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2016) has shown effectiveness and reliability of a hybrid of mean field annealing
and Levenberg-Marquardt methods for learning a set-valued neural mapping, which
retrieves unknown exclusive memberships and optimizes network interconnections
simultaneously. Learning a set-valued neural mapping is employed for extracting
manifold recursions embedded within chaotic series in this work.

Mackey and Glass derived the following Mackey-Glass(MG) differential equation
(Mackey & Glass, 1977), trying to describe the blood control system and finding
out that it is chaos,

(1.1)
∂x

∂t
=

ax(t− γ)

1 + xc(t− γ)
− bx(t),

where γ denotes time delay, and a, b, c are system parameters. The MG chaotic series
oriented from equation 1.1 is unpredictable. Previous works (Moody & Darken,1989;
Cechin, Pechmann & Oliveira, 2008; Mirzaee, 2009; Wu, Huang & Wu, 2014; Van
Vaerenbergh, 2010) have applied learning a single-valued neural mapping for an-
alyzing the MG17 chaotic series, with γ = 17, trying to characterize MG chaotic
series using the sole extracted recursion. Whenever γ = 30, the sole extracted recur-
sion (Wu, Huang & Wu, 2014) results in unacceptable performance for long-term
characterization of MG30 chaotic series. This motivates the study of extracting
manifold neural recursions embedded within MG30 chaotic series.

This work extracts manifold neural recursions by learning a set-valued neural
mapping (Wu, et al., 2016), on the basis pioneering state quantization of MG30
chaotic series. Autoregressive sampling translates a segment of MG30 chaotic series
to paired training data. Under the mixture assumption, learning a set-valued neural
mapping subject to paired training data attains manifold neural recursions. The
effectiveness and reliability of derived manifold neural recursions are verified for
quantizing MG30 chaotic series and decoding quantized sequential states. In the
testing phase, each paired predictor and target is quantized to a state corresponding
to the best fitting recursion. Conversely, decoding sequential quantized states is
expected to recover original MG30 chaotic series accurately.

This paper is organized as follows. The upcoming section introduces recursive
functions, manifold neural recursions and generative models. The architecture of
the RBF multilayer neural network and the set-valued RBF multilayer neural net-
work for analysis of MG30 chaotic time series are given in section 3. The proposed
quantizing and decoding process is given in section 4, where numerical experiments
for performance evaluation of one-step look-ahead prediction, quantization and de-
coding are also given in section 4. Numerical simulations show learning set-valued
mapping well reconstructing manifold recursions for MG30 chaotic series character-
ization. The conclusion is given in section 5.

2. Manifold recursions of generating MG30 chaotic series

A recursive function typically expresses a recurrent relation embedded with a time
series. This work especially emphasizes manifold nonlinear recursive structures for
characterizing MG30 chaotic series.

Figure 1 shows MG30 chaotic series generated by the fourth-order Runge-Kutta
method. As an initial value problem, tracking the differential equation 1.1, subject
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Figure 1. A Mackey-Glass chaotic time series with γ = 30

to an initial condition, is resolved by the fourth-order Runge-Kutta method, where
parameters are given as γ = 30, a = 0.2, c = 10, b = 0.1. The attained chaotic series
in discrete form is denoted by X = {x[i]}ni=1. This works focuses on Mackey-Glass
time series with γ = 30 (MG30) shown in Figure 1. A recursive function expresses
x[i+ 1] as the function output in response to featured previous instances.

(2.1) x[i+ 1] = f (x[i], x[i− L], x[i− 2L], ..., x[i− τL]| θ)

where L ≥ 1, τ ≥ 1 and θ denotes the built-in parameters.
MG30 chaotic series is characterized by only one recursive structure 2.1 in pre-

vious works (Moody & Darken,1989; Cechin, Pechmann & Oliveira, 2008; Mirzaee,
2009; Wu, Huang & Wu, 2014; Van Vaerenbergh, 2010), where for data driven
learning {x[t]}t is transformed into paired training data, denoted by {((x[i], x[i −
L], ..., x[i − Lτ ]), x[i + 1])}ni=Lτ+1, further by {(x̃[t], y[t]}Tt=1 where x̃[t] = (x[t −
1], x[t − L − 1], ..., x[t − Lτ − 1]), y[t] = x[t + 1], T = n − Lτ and L is time delay.
The architecture of a multilayer neural network of radial basis functions (Moody
& Darken, 1989) is employed to emulate f and the Levenberg-Marquardt method
(Mirzaee, 2009) is applied to optimize adaptable interconnections in θ. However,
experiment results of learning a single recursive structure subject to paired training
data oriented from MG30 chaotic series still show space for further improvement due
to unacceptable errors quickly accumulated for long-term prediction (Wu, Huang &
Wu, 2014). This paper releases the constraint of unitary recursion, pioneering learn-
ing a set-valued neural mapping (Wu et al., 2016) for extracting manifold neural
recursions of characterizing MG30 chaotic series.

Consider a generative model that is composed of manifold neural recursive struc-
tures for chaotic series generation in Figure 2. It simply generates a temporal
instance, x[t], each time by randomly choosing one of K(K ≥ 2) non-linear recur-
sive functions according to a set of prior probabilities. By the stochastic process,
each temporal instance x[t] is exactly oriented from a recursion and possesses its
exclusive membership, δ[t], to K joint recursions, where δ[t] ∈ {ei}i and ei denotes a
unitary vector of K bits with the ith bit one and others zero. All exclusive member-
ships of generated instances, δ = {δ[t]}t, are missed under the mixture assumption.
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The generative model introduces manifold recursions. This work applies learning a
set-valued neural mapping (Wu et al., 2016) for reconstructing the model. Learn-
ing a set-valued neural mapping subject to paired training data in this work finds
out that MG30 chaotic series is actually embedded with manifold neural recursive
structures, where K equals to two.

Figure 2. A simple generative model

Under the assumption of manifold neural recursive structures in MG30 time series
data, paired training data oriented from the ith joint recursion are denoted by Sk =
{(x̃[t], yi[t])|δ[t] = ei, yi[t] = y[t]}t, where i = 1, ...,K. Therefore, based on multi-
ple nonlinear recursive structures of generating the MG30 time series, joint paired
training data can be expressed as a union of all Sk, denoted by

∪
i{(x̃[t], yi[t])}t,

where yi denoted the output of the ith non-linear recursive structure.
To resolve the mixture problem, set-valued mapping analysis (Wu et al., 2016)

will help reconstructing manifold neural recursive structures and retrieve exclusive
memberships of paired training data to joined neural recursive structures. Further-
more, retrieved exclusive memberships allow one to analyze changes between states
and determine the state-transient probability.

With transient probabilities a Markov generative model, as shown in figure 3,
can be further derived to characterize generation of chaotic series based on mani-
fold neural recursions. Discrete set-valued analysis is capable of retrieving missed
exclusive memberships underlying paired training data as well as optimizing man-
ifold neural recursions. The total number of changes between any two consecutive
exclusive memberships can be determined and normalized for calculating transition

Figure 3. A Markov generative model
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probabilities among states. Therefore, the transient probability matrix of a Markov
generative model is obtained and defined as follows:

P1 =

(
P11 P12

P21 P22

)
Let 0 and 1 respectively denote two-alternative states of generating chaotic series

by two non-linear recursive functions. A second-order Markov generative model, as
shown in figure 4, could be also a possible choice for characterizing generation of
MG30 time series. The transient probability matrix for a second-order Markov gen-
erative model is defined as P3 and can be obtained by scanning retrieved consecutive
exclusive memberships of training data,

P3 =


00 01 10 11

00 p00,00 p00,01 p00,10 p00,11
01 p01,00 p01,01 p01,10 p01,11
10 p10,00 p10,01 p10,10 p10,11
11 p11,00 p11,01 p11,10 p11,11



Figure 4. A second-ordered Markov generative model

In P3, 00, 01, 10, and 11 enumerate four second-order states and each entry
denotes the probability of a transition among second-ordered states. The transient
probability matrix as well as a state-regulated multilayer neural network of radial
basis functions constitute a second-order Markov generative model that could be
employed for chaotic series identification. Manifold non-linear recursive structures
and the transient probability matrix constitute a mixed stochastic and deterministic
model for identification of chaotic time series.

3. Architecture and learning of a set-valued neural mapping

A multilayer neural network that is composed of radial basis functions has been
extensively employed for translating high dimensional inputs to the network output
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by non-linear transformation through the hidden layer and posterior linear projec-
tion. The learning process involves optimizing radial basis functions in the hidden
layer and adaptable posterior interconnections. The network can be mathematically
expressed as y = F (x|θ) where θ collects all adaptive interconnections.

Paired training data, when consisting of multiple input elements and single output
element, constrains a multilayer neural network for MISO (multiple inputs and
single output) transformation. In this work, paired training data is assumed as a
mixture of multiple sets of paired MISO training data, respectively oriented from
multiple single-valued functions. Subject to this type of mixture data, supervised
learning of a multilayer neural network, which possesses input units identical to
the dimension of predictors, is unable to figure out original MISO functions that
generate multiple sets of paired MISO data due to unknown exclusive memberships.
Set-valued mapping analysis in the previous work (Wu et al., 2016) has been shown
effective for retrieving unknown exclusive memberships and deriving the set-valued
mapping for reconstructing joined MISO functions.

Set-valued mapping analysis is based on learning a state-regulated neural net-
work, whose input units receive elements of predictors as well as those of a reg-
ulating state. A state-regulated neural network is with multiple elements in the
input layer and a sole element in the output layer. It is translated to an equivalent
set-valued neural network for MIMO transformation in this work. The obtained set-
valued neural network possesses input units in number identical to the dimension of
predictors, translating a common predictor to a set of distinct values in the output
layer. It inherits multilayer neural organization with shared neurons in the hidden
layers, avoiding redundancy for robust internal representations. Set-valued mapping
analysis finds exclusive memberships as well as single valued mapping functions sub-
ject to a mixture of multiple sets of paired MISO training data. Different output
units in the constructed set-valued neural network share hidden units. The idea of
sharing hidden units in a set-valued neural network fits requirement of extremely
high utilization of neurons. The organized set-valued neural network in this work
possesses multiple output units, sharing neurons in the hidden layer. In compari-
son with the architecture of multiple single-valued neural networks, the set-valued
neural network utilizes neurons more efficiently in the hidden layer. A hybrid of
mean field annealing and Levenberg-Marquardt methods has been proposed to learn
adaptive interconnections for set-valued mapping analysis.

3.1. A multilayer neural network. The authors in (Moody & Darken, 1989)
pioneered learning an RBF multilayer neural network for approximating the non-
linear recursive function embedded within Mackey-Glass chaotic series based on the
gradient descent method. An RBF multilayer neural network, as shown in figure 5,
performs a single-valued function,

(3.1) G(x̃|θ) = r0 +
∑M

m=1 rmexp
(
∥x̃−µm∥2
−2σ2

m

)
where the vector µm denotes a local center, σ2

m denotes the variance and rm denotes
a posterior weight. Adaptable built-in parameters are collectively represented by
θ = {µ1, ..., µM , σ1, ..., σM , r0, r1, ..., rM}
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Figure 5. An RBF multilayer neural network model with L=1

The architecture of RBF is not enough to reconstruct multiple recursive structures
underlying a mixture of multiple paired MISO datasets.

3.2. A set-valued neural network. An set-valued neural network is oriented
from a state-regulated neural network. For set-valued mapping (Wu et al., 2016),
the input of an RBF neural network is extended to recruit a discrete regulating state
δ, which is a unitary vector of binary bits for indicating different operating modes.
With a fixed regulating state, δ = ek, a state-regulated neural network performs
the following single-valued function,

(3.2)

yk(x̃|θ) = F (x̃, δ = ek|θ)

= r0 +
M∑

m=1

rmexp

(
∥x̃− µm∥2 + ∥ek − am∥2

−2σ2
m

)

= w0k +

M∑
m=1

wmkexp

(
∥x̃− µm∥2

−2σ2
m

)
where w0k = r0, wmk = rmexp

(
amk
σ2
m

)
exp

(
1+∥amk∥2

−2σ2
m

)
and the vector

(
µm

am

)
denotes a center, σ2

m denotes the variance and wmk denotes

a posterior weight, and ek denotes a unitary of binary bits with the kth bits one
and others zero. The obtained set-valued neural network is composed of multiple
output units in response to x̃ in figure 6, performing MIMO (multiple inputs and
multiple outputs) transformation.

Supervised learning of a set-valued RBF multilayer neural network involves a
mixed integer programming. Adding a state-regulating variable δ ⊆ {e1, ..., eK} in
the input layer induces a state-regulated neural network. Multiple outputs of the
network are expressed by Fk(x̃|θ) = F (x̃, δ = ek|θ), where Fk is the kth non-linear
recursive function, as shown figure 6.

As stated previously, paired training data are a mixture of input-output sam-
ples from multiple single-valued mappings. A hybrid of Levenberg-Marquardt and
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Figure 6. A set-valued RBF multilayer neural network

mean field annealing methods has been derived for learning a state-regulated RBF
neural network subject to the mixture-type paired MISO training data. Let z[t] =
(x̃[t] δ[t]) denote a result of concatenating x̃[t] with δ[t] = (δ1[t], ..., δk[t], ..., δK [t])T .
Hence, the new paired dataset with unknown state-regulating variables will be
S = {(z[t], y[t])}t. Let E(θ,Λ) quantify the objective of learning a state-regulated
neural network.

(3.3)

E(θ,Λ) =
1

N

∑
t

∥y[t]− F (z[t]|θ)∥2

=
1

N

∑
t

∥y[t]− F (x̃[t], δ[t]|θ)∥2

where Λ denotes a collection of all membership vectors. Each δ[t] is a unitary
vector of K binary bits, indicating the source dataset from which paired predictor
and target (x̃[t], y[t]) is oriented. For learning a state-regulated neural network, δ[t]
is indeed unknown for all t and considered as a random variable in the previous
work (Wu et al., 2016). Learning a state-regulated neural network is expected to
transform mixture-type paired training data into K disjoint paired MISO datasets
according to the minimizer of E(θ,Λ). A a hybrid of Levenberg-Marquardt (LM)
and mean field annealing methods has been proposed for the purpose (Wu et al.,
2016). The learning algorithm of a state-regulated RBF multilayer neural network
is reviewed as the following step-wise procedure.

Step1: Input (x̃[t], y[t]) for all t and initialize θ, β
Step2: Determine the expectation, ⟨δk[t]⟩, by mean field equations for all t, k

utk = ∂E(θ,⟨Λ⟩)
∂⟨δk[t]⟩ = ∥y[t]− F (x̃[t], ek|θ)∥2

⟨δk[t]⟩ = exp(βutk)∑
h exp(βuth)

Step3: Minimize

E(θ, ⟨Λ⟩) = 1
N

∑
t ∥y[t]− F (x̃[t], ⟨δ[t]⟩ |θ)∥

with respect to θ by the LM method
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Step4: Increase β by dividing a near one annealing factor and calculate stability ξ
Step5: If the stability ξ does not exceed a pre-defined threshold, repeat Step 2-4

otherwise halt.

δk[t] is regarded as a binary random variable. Its expectation is determined
at step 2, where β regulates the randomness. When β is scheduled sufficiently
high, the expectation of each δk[t] approaches a binary value and the stability ξ,

measuring the mean of ξt =
∑

k ⟨δk[t]⟩
2 over t reaches its maximal value that exceeds

a predetermined threshold eventually. Given all ⟨δk[t]⟩ under fixed β, learning a
state-regulated neural network is approached by the Levenberg-Marquardt method
at step 3. The objective E is a result of substituting ⟨δk[t]⟩ to δk[t] and is differential
with respect to bulit-in parameters of radial basis functions.

4. Quantizing MG30 chaotic series and de-quantizing sequential
states

The source of MG30 chaotic series for numerical simulations here are the same as
in (Wu, Huang & Wu, 2014). The MG30 chaotic series is generated by the fourth-
order Runge-Kutta method of tracking the differential equation 1.1 with parameters
same as for generating series in figure 1. Following non-linear recursive relation 2.1,
MG30 chaotic series is transformed into paired MISO data denoted by {((x[i], x[i−
L], ..., x[i−Lτ ]), x[i+1])}Ni=τ , which is further represented by {(x̃[t], y[t])}Tt=1 where
T = N − τ + 1, L denotes time delay and x[i] is set to zero for negative i. As
described in section 2, the paired MISO training dataset is a union of

∪
k Sk, subject

to which learning a set-valued RBF neural network, denoted by set-valued LM-RBF,
by a hybrid of Levenberg-Marquardt and mean field annealing methods retrieves
unknown exclusive memberships as well as optimal parameters θopt.

F (z|θopt) denotes the obtained set-valued mapping, which is further employed for
quantizing each paired data (x̃[t], y[t]) = ((x[t−1], x[t−L−1], ..., x[i−Lτ−1]), x[t])
to a K-state code. The encoder first determines K possible responses by the set-
valued mapping,

(4.1) ŷk = F (x̃[t], δ = ek|θopt)
where k runs from 1 to K, and sets the discrete code ζ[t] to ek∗ , where

(4.2) k∗ = argmin
k

∥ŷk − y[t]∥

Conversely, a quantized state ζ[t] = ek∗ is decoded to an instance that approximates
x[t] for given x̃[t],

(4.3) ŷ = F (x̃, ζ = e∗k|θopt)
where x̃[t] has been replaced with x̃.

Numerical simulations partition MG30 chaotic series of the first 1500 instances
to two non-overlapping segments, denoted by seg1 and seg2, respectively containing
800 and 700 instances. By setting τ = 4, L = 6, data preparing translates the
first segment to paired training data for reconstructing the embedded set-valued
mapping and the second segment to paired testing data for generalization.

The hybrid learning approach in the previous section is employed to analyze
paired training data. The obtained set-valued mapping F (z|θopt) is a model with
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K = 2. Each pair, (x̃[t], y[t]), is related to an exclusive membership, δ[t], which is
either e1 or e2. The approximation of y[t] is a result of substituting the concatena-
tion of x̃[t] and δ[t] to the network function. This approximation of ŷ to y[t] subject
to given x̃[t] can be recalculated by equations (4.1)-(4.3) without δ[t]. The mean
square approximating error is expressed by

mses =
1

|s|
∑
t

(y[t]− ŷ[t])2

where s collects paired data for training or testing, y[t] is the real output, ŷ[t] is a
result of substituting x̃[t] to equations (4.1)-(4.3). The mean square approximating
error over paired training data measures 5.3×10−5, which has significantly improved
the result of learning an RBF network simply by the LM method for function
approximation, as shown in table 1. Due to high reliability of the hybrid learning
approach, numerical results in table 1 omit extremely low variances of mean square
errors.

mseseg1 mseseg2 quantizing and decoding: mseseg2
LM-RBF 0.001503 0.001313 0.177402

Set-Valued LM-RBF 0.000053 0.000192 0.005156

Table 1. Mean square error for MG30 chaotic series

The set-valued mapping derived from paired training data is expected to fit paired
testing data oriented from seg2, which is unknown to the hybrid learning approach.
Similarly, the target y[t] subject to x̃[t] in paired testing data is approximated by
ŷ derived by equations (4.1)-(4.3). The mean square error of approximating the
target y[t] subject to x̃[t] over all paired testing data measures 1.92 × 10−4, which
has significantly improved the result of learning an RBF network simply by the
LM method, as shown in table 1. The first column in table 1 shows the mean
square training error. In mses, ŷ[t] is a result of substituting x̃[t] to equations
(4.1)-(4.3). The second column shows the mean square testing error, where paired
data is oriented from the segment seg2. Similarly, ŷ[t] is a result of substituting
x̃[t] to equations (4.1)-(4.3). In figure 7-8, a soild line denotes real instances of
MG30 chaotic series and points are the results of substituting x̃[t] to equations
(4.1)-(4.3) where * and o respectively denote outputs of two different non-linear
recursive functions.

Furthermore the derived set-valued mapping F (z|θopt) is verified for quantizing
MG30 chaotic series and decoding sequential states. It is assumed that both trans-
mitter and receiver have been equipped with F (z|θopt) derived from paired training
data oriented from the segment seg1. Now the transmitter is expected to quantize
instances in seg2 to binary states. The transmission of sequential quantized states
of instances in seg2 from the transmitter to the receiver is through a link of binary
values, where the length of quantized sequential states equals |seg2|. The transmit-
ter substitutes each x̃[t], which is prepared for quantizing a correspondent instance
in seg2, to equations (4.1)-(4.2) and obtains a quantized state, ζ[t] ∈ {e1, e2}. Se-
quential quantized states are transmitted to the receiver for further decoding. Since
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Figure 7. Training result

Figure 8. One-step look-ahead result

Figure 9. A result of decoding sequential quantized states of in-
stances in seg2

the receiver is not given instances in seg2, x̃[t] for decoding ζ[t] is not actually a
collection of real instances in seg2, but containing decoded results. The decoding
process substitutes decoded instances, x̃ = (ŷ[t− 1], ŷ[t− L− 1], ..., ŷ[i− Lτ − 1]),
as well as a quantized state ζ[t] to equation (4.3) to generate ŷ[t]. By the process,
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sequential quantized states are translated to {ŷ[t]}t, in figure 9, for approximating
seg2. The mean square error of approximating seg2 by {ŷ[t]}t is listed in the third
column of table 1.

5. conclusions

This work presents learning a set-valued multilayer neural network for extracting
manifold recursions underlying MG30 chaotic series. The derived manifold neural
recursions have been successfully applied for quantizing MG30 chaotic series and
decoding sequential quantized states.

Numerical simulations verify existence of embedded manifold neural recursions
within MG30 chaotic series. The analyzed MG30 chaotic segment is indeed embed-
ded with manifold neural recursions of K equaling 2. Manifold neural recursions
have shown acceptable mean square errors for one-step look-ahead prediction in
comparison with a single neural recursion. This work also presents a combination
of manifold neural recursive structures and the Markov generative model, which
respectively characterize deterministic and stochastic parts of generation of MG30
chaotic series.

Learning a state-regulated neural network subject to mixture-type paired train-
ing data retrieves exclusive memberships and optimizes adaptive interconnections
for set-valued mapping. The optimized state-regulated neural network has been
shown equivalent to a set-valued neural network with MIMO neural organization.
The equivalent set-valued neural network translates a predictor to multiple out-
puts, performing essential transformation for quantizing MG30 chaotic series to
discrete states. The quantized sequential states are binary series in length iden-
tical to original instances. Decoding sequential quantized states recovers original
instances accurately. Numerical simulations have shown that decoded instances well
approximate original instances, where mean square approximating error has been
significantly reduced by the proposed quantizing and decoding process of MG30
chaotic series.
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