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For each point x ∈ X, let

∂f(x) = {l ∈ X∗ : f(y)− f(x) ≥ l(y − x) for all y ∈ X}
be the subdifferential of f at x [10]. It is well known that the set ∂f(x) is a nonempty
and bounded subset of (X∗, ∥ · ∥∗).

Set
inf(f) := inf{f(x) : x ∈ X}.

Denote by A the set of all mappings V : X → X such that V is bounded on
every bounded subset of X (that is, for each K0 > 0 there is K1 > 0 such that
∥V x∥ ≤ K1 if ∥x∥ ≤ K0), and for each x ∈ X and each l ∈ ∂f(x), l(V x) ≤ 0. We
denote by Ac the set of all continuous V ∈ A, by Au the set of all V ∈ A which
are uniformly continuous on each bounded subset of X, and by Aau the set of all
V ∈ A which are uniformly continuous on the subsets

{x ∈ X : ∥x∥ ≤ n and f(x) ≥ inf(f) + 1/n}
for each integer n ≥ 1. Finally, let Aauc = Aau ∩ Ac.

Next we endow the set A with a metric ρ: For each V1, V2 ∈ A and each integer
i ≥ 1, we first set

ρi(V1, V2) := sup{∥V1x− V2x∥ : x ∈ X and ∥x∥ ≤ i}
and then define

ρ(V1, V2) :=
∞∑
i=1

2−i[ρi(V1, V2)(1 + ρi(V1, V2))
−1].

Clearly (A, ρ) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N, ϵ) = {(V1, V2) ∈ A×A : ∥V1x− V2x∥ ≤ ϵ, x ∈ X, ∥x∥ ≤ N},
where N, ϵ > 0, is a basis for the uniformity generated by the metric ρ. Evidently
Ac, Au, Aau and Aauc are closed subsets of the metric space (A, ρ). In the sequel
we assign to all these spaces the same metric ρ. In order to compute inf(f), we
associate in Section 2 with each vector field W ∈ A a certain gradient-like iterative
process.

At this point we recall that the study of minimization methods for convex func-
tions is a central topic in optimization theory. See, for example, [1–6,8,9,11,17,19]
and the references mentioned therein. Note, in particular, that the counterexample
studied in Section 2.2 of Chapter VIII of [7] shows that, even for two-dimensional
problems, the simplest choice for a descent direction, namely the normalized steep-
est descent direction,

V (x) = argmin{ max
l∈∂f(x)

⟨l, d⟩ : ∥d∥ = 1},

may produce sequences the functional values of which fail to converge to the infimum
of f . This vector field V belongs to A and the Lipschitz function f attains its
infimum. The steepest descent scheme (Algorithm 1.1.7) presented in Section 1.1
of Chapter VIII of [7] corresponds to the iterative process we consider below.

In infinite dimensional settings the problem is even more difficult and less under-
stood. Moreover, positive results usually require special assumptions on the space
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and on the functions. However, in [12] (under certain assumptions on the function
f), for an arbitrary Banach space X, we established the existence of a set F , which
is a countable intersection of open and everywhere dense subsets of A, such that for
any V ∈ F , the values of f tend to its infimum for the process associated with V .

In [13] we introduced the class of regular vector fields V ∈ A and showed (under
the two mild assumptions A(i) and A(ii) on f stated below) that the complement
of the set of regular vector fields is not only of the first Baire category, but also
σ-porous in each of the spaces A, Ac, Au, Aau and Aauc. We then showed in [13]
that for any regular vector field V ∈ Aau, the values of f tend to its infimum
for the process associated with V if, in addition to A(i) and A(ii), the function
f also satisfies assumption A(iii). Note that the results of [13] are also presented
in Chapter 8 of the book [15], which contains many other generic and porosity
results. For more applications of the generic approach and the porosity notion in
optimization theory, see also [18].

Our results are established in any Banach space and for those convex functions
which satisfy the following two assumptions.

A(i) There exists a norm-bounded set X0 ⊂ X such that

inf(f) = inf{f(x) : x ∈ X} = inf{f(x) : x ∈ X0};
A(ii) for each r > 0, the function f is Lipschitz on the ball {x ∈ X : ∥x∥ ≤ r}.
We may assume that the set X0 in A(i) is closed and convex.
It is clear that assumption A(i) holds if lim∥x∥→∞ f(x) = ∞.
We say that a mapping V ∈ A is regular if for any natural number n, there exists

a positive number δ(n) such that for each point x ∈ X satisfying

∥x∥ ≤ n and f(x) ≥ inf(f) + 1/n,

and each l ∈ ∂f(x), we have
l(V x) ≤ −δ(n).

In this connection, see also [14]. We denote by F the set of all regular vector
fields V ∈ A.

It is not difficult to verify the following property of regular vector fields. It means,
in particular, that G = A \ F is a face of the convex cone A in the sense that if a
non-trivial convex combination of two vector fields in A belongs to G, then both of
them must belong to G.

Proposition 1.1. Assume that V1, V2 ∈ A, V1 is regular, ϕ : X → [0, 1], and that
for each integer n ≥ 1,

inf{ϕ(x) : x ∈ X and ∥x∥ ≤ n} > 0.

Then the mapping x 7→ ϕ(x)V1x+ (1− ϕ(x))V2x, x ∈ X, also belongs to F .

In the sequel we also make use of the following assumption:
A(iii) For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X

satisfying

∥x1∥, ∥x2∥ ≤ n, f(xi) ≥ inf(f) + 1/n, i = 1, 2, and ∥x1 − x2∥ ≤ δ,

the following inequality holds:

H(∂f(x1), ∂f(x2)) ≤ 1/n.
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This assumption is certainly satisfied if f is differentiable and its derivative is
uniformly continuous on those bounded subsets of X over which the infimum of f
is larger than inf(f).

2. The main result

For each x ∈ X and each r > 0, set

B(x, r) := {y ∈ X : ∥x− y∥ ≤ r}.
Let W ∈ A and let a sequence {ai}∞i=0 ⊂ (0, 1] satisfy

(2.1) lim
i→∞

ai = 0,
∞∑
i=1

ai = ∞.

We associate with W the following iterative process. For each initial point x0 ∈ X,
we construct a sequence {xi}∞i=0 ⊂ X according to the following rule:

xi+1 = xi + aiW (xi) if f(xi + aiW (xi)) < f(xi),

xi+1 = xi otherwise,

where i = 0, 1, . . . . This process and its convergence were studied in [12, 13]. In
particular, in [13] it is shown that if W is regular, then limn→∞ f(xn) = inf(f).
More precisely, it is shown in [13] that if V ∈ A is regular, ϵ > 0 and W ∈ A
belongs to a sufficiently small neighborhood of V , then f(xn) ≤ inf(f) + ϵ for all
sufficiently large natural numbers n.

In the present paper, taking into account computational errors, we study the
behavior of the values of the objective function for another process generated by
a regular vector field and show that if the computational errors are small enough,
then the values of the objective functions approach its infimum.

Let x ∈ X, δ ≥ 0 and let i ≥ 0 be an integer. Define

PW,δ,i(x) := {y ∈ X : there exists z ∈ B(Wx, δ) such that

(2.2) y = x+ aiz and f(y) ≤ f(x)}.
Note that this set may well be empty.

We are now ready to state our main result. It is established in Section 4. Section
3 contains an auxiliary result.

Theorem 2.1. Assume that f(x) → ∞ as ∥x∥ → ∞, the vector field V ∈ A is
regular, assumption A(ii) is valid and that at least one of the following conditions
holds: 1. V ∈ Aau; 2. A(iii) is valid.

Let K, ϵ > 0 be given. Then there exist δ > 0 and a natural number N0 such that
for each sequence {xi}∞i=0 ⊂ X which satisfies

∥x0∥ ≤ K

and for each i = 0, 1, . . . ,

xi+1 ∈ PV,δ,i(xi) if PV,δ,i(xi) ̸= ∅,

xi+1 = xi otherwise,

the inequality f(xi) ≤ inf(f) + ϵ holds for all integers i ≥ N0.
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3. An auxiliary result

In the proof of Theorem 2.1 we use the following lemma which was proved in [16].

Lemma 3.1. Assume that W ∈ A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. W ∈ Aau; 2. A(iii) is valid.

Let K̄ and ϵ̄ be positive. Then there exist positive numbers ᾱ, γ and δ such that
for each point x ∈ X satisfying

∥x∥ ≤ K̄, f(x) ≥ inf(f) + ϵ̄,

each number β ∈ (0, ᾱ], and each point y ∈ B(Wx, δ), we have

f(x)− f(x+ βy) ≥ βγ.

4. Proof of Theorem 2.1

We may assume without any loss of generality that ϵ < 1, K > 2 and that

(4.1) {x ∈ X : f(x) ≤ inf(f) + 4} ⊂ B(0,K − 2).

Let

(4.2) K0 > sup{f(x) : x ∈ B(0,K + 1)}
and set

(4.3) E0 := {x ∈ X : f(x) ≤ K0 + 1}.
It is clear that the set E0 is bounded and closed. Choose

(4.4) K1 > sup{∥x∥ : x ∈ E0}+ 1 +K.

Lemma 3.1 implies that there exist positive numbers ᾱ ∈ (0, 1), γ and δ such
that the following property holds:

(a) for each point x ∈ X satisfying

∥x∥ ≤ K1, f(x) ≥ inf(f) + ϵ/4,

each number β ∈ (0, ᾱ] and each point y ∈ B(V x, δ), we have

f(x)− f(x+ βy) ≥ βγ.

In view of (2.1), there exists a natural number N1 such that

(4.5) ai < ᾱ for all integers i ≥ N1.

Choose a natural number N0 > N1 + 2 such that

(4.6)

N0−1∑
i=N1

ai > γ−1(K0 − inf(f)).

Assume that a sequence {xi}∞i=0 ⊂ X satisfies

(4.7) ∥x0∥ ≤ K

and for each i = 0, 1, . . . ,

(4.8) xi+1 ∈ PV,δ,i(xi) if PV,δ,i(xi) ̸= ∅,

(4.9) xi+1 = xi otherwise.
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By (2.2), (4.8) and (4.9),

(4.10) f(xi+1) ≤ f(xi), i = 0, 1, . . . .

It follows from (4.2), (4.4), (4.7) and (4.10) that for all integers i ≥ 0,

(4.11) f(xi) ≤ K0, ∥xi∥ < K1.

In order to complete the proof of the theorem it is sufficient to show that

f(xN0) ≤ inf(f) + ϵ.

Suppose to the contrary that this does not hold. Then for all integers i = 0, . . . , N0,
we have

(4.12) f(xi) > inf(f) + ϵ.

By (4.5), (4.11) and (4.12), for all integers i ∈ [N1, N0), there exists a point

y ∈ B(V xi, δ)

such that
xi+1 = xi + aiy

and

(4.13) f(xi+1) ≤ f(xi)− aiγ.

It follows from (4.11) and (4.13) that

K0 − inf(f) ≥ f(xN1)− f(xN0) =

N0−1∑
i=N1

(f(xi)− f(xi+1)) ≥ γ

N0−1∑
i=N1

ai

and
N0−1∑
i=N1

ai ≤ γ−1(K0 − inf(f)).

This, however, contradicts (4.6). The contradiction we have reached completes the
proof of Theorem 2.1.
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