤ ∥γh(v)−Av∥
φ(1)γ − γk

.
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Hence {xt} is bounded for t ∈ (0,min{1, ∥A∥−1}). Since ∥Txt − v∥ ≤ ∥xt − v∥,
{Txt} is bounded and so are {ATxt} and {Axt}. Moreover, since h is a bounded
mapping, {h(xt)} is bounded. This implies that

∥xt − Txt∥ = t∥γh(xt)−ATxt∥ → 0 as t → 0.

□

We prove the following result for the existence of a solution of a certain variational
inequality related to A.

Theorem 3.3. Let E be a a reflexive Banach space having a weakly continuous
duality mapping Jφ with gauge function φ such that φ is invariant on [0, 1]. Let
T : E → E be a nonexpansive mapping with Fix(T ) ̸= ∅, and let h : E → E be
a continuous bounded strongly pseudocontractive mapping with a pseudocontractive
coefficient k ∈ (0, 1). Let A : E → E be a strongly positive linear bounded operator

with a coefficient γ > 0. Assume that 0 < γ < γφ(1)
k . Let {xt} be defined by

(3.3) xt = tγh(xt) + (I − tA)Txt.

Then, as t → 0, {xt} converges strongly to a fixed point p of T , where p is the
unique solution in Fix(T ) to the variational inequality

(3.4) ⟨(A− γh)p, Jφ(p− q)⟩ ≤ 0, ∀q ∈ Fix(T ).

Proof. First, we notice that the definition of weak continuity of duality mapping Jφ
implies that E is smooth. Since E is reflexive, E∗ is strictly convex. By Lemma
2.5, Jφ is norm-to-weak∗ continuous.

Also, we note that by Proposition 3.2 (c), {xt}, {h(xt)}, {Txt}, {Axt} and
{ATxt} are bounded for t ∈ (0,min{1, ∥A∥−1}). As a consequence, we have

(3.5) ∥xt − Txt∥ = t∥γh(xt)−ATxt∥ → 0 as t → 0.

Now, let tm ∈ (0,min{1, ∥A∥−1}) be such that tm → 0 and let {xm} := {xtm} be
a subsequence of {xt}. It follows from (3.3) that

xm = tmγh(xm) + (I − tmA)Txm.

Let p ∈ Fix(T ). Then we deduce

xm − p = (I − tmA)(Txm − Tp) + tm(γh(xm)−Ap)

and
∥xm − p∥φ(∥xm − p∥) = ⟨xm − p, Jφ(xm − p)⟩

≤ tm⟨γh(xm)−Ap, Jφ(xm − p)⟩
+ ⟨(I − tmA)(Txm − Tp), Jφ(xm − p)⟩

≤ tm⟨γh(xm)−Ap, Jφ(xm − p)⟩
+ φ(1)(1− tmγ)∥xm − p∥φ(∥xm − p∥)

≤ tm⟨γh(xm)−Ap, Jφ(xm − p)⟩
+ (1− tmφ(1)γ)∥xm − p∥φ(∥xm − p∥).
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Thus it follows that

(3.6) φ(1)γ∥xm − p∥φ(∥xm − p∥) ≤ ⟨γh(xm)−Ap, Jφ(xm − p)⟩.

On the other hand, since {xm} is bounded and E is reflexive, {xm} has a weakly
convergent subsequence {xmk

}, say xmk
⇀ q ∈ E. From (3.5), it follows that

∥xm − Txm∥ = tm∥γh(xm)−ATxm∥ → 0.

Thus, by Lemma 2.6, q ∈ Fix(T ). Therefore, by (3.6) and the assumption that Jφ
is weakly continuous, we get

∥xm − q∥φ(∥xm − q∥) ≤ 1

φ(1)γ
⟨γh(xm)−Aq, Jφ(xm − q)⟩ → 0.

Since φ is continuous and strictly increasing, we must have xmk
→ q.

Now, we will show that every weakly convergent subsequence of {xm} has the
same limit. Suppose that xmk

⇀ q and xmj ⇀ p. Then, by the above argument,
we have q, p ∈ F (T ), and xmk

→ q and xmj → p. From (3.6), we derive

∥xmk
− p∥φ(∥xmk

− p∥) ≤ 1

φ(1)γ
⟨γh(xmk

−Ap, Jφ(xmk
− p)⟩

and

∥xmj − q∥φ(∥xmj − q∥) ≤ 1

φ(1)γ
⟨γh(xmj −Aq, Jφ(xmj − q)⟩.

Taking limits, we obtain

(3.7) Φ(∥q − p∥) = ∥q − p∥φ(∥q − p∥) ≤ 1

φ(1)γ
⟨γh(q)−Ap, Jφ(q − p)⟩

and

(3.8) Φ(∥p− q∥) = ∥p− q∥φ(∥p− q∥) ≤ 1

φ(1)γ
⟨γh(p)−Aq, Jφ(p− q)⟩.

Moreover, by Proposition 3.1 (b), we have

(3.9)
⟨Aq − γh(q), Jφ(q − p)⟩ = lim

k→∞
⟨Axmk

− γh(xmk
), Jφ(xmk

− p)⟩

≤ lim
k→∞

⟨A(I − T )xmk
, Jφ(xmk

− p)⟩ = 0.

and

(3.10) ⟨Ap− γh(p), Jφ(p− q) ≤ 0.
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Adding up (3.7) and (3.8) yields

2Φ(∥p− q∥) = 2∥p− q∥φ(∥p− q∥)

=
1

φ(1)γ
[⟨γh(q)−Ap, Jφ(q − p)⟩+ ⟨γh(p)−Aq, Jφ(p− q)⟩]

=
1

φ(1)γ
[⟨γh(q)− γh(p), Jφ(q − p)⟩+ ⟨γh(p)−Ap, Jφ(q − p)⟩

+ ⟨γh(p)− γh(q), Jφ(p− q)⟩+ ⟨γh(q)−Aq, Jφ(p− q)⟩]

=
1

φ(1)γ
[2⟨γh(p)− γh(q), Jγ(p− q)⟩+ ⟨Ap− γh(p), Jφ(p− q)⟩

+ ⟨Aq − γh(q), Jφ(q − p)⟩].

From (3.9) and (3.10), we obtain

2Φ(∥p− q∥) ≤ 2γ

φ(1)γ
⟨h(p)− h(q), Jφ(p− q)⟩

≤ 2kγ

φ(1)γ
∥p− q∥φ(∥p− q∥) = 2kγ

φ(1)γ
Φ(∥p− q∥).

That is,

(φ(1)γ − kγ)Φ(∥p− q∥) ≤ 0.

Since φ(1)γ − kγ > 0, this implies that Φ(∥p− q∥) ≤ 0, that is, p = q. Hence {xm}
is strongly convergent to a point in Fix(T ) as tm → 0.

The same argument shows that if tl → 0, then the other subsequence {xl} := {xtl}
of {xt} is strongly convergent to the same limit. Thus, as t → 0, {xt} converges
strongly to a point in Fix(T ). Denote p := limt→0 xt. By Proposition 3.1 (b), we
have for q ∈ Fix(T )

(3.11) ⟨(A− γh)xt, Jφ(xt − q)⟩ ≤ ⟨A(I − T )xt, Jφ(xt − q)⟩.

Since (I − T )xt → 0 by Proposition 3.1 (c), noting that Jφ is norm-to-weak∗ and
taking the limit as t → 0 in (3.11), we obtain

(3.12) ⟨(A− γh)p, Jφ(p− q)⟩ ≤ 0, ∀q ∈ Fix(T ).

The above same argument may be used to conclude that p is the unique solution of
the variational inequality (3.12). This completes the proof. □

By using Lemma 2.7 and Theorem 3.3, we have the following main result for a
countable family of nonexpansive mappings.

Theorem 3.4. Let E be a a reflexive Banach space having a weakly continuous
duality mapping Jφ with gauge function φ such that φ is invariant on [0, 1]. Let
{Ti}∞i=1 be a countable family of nonexpansive mappings from E into itself such that∩∞

i=1 Fix(Ti) ̸= ∅. Let h : E → E be a continuous bounded strongly pseudocon-
tractive mapping with a pseudocontractive coefficient k ∈ (0, 1). Let A : E → E be
a strongly positive linear bounded operator with a coefficient γ > 0. Assume that
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0 < γ < φ(1)γ
k 0 < φ(1)γ − γk < 1. For arbitrary initial value x0 ∈ E, let {xn} be a

sequence generated by the following iterative algorithm:

(3.13) xn = αnγh(xn) + βnxn−1 + ((1− βn)I − αnA)Tnxn, n ≥ 1,

where {αn} and {βn} are two sequences in (0, 1) satisfying the conditions:

(C1) limn→∞ αn = 0 and limn→∞ βn = 0;
(C2)

∑∞
n=1

αn
αn+βn

= ∞.

Assume that
∑∞

n=1 supx∈D ∥Tn+1x−Tnx∥ < ∞ for any bounded subset D of E. Let
T be a mapping from E into itself defined by Tx = limn→∞ Tnx for all x ∈ E and
suppose that F = Fix(T ) =

∩∞
i=1 Fix(Ti). Then {xn} converges strongly to a point

p in
∩∞

i=1 Fix(Ti), which is the unique solution in
∩∞

i=1 Fix(Ti) of the variational
inequality

(3.14) ⟨(A− γh)p, Jφ(p− q)⟩ ≤ 0, ∀q ∈
∞∩
i=1

Fix(Ti).

Proof. Let p ∈ F = Fix(T ) =
∩∞

i=1 Fix(Ti) be the unique solution of the variational
inequality (3.14) (The existence of p follows from Theorem 3.3). In fact. p :=
limt→0 xt with xt ∈ E being defined by xt = tγh(xt) + (I − tA)Txt.

From now, by condition (C1), we may assume, without loss of generality, that
αn ≤ (1−βn)φ(1)∥A∥−1 and βn+αn(φ(1)γ−γk) < 1. Since A is a strongly positive
linear operator on E, we have

∥A∥ = sup{|⟨Au, Jφ(u)⟩| : u ∈ E, ∥u∥ = 1}.

So, it follows that for u ∈ E and ∥u∥ = 1,

⟨((1− βn)I − αnA)u, Jφ(u)⟩ = (1− βn)⟨u, Jφ(u)⟩ − αn⟨Au, Jφ(u)⟩
= (1− βn)∥u∥φ(∥u∥)− αn⟨Au, Jφ(u)⟩
= (1− βn)φ(1)− αn⟨Au, Jφ(u)⟩
≥ (1− βn)φ(1)− αn∥A∥
≥ 0,

that is, (1− βn)I −A is positive, and

∥(1− βn)I − αnA∥ = sup{⟨(1− βn)I − αnA)u, Jφ(u)⟩ : u ∈ E, ∥u∥ = 1}
= sup{⟨(1− βn)φ(1)− αn⟨Au, Jφ(u)⟩ : u ∈ E, ∥u∥ = 1}
≤ φ(1)(1− βn − αnγ)

≤ 1− βn − αnφ(1)γ).

Next, we show that {xn} is well defined. For each n ≥ 1, define a mapping
S : E → E by

Sx = αnγh(x) + βnxn−1 + ((1− βn)I − αnA)Tnx, ∀x ∈ E.
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Then, for every x, y ∈ E, we have

⟨Sx− Sy, Jφ(x− y)⟩ = αnγ⟨h(x)− h(y), Jφ(x− y)⟩
+ ⟨((1− βn)I − αnA)(Tnx− Tny), Jφ(x− y)⟩

≤ αnγk∥x− y∥φ(∥x− y∥)
+ (1− βn − αnφ(1)γ)∥x− y∥φ(∥x− y∥)

= (1− βn − αn(φ(1)γ − γk))∥x− y∥φ(∥x− y∥).
Therefore, S is a continuous strong pseudocontractive mapping with a pseudocon-
tractive coefficient 0 < 1 − βn − αn(φ(1)γ − γk) < 1 for each n ≥ 1 . By Lemma
2.3, we see that there exists a unique fixed point xn for each n ≥ 1 such that

xn = αnγh(xn) + βnxn−1 + ((1− βn)I − αnA)Tnxn.

That is, the sequence {xn} is well defined.
Now, we divide the proof into several steps as follows.

Step 1. We show that {xn} is bounded. To this end, let q ∈
∩∞

i=1 Fix(Ti). Then,
noting that

xn − q = αn(γh(xn)−Aq) + βn(xn−1 − q) + ((1− βn)I − αnA)(Tnxn − q),

and

⟨h(xn)− h(q), Jφ(xn − q)⟩ ≤ k∥xn − q∥φ(∥xn − q∥),
we induce

∥xn − q∥φ(∥xn − q∥) = ⟨xn − q, Jφ(xn − q)⟩
= αn⟨γh(xn)−Aq, Jφ(xn − q)⟩

+ βn⟨xn−1 − q, Jφ(xn − q)⟩
+ ⟨((1− βn)I − αnA)(Txn − q), Jφ(xn − q)⟩

≤ αnγ⟨h(xn)− h(q), Jφ(xn − q)⟩
+ αn⟨γh(q)−Aq, Jφ(xn − q)⟩
+ βn∥xn−1 − q∥φ(∥xn − q∥)
+ ∥(1− βn)I − αnA∥∥Txn − q∥φ(∥xn − q∥)

≤ αnγk∥xn − q∥φ(∥xn − q∥)
+ (1− βn − αnφ(1)γ)∥xn − q∥φ(∥xn − q∥)
+ αn∥γh(q)−Aq∥φ(∥xn − q∥)
+ βn∥xn−1 − q∥φ(∥xn − q∥)

= (1− βn − αn(φ(1)γ − γk))∥xn − q∥φ(∥xn − q∥)
+ αn∥γh(q)−Aq∥φ(∥xn − q∥)
+ βn∥xn−1 − q∥φ(∥xn − q∥),

which implies

∥xn−q∥ ≤ βn
βn + αn(φ(1)γ − γk)

∥xn−1−q∥+ αn(φ(1)γ − γk)

βn + αn(φ(1)γ − γk)
· ∥γh(q)−Aq∥
(φ(1)γ − γk)

.
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By induction, we have

∥xn − q∥ ≤ max

{
∥x0 − q∥, ∥γh(q)−Aq∥

φ(1)γ − γk

}
for n ≥ 1.

Hence {xn} is bounded. Moreover, since h is a bounded mapping, {h(xn)} is
bounded. Also, since ∥Txn − q∥ ≤ ∥xn − q∥, {Tnxn} and {ATnxn} are bounded.

Step 2. We show that limn→∞ ∥xn − Txn∥ = 0. First, since

∥xn − Tnxn∥ = ∥αn(γh(xn)−ATnxn) + βn(xn−1 − Tnxn)∥
≤ αn∥γh(xn)−ATnxn∥+ βn∥xn−1 − Tnxn∥.

it follows from the condition (C1) and boundedness of {xn}, {h(xn)}, {Tnxn} and
{ATnxn} that

(3.15) lim
n→∞

∥xn − Tnxn∥ = 0.

Now, since

∥xn − Txn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − Txn∥
≤ sup{∥Tz − Tnz∥ : z ∈ {xn}}+ ∥xn − Tnxn∥,

by assumption on T and (3.15), we have

lim
n→∞

∥xn − Txn∥ = 0.

Step 3. We show that lim supn→∞⟨(γh − A)p, Jφ(xn − p)⟩ ≤ 0. To show this, we
first note that

xt − xn = tγh(xt) + Txt − tATxt − xn

= t(γh(xt)−Axt) + (Txt − Txn) + (Txn − xn) + tA(Txt − xt)

= t(γh(xt)−Axt) + (Txt − Txn) + (Txn − xn) + t2A(ATxt − γh(xt)).

It follows that

∥xt − xn∥φ(∥xt − xn∥)
= t⟨γh(xt)−Axt, Jφ(xt − xn)⟩+ ⟨Txt − Txn, Jφ(xt − xn)⟩

+ ⟨Txn − xn, Jφ(xt − xn)⟩+ t2⟨A(ATxt − γh(xt)), Jφ(xt − xn)⟩
≤ t⟨γh(xt)−Axt, Jφ(xt − xn)⟩+ ∥xt − xn∥φ(∥xt − xn∥)

+ ∥Txn − xn∥φ(∥xt − xn∥)
+ t2∥A(ATxt − γh(xt))∥φ(∥xt − xn∥),

which implies that

⟨γh(xt)−Axt, Jφ(xn − xt)⟩ ≤
1

t
∥Txn − xn∥φ(∥xt − xn∥)

+ t∥A∥∥ATxt − γh(xt)∥φ(∥xt − xn∥).

Hence, by lim supn→∞ φ(∥xt − xn∥) < ∞ and Step 2, we have

lim sup
n→∞

⟨γh(xt)−Axt, Jφ(xn − xt)⟩ ≤ tM,
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where M > 0 is a constant such that ∥A∥∥ATxt − γh(xt)∥φ(∥xt − xn∥) ≤ M for all
n ≥ 1 and t ∈ (0,min{1, ∥A∥−1}). Thus, by Lemma 2.1, we conclude

lim sup
n→∞

⟨γh(p)−Ap, Jφ(xn − p)⟩ = lim
t→0

lim sup
n→∞

⟨γh(xt)−Axt, Jφ(xn − xt)⟩

≤ lim
t→0

tM = 0.

Step 4. We show that limn→∞ ∥xn − p∥ = 0, where p ∈ F is the unique solution of
the variational inequality (3.14). Indeed, using the equality

xn − p = αn(γh(xn)−Ap) + βn(xn−1 − p) + ((1− βn)I − αnA)(Tnxn − p)

= αn(γh(xn)− γh(p)) + αn(γh(p)−Ap)

+ βn(xn−1 − p) + ((1− βn)I − αnA)(Tnxn − p)

and the inequality ⟨h(xn)− h(p), Jφ(xn − p)⟩ ≤ k∥xn − p∥φ(∥xn − p∥), we have

Φ(∥xn − p∥) ≤ Φ(∥βn(xn−1 − p)∥) + αnγ⟨h(xn)− h(p), Jφ(xn − p)⟩
+ αn⟨γh(p)−Ap, Jφ(xn − p)⟩
+ ⟨((1− βn)I − αnA)(Txn − p), Jφ(xn − p)⟩

≤ βnΦ(∥xn−1 − p∥) + αnγk∥xn − p∥φ(∥xn − p∥)
+ αn⟨γh(p)−Ap, Jφ(xn − p)⟩
+ (1− βn − αnφ(1)γ)∥xn − p∥φ(∥xn − p∥)

= βnΦ(∥xn − p∥) + (1− βn − αn(φ(1)γ − γk))Φ(∥xn − p∥)
+ αn⟨γh(p)−Ap, Jφ(xn − p)⟩.

This implies that

(3.16)

Φ(∥xn − p∥) ≤ βn
βn + αn(φ(1)γ − γk)

Φ(∥xn−1 − p∥)

+
αn(φ(1)γ − γk)

βn + αn(φ(1)γ − γk)
· ⟨γh(p)−Ap, Jφ(xn − p)⟩

φ(1)γ − γk)

=

(
1− αn(φ(1)γ − γk)

βn + αn(φ(1)γ − γk)

)
Φ(∥xn−1 − p∥)

+
αn(φ(1)γ − γk)

βn + αn(φ(1)γ − γk)
· ⟨γh(p)−Ap, Jφ(xn − p)⟩

φ(1)γ − γk)

= (1− λn)Φ(∥xn−1 − p∥) + λnδn,

where λn = αn(φ(1)γ−γk)
βn+αn(φ(1)γ−γk) and δn = 1

φ(1)γ−γk ⟨γh(p) − Ap, Jφ(xn − p)⟩. We note

that

0 ≤ αn(φ(1)γ − γk)

βn + αn(φ(1)γ − γk)
≤ 1 and

(φ(1)γ − γk)αn

αn + βn
<

αn(φ(1)γ − γk)

αn(φ(1)γ − γk) + βn
.

From the condition (C2) and Step 3, it is easily seen that
∑∞

n=1 λn = ∞ and
lim supn→∞ δn ≤ 0. Thus, applying Lemma 2.4 to (3.16), we conclude that

lim
n→∞

xn = p.

This completes the proof. □
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As an immediate result of Theorem 3.4, we have the following result.

Corollary 3.5. Let E be a a reflexive Banach space having a weakly continuous
duality mapping Jφ with gauge function φ such that φ is invariant on [0, 1]. Let
T : E → E be a nonexpansive mapping with Fix(T ) ̸= ∅, and let h : E → E be
a continuous bounded strongly pseudocontractive mapping with a pseudocontractive
coefficient k ∈ (0, 1). Let A : E → E be a strongly positive linear bounded operator

with a coefficient γ > 0. Assume that 0 < γ < φ(1)γ
k and φ(1)γ − γk < 1. For

arbitrary initial value x0 ∈ E, let {xn} be a sequence generated by the following
iterative method:

xn = αnγh(xn) + βnxn−1 + ((1− βn)I − αnA)Txn, n ≥ 1,

where {αn} and {βn} are two sequences in (0, 1) satisfying the conditions (C1) and
(C2) in Theorem 3.4. Then {xn} converges strongly to a fixed point p of T , which
is the unique solution in Fix(T ) of the variational inequality (3.4).

Remark 3.6. 1) Theorem 3.3 extends and improves the corresponding results
of Marino and Xu [13] and Wangkeeree et al. [21] in the following aspects:
(a) The contractive mapping f in [13, 21] is replaced by a continuous

bounded strongly pseudocontractive mapping h.
(b) The Hilbert space H in [13] is extended to a reflexive Banach space E

having a weakly continuous duality mapping Jφ with gauge function φ.
(c) One nonexpansive mapping in [13] is replaced by a countable family of

nonexpansive mappings.
2) Theorem 3.3 also says that Theorem 3.2 of Jung [12] in case of closed sub-

space C = E holds in a reflexive Banach space E having a weakly continuous
duality mapping Jφ with gauge function φ such that φ is invariant on [0, 1].

3) It is worth pointing out that the general implicit iterative method in Theo-
rem 3.4 is a new ones for finding a common fixed point of a countable family
of nonexpansive mappings in a reflexive Banach space E having a weakly
continuous duality mapping Jφ with gauge function φ.
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