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THE SPLIT COMMON FIXED POINT PROBLEM BY THE
SHRINKING PROJECTION METHOD FOR FAMILIES OF NEW
DEMIMETRIC MAPPINGS IN BANACH SPACES

SAUD M. ALSULAMI, ABDUL LATIF, AND WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split common fixed point problem for
families of mappings in Banach spaces. Using the shrinking projection method,
we prove two strong convergence theorems of finding a solution of the split com-
mon fixed point problem for families of generalized demimetric mappings in Ba-
nach spaces. We also apply these results to obtain new results for the split
common fixed point problem in Banach spaces.

1. INTRODUCTION

Let F be a smooth Banach space, let C' be a nonempty, closed and convex subset
of E and let n be a real number with 7 € (—o0,1). A mapping U : C — E with
F(U) # 0 is called n-demimetric [31] if

2(z —q,J(x = Uz)) > (1 —n)|lz — Uz|?

for all z € C and ¢ € F(U), where F(U) is the set of fixed points of U and J
is the duality mapping on E. We have from [31] that F(U) is closed and convex.
This property is important. Using this, we proved weak and strong convergence
theorems for demimetric mappings in Hilbert spaces and Banach spaces; see [18,
30, 31, 32, 35]. Very recently, Kawasaki and Takahashi [14] generalized the concept
of demimetric mappings as follows: Let 6 be a real number with 6 £ 0. A mapping
U:C — E with F(U) # 0 is called generalized demimetric [14] if

(1.1) 0(x —q,J(x —Uzx)) > Hx—Ua:H2

for all x € C and ¢ € F(U). This mapping U is called 6-generalized demimetric.
The set F/(U) is also closed and convex; see [14].

Let Hy and Hy be two real Hilbert spaces. Let D and @@ be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : H; — Hy be a bounded
linear operator. Then the split feasibility problem [9] is to find z € H; such that
z € DN A7'Q. Byrne, Censor, Gibali and Reich [8] considered the following
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problem: Given two set-valued mappings G : H; — 21 and B : Hy, — 202,
and a bounded linear operator A : Hy — Ho, the split common null point problem
[8] is to find a point z € H; such that

ze GTlonA (B o),

where G710 and B~'0 are the null point sets of G and B, respectively. Given
two mappings T' : Hy — H; and U : Hy — Hj, and a bounded linear operator
A : Hy — Ha, the split common fized point problem [10, 21] is to find a point z € H;
such that z € F(T)N A~'F(U), where F(T) and F(U) are the fixed point sets of
T and U, respectively.

Defining U = A*(I — Pg)A in the split feasibility problem, we have that U : H; —
H; is an inverse strongly monotone operator [3], where A* is the adjoint operator
of A and Fg is the metric projection of Hy onto Q). Furthermore, if D N A71Q is
nonempty, then z € DN A~1Q is equivalent to

(1.2) » = Pp(I — MA*(I — Po)A)z,

where A > 0 and Pp is the metric projection of H; onto D. By using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem, the split common null point problem and the split common fixed
point problem in Hilbert spaces; see, for instance, [1, 2, 3, 8, 10, 21, 37]. However,
it is difficult to prove such results outside Hilbert spaces. Recently, Takahashi
[28, 29] extended the result of (1.2) to Banach spaces. Furthermore, by using
the shrinking projection method [34], Takahashi [30] proved strong convergence
theorems for demimetric mappings in two Banach spaces.

In this paper, motivated by these problems and results, we consider the split
common fixed point problem with families of mappings in Banach spaces. Then
using the shrinking projection method, we prove two strong convergence theorems
for finding a solution of the split common fixed point problem with families of
mappings in Banach spaces. We also apply these results to obtain new results for
the split common fixed point problem with families of mappings in Banach spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-, -) and

norm |- ||. For z,y € H and X € R, we have from [26] that
(2.1) lz+yl1* < ll2ll* + 2{y, @ + y);
(2.2) Az + (1= Nyll* = Al * + (1 = )lyl* = A1 = Nz -yl

Furthermore we have that for x,y,u,v € H,
(2.3) 2(r —y,u—v) = [lz — o> + |y — ull® =l = ul® - [ly —v]*.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C' is denoted by Pg, that is, ||z — Pox| < ||z — y|| for
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all z € H and y € C. Such a mapping P¢ is called the metric projection of H onto
C. We know that the metric projection Py is firmly nonexpansive, i.e.,

(2.4) | Pz — Peyl|® < (Pox — Poy,z — y)

for all x,y € H. Furthermore (x — Pox,y — Pox) < 0 holds for allx € H and y € C;
see [24].

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {z,} is a sequence
in E, we denote the strong convergence of {z,} to z € E by x,, — x and the weak
convergence by x, — x. The modulus ¢ of convexity of F is defined by

) |z +y
o0 =int {1 o < 1l < 1o - 2 ¢

for every € with 0 < € < 2. A Banach space F is said to be uniformly convex if
d(e) > 0 for every € > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {z,,} and {y,} in E such that

lim ||z,| = lim ||y,]| =1and lim ||z, + yn| = 2,
n—00 n—00 n—r00
lim,, 00 |5, — Yn|| = 0 holds. A uniformly convex Banach space is strictly convex

and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., z, = u and ||z,| — ||u| imply z,, — w; see [11, 23].
The duality mapping J from E into 2F" is defined by

Ju={2" € B : (z,2") = ||z|* = [|l2"]*}

for every x € E. Let U = {x € E : ||z]| = 1}. The norm of F is said to be Gateaux
differentiable if for each x,y € U, the limit
o) e+t~ el

t—0 t
exists. In this case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J. on E*. For more details, see [24] and [25]. We know the
following result.

Lemma 2.1 ([24]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x—y, Jr—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (v —y, Jx — Jy) =0, then © = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any = € F, there exists a unique element
z € C such that ||z — z|| < ||lx — y]| for all y € C. Putting 2 = Pox, we call such a
mapping Po the metric projection of E onto C.

Lemma 2.2 ([24]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convexr subset of E and let x € F and z € C.
Then, the following conditions are equivalent:
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(1) 2 = Pew;
(2) (z—y,J(x—2)) >0, VyeC.

Let E be a Banach space and let B be a mapping of E into 27", The effective
domain of B is denoted by dom(B), that is, dom(B) = {# € E : Bx # (}. A
multi-valued mapping B on FE is said to be monotone if (z — y,u* — v*) > 0 for all
x,y € dom(B), u* € Bz, and v* € By. A monotone operator B on F is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [6]; see also [25, Theorem
3.5.4].

Theorem 2.3 ([6]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let B be a monotone operator of E into
2E"  Then B is mazimal if and only if for any r > 0,
R(J+rB) = E*,
where R(J + rB) is the range of J + rB.
Let F be a uniformly convex Banach space with a Gateaux differentiable norm

and let B be a maximal monotone operator of E into 2€”. For all € E and r > 0,
we consider the following equation

0 € J(zy —x) + rBux,.

This equation has a unique solution x,. We define J, by z, = J.x. Such J.,r >0
are called the metric resolvents of B. The set of null points of B is defined by
B0 ={z¢€ E:0¢c Bz}. We know that B~10 is closed and convex; see [25].

Let B be a maximal monotone operator on a Hilbert space H. In a Hilbert space
H | the metric resolvent J,. of B is simply called the resolvent of B. It is known that
the resolvent J, of B for r > 0 is firmly nonexpansive, i.e.,

HJT:E—JTyHQS <x_y7JTx_JTy>7 anyef'[

Let F be a smooth Banach space, let C' be a nonempty, closed and convex subset
of E and let 6 be a real number with # # 0. Then a mapping U : C — FE with
F(U) # 0 is called generalized demimetric [14] if it satisfies (1.1), i.e.,

Oz —q,J(z — Ux)) 2 |z — Uz|?
for all z € C and ¢ € F(U), where J is the duality mapping on E.

Examples We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let t be a real number with 0 < ¢ < 1. A mapping U : C' — H is called a
t-strict pseudo-contraction [7] if

Uz = Uyl* < [lz = yl|* + tl|z — Uz = (y = Uy)||?

for all z,y € C. If U is a t-strict pseudo-contraction and F(U) # 0, then U is
% -generalized demimetric; see [14].
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(2) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C' — H is called generalized hybrid [15] if there exist a, 8 € R
such that

(26)  allUz = Uyl* + (1 - a)llz - Uy|* < B|Uz — y|* + (1 = B)lz — y|I?

for all ,y € C. Such a mapping U is called («, f)-generalized hybrid. If U is
generalized hybrid and F(U) # (), then U is 2-generalized demimetric. In fact,
setting x =u € F(U) and y = x € C in (2.6), we have that

aflu— Uzl + (1 - a)|lu = Uz|* < Bllu — z|* + (1 = ) [Ju — z|?
and hence ||Uz — u||? < ||z — u/|?>. From
Uz —u|® = ||[Uz — z||* + ||z — u||* + 2{Uz — z, 2 — u),

we have that

e —u,z — Uz) > ||z — Uzl|?
for all z € C'and u € F(U). This means that U is 2-generalized demimetric. Notice
that the class of generalized hybrid mappings covers several well-known mappings.

For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[16, 17] for « =2 and § =1, i.e.,

2|Ux — Uy|* < |Uz —y|* + |Uy — x|, Va,yeC.
It is also hybrid [27] for a = % and 8 = %, ie.,
3|Uz — Uy|* < ||z = y|* + Uz — gl + |Uy — z[|*, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [13].

(3) Let E be a smooth, strictly convex and reflexive Banach space and let D be
a nonempty, closed and convex subset of E. Let Pp be the metric projection of £
onto D. Then Pp is 1-generalized demimetric; see [14].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B~10 # ). Let A > 0. Then the metric resolvent
Jy is 1-generalized demimetric; see [14].

(5) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset of
H and let T' be a mapping from C' into H. Suppose that T is Lipschitzian, that is,
there exists L > 0 such that

1Tz =Tyl < Lijz =yl

for all x,y € C. Let S = (L+1)I —T. Then S is (—2L)-generalized demimetric;
see [14, 33].

(6) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset of
H and let @ > 0. If B be an a-inverse strongly monotone mapping from C' into H
with B~10 # (), then T =1 + B is (—é)—generalized demimetric; see [14, 33].

The following lemmas are important and crucial in the proofs of our main results.

Lemma 2.4 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and conver subset of E. If a mapping U : C - E
is B-generalized demimetric and 0 > 0, then U is (1 — %)—demz’metm’c.
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Lemma 2.5 ([14]). Let E be a smooth, strictly conver and reflexive Banach space
and let C be a nonempty, closed and convexr subset of E. Let 0 be a real number
with @ # 0. Let T be a 0-generalized demimetric mapping of C into E. Then F(T)
is closed and convez.

Lemma 2.6 ([14]). Let E be a smooth Banach space, let C' be a nonempty subset
of E and let 8 be a real number with 6 # 0. Let T be a 0-generalized demimetric
mapping from C into E and let k € R with k # 0. Then (1 — k)I + kT is 0k-
generalized demimetric from C into E.

We also know the following lemma from [35]:

Lemma 2.7 ([35]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k € (—o00,1) and let T' be a k-demimetric mapping of C
into H such that F(T') is nonempty. Let A be a real number with 0 < A < 1—Fk and
define S = (1 — X\)I + XT. Then S is a quasi-nonezpansive mapping of C into H.

For a sequence {C},} of nonempty, closed and convex subsets of a Banach space
F, define s-Li, C), and w-Ls, C,, as follows: x € s-Li, C), if and only if there exists
{zn} C E such that {z,} converges strongly to = and z, € C, for all n € N.
Similarly, y € w-Ls,, C,, if and only if there exist a subsequence {C,} of {C,,} and
a sequence {y;} C E such that {y;} converges weakly to y and y; € C,,, for all i € N.
If Cy satisfies

(2.7) Co = s-LiC,, = w-LsC,,

it is said that {C),} converges to C in the sense of Mosco [20] and we write Cy =
M-limy, 00 Cp. It is easy to show that if {C),} is nonincreasing with respect to
inclusion, then {C),} converges to (),—; Cy in the sense of Mosco. For more details,
see [20]. The following lemma was proved by Tsukada [38].

Lemma 2.8 ([38]). Let E be a uniformly conver Banach space. Let {Cy,} be a
sequence of nonempty, closed and convex subsets of E. If Cy =M-limy, o C,, exists
and nonempty, then for each x € E, {Pc,x} converges strongly to Pc,x, where Pg,
and Pc, are the mertic projections of E onto C, and Cy, respectively.

3. MAIN RESULTS

In this section, using the shrinking projection method introduced by Takahashi,
Takeuchi and Kubota [34], we prove two strong convergence theorems for finding
a solution of the split common fixed point problem with families of generalized
demimetric mappings in Banach spaces. Let E be a Banach space and let C' be a
nonempty, closed and convex subset of E. Let {U,} be a sequence of mappings of C'
into E such that NS, F'(Uy,) # 0. The sequence {U,} is said to satisfy the condition
(I) [4] if for any bounded sequence {z,} of C such that lim, 0 ||z, — Unzn| = 0,
every weak cluster point of {z,} belongs to NS, F(Uy,).

Theorem 3.1. Let H be a Hilbert space and let F' be a smooth, strictly conver and
reflexive Banach space. Let Jp be the duality mapping on F. Let {0,} and {1,}
be sequences of real numbers with 0,7, # 0 and let {k,} and {h,} be sequences
of real numbers with Opky, > 0 and T,hy, > 0, respectively. Let {S,} be a sequence
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of Oy,-generalized demimetric mappings of H to H with NS F(S,) # 0 satisfying
the condition (1) and let {T,} be a sequence of T,-generalized demimetric mappings
of F to F with NS F(T,) # 0 satisfying the condition (I). Let A : H — F be a
bounded linear operator such that A # 0. Suppose that

G =N, F(S,) NA YN, F(T)) # 0.

Let {uy,} be a sequence in H such that u, — u. For x1 € H and Cy = H, let {z,}
be a sequence generated by

zn = (1= Ap)I + ApSp) (a:n — rphn A* Jp(Ax, — TnAxn)>,

Yn = (1 - O‘n)xn + Qpnzn,
Crny1={2 € H : [lyn — 2[| < [|zn — 2[|} N Ch,
Tny1 = P, Uny1, Yn €N,

where a,b,c,d,e, f, Ao € R, {an} C [0,1], {rn} C (0,00) and {\.},{kn}, {hn} C R
|

satisfy the following: 0 < a <, <1, 0<b < |hy| <e,
2 An 2
d<r,< < —0 — < — d Ao < A
0<d<r _e<f_7'nhn||A||2 0<kn " and 0 < Ao < |Ag]

for alln € N. Then {x,} converges strongly to a point ¢ € G, where xy = Pgu.

Proof. We first show that the sequence {x,} is well defined. It is obvious that
G C ¢y = H. Suppose that G C Cj for some j € N. To show G C Cj11, let us
show that |ly; — z|| < ||z; — 2| for all z € G. Since T}, : ' — F' is 7,-generalized
demimetric, we have from Lemma 2.6 that (1 — hy,)I + h, T, is 7,h,-generalized
demimetric. Since S, : H — H is 0,-generalized demimetric, we also have from
Lemma 2.6 that (1—k,)[+k,Sy, is 0, k,-generalized demimetric. Furthermore, from

Lemma 2.4 and 0, k, > 0, we have that (1 — k,)I + k,S,, is (1 — ﬁ)—demimetric

in the sense of [31]. Since 0 < 2—2 < 6n2kn =1- <1 - ﬁ) and

(1= AT+ AnSp = (1 - 2”) I+ %((1 k)T + knSh),

we have from Lemma 2.7 that (1 — A\,)I + \,S,, is quasi-nonexpansive. Putting

sj = xj —rjhjA*JJp(Ax; — TjAzj), from 0 <d <r; <e< f < Tjhjw’ we have
that for z € G,
125 — 2117 = [I((1 = AT+ XjS;)s5 — (1= M)+ A;85)z]?
< |lzj — rihi A" Jp(Az; — TjAzj) — 2|
= |jz; — z||2 — 2xj — z,1;hj A" Jp(Ax; — TjAxj))
+ ||rjhi A* Jp(Az; — T;Az;)||?
(3.1) < |lwj — 2> = 2rj(Az; — Az, Jp(Ax; — (1 — hy)I + hiTj) Ax;))

+ 33| AIP N Jp(Azy — Tj Ax;) |12
2r;
< ey — 2)|* - f}j‘ [Az; — (1 = hyj)I + h;T}) Ax;]|®
77
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+ 202 AP Ay — Ty Aa; |

2r;
= [lzj — =2[* - Tifjh?Hij — Ty Ax||* + r3n3|| Al]*|| Az — T Az
2
= [lzj — 2l* + r;h3 (5| AlI* - %)HA%' — T Azj?
< lzj — 2|7
and hence
lyj — 2|l = |1 — aj)z; + a2 — 2|

< (L= aj)llz; — 2l + a4z — 2|

< (1= aj)llz; — 2l + ajlz; — 2|

= ||lz; — 2|
Then G C Cj;1. We have by mathematical induction that G C C), for all n € N.
Moreover, since

2 2
{zeH:|lyn— 2l < llzn —2ll} ={z € H: lyn — 2|” < |lzn — 2|}
={z€eH: Hyn”2 - Hﬂ?n||2 < 2(Yn — T, 2) },

it is closed and convex. Applying these facts inductively, we obtain that C,, are
nonempty, closed, and convex for all n € N, and hence {z,} is well defined.

Let Cp = (o2 Cn. Then since Cyp O G # 0, Cp is nonempty. Let w, = Pc, u
for every n € N. Then, by Lemma 2.8, we have w, — wy = Pc,u. Since a metric
projection on H is nonexpansive, it follows that

[ — woll < ||#n = wnl| + [Jwn — wol
= [[Pe,un — Po,ul| + [[wn — wol|
< |lun = ul] + [lwn — woll

and hence x,, — wy.
Since wy € Cy C Chy1, we have ||y, — wol| < ||z — wol| for all n € N. Tending
n — oo, we get that y,, — wy. Then we have that

(3.2) [0 = ynll < llzn = woll + [lwo =yl = 0.

From y, — x, = (1 — ap) Ty + Qnzn — T = a2, — ), we also have that

[yn — znll = anll2n — zn|l = allzn — zn|
and hence
(3.3) |z — xn|| — 0.
On the other hand, from (3.1) we know that for z € G,
2
20 = 2II* < llzn — 2[|* +rahis (ra ]| Al* — ) Az, — T A ||,
nt'n

Then we get that

Tk =l AP Az — TpAzn|? < llon — 2|7 = |20 — 2]

2
Tnhn
= (lzn — 2l = [l2n — 2D lzn — 2] + 20 — 2[))
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< lzn = zull(l2n = 2l + [l20 = 21)-
Since 0 <d<r,<e< f< W and ||z, — 2z,|| — 0, we have that
(3.4) lim [|Az, — T,Ax,| = 0.
n—oo

Since x,, — wp and A is bounded and linear, we have that {Ax, } converges strongly
to Awg and hence {Az,} converges weakly to Awg. Since a family {7,,} satisfies
the condition (I) and lim,,_,« || Azy — T Az, || = 0, we have that Awy € NS, F(T5,)
and hence wg € A~1 N, F(T;,). We show that wy € N2, F(S,). Putting s, =
Ty — Tphn A*Jp(Az, — T,,Ax,), we have that

[sn = znll = llsn = (L = An)T 4+ AnSn)snll = [[An(sn = Snsn)ll = Aollsn — Ssnll.

Furthemore, we have that ||s, — z,| = |[|[rnhnA*Jp(Az, — T),Ax,,)|| — 0. We have
from ||sp, — zn|| < ||Sn — Zn|| + |2 — 2n || and (3.3) that ||s, — 2z, || — 0. This implies
that

(3.5) lim ||sp, — Spsn| = 0.

n—oo
Since ||sp, — zp|| — 0, we also have that {s,} converges strongly to wp and hence
{sn} converges weakly to wg. Since {5, } satisfies the condition (I), we have wg €
N>, F(Sy). This implies that wy € G.

Since G is nonempty, closed and convex, there exists zg € G such that zg = Pgu.
From x,41 = Po,, Unt1, we have that

Hun+1 — Ty < Hun+1 - yH

for all y € Ch41. Since zg € G C Cp41, we have that

(3.6) [un+1 = Zosall < |Junt1 — 2ol|-

From zy = Pgu, wy € G and (3.9), we have that

[ = 2ol < flu—woll = Im_[lupsr =z
n—oo

< lim Junpr = 20l = u— 2ol
Then we get that ||u — wo|| = ||u — 20| and hence zy = wgy. Therefore, we have
Ty, — wo = 29. This completes the proof. ]

Next, using the shrinking projection method [34], we prove a strong convergence
theorem of finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in two Banach spaces.

Theorem 3.2. Let E and F' be uniformly convex and smooth Banach spaces and let
Jg and Jp be the duality mappings on E and F, respectively. Let {0,} and {1} be
sequences of real numbers with 0,1, # 0. Let {S,} be a sequence of 0,,-generalized
demimetric mappings of E into E satisfying the condition (I) and NS2F(S,) # 0
and let {T,} be a sequence of T,-generalized demimetric mappings of F into F
satisfying the condition (1) and NS F(T,) # 0. Let {kn} and {h,} be sequences
of real numbers with Ok, > 0 and T,h, > 0, respectively. Let A : E — F be a
bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
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Suppose that G = N>, F(S,) N AN, F(T,)) # 0. For z1 € E and C; = E,
let {x,} be a sequence generated by
Zn = Ty — TnthbilA*Jp(Aa:n — T, Axy),
Yn = ((1 — kp)I + krnSn) 2n,
Cnt1={2€Cy: (zn— 2 Jg(xn — 2,)) > 0}
and  Onkn(2n — 2, JE(2n — Yn)) > [|2n — ?/nHQ},
\xn-l-l = Ic, 121, Vn € N,
where a,b,c,d € R, {ry,} C (0,00) and {kn}, {h.} C R satisfy the following:
0<a<|hy, 0<b<|ky|, Onk,<c
1
d 0<d<r,<———
an <d<r,< AP
for alln € N. Then {x,} converges strongly to a point w1 € G, where wy = Pgz1.

Proof. Since S, is 0,-generalized demimetric and T3, is 7,-generalized demimetric,
from Lemma 2.5, F'(S,,) and F(T},) are closed and convex. Furthermore, since A is
bounded and linear, G is also closed and convex. It also follows that C,, are closed
and convex for all n € N. We show that G C C,, for all n € N. It is obvious that
G C €y = E. Suppose that G C C; for some j € N. To show G C Cj11, let us
show that (z; — z, Jp(z; — z;)) > 0 and Opk, (25 — 2, Je(2; — y;)) > ||z — y;||? for all
z € G. Since (1 — kj)I + k;S; is 0;k;-generalized demimetric and (1 — h;)I + h;T}
is 7jhj-generalized demimetric, we have that, for all z € G,
(zj — 2, Jp(xj — 7)) = (2 — = + x5 — 2, Je(z; — %))
= <—TjthElA*JF(Al‘j — TJAZEJ)
+ €Tj— Z, JE(TjthEIA*JF(ij — T]A{L'])»
— (g A" Tp(Aw; — (1= hy)I + hyTy) Aa))
+ a5 — 2,1 A" Jp(Axj — (1 = hy)I + h;Tj) Axj))
(3.7) > —r3|| A} Az — (1 = hy)T + hyTy) Ay|®
+ (Azj — Az, rjJp(Axy — (1 = hy)I + hyTj) Azy))
> —r3|| A2 Az — (1 = hy)T + hyTy) Ay|®
+ || Ay — (1= hy)I + hTy) Az |
Tjh]’

1
= Tj(ﬁ — | AP Az — ((1 = hj)I + hyTy) Azy|?
J'y
>0
and

0,ki(z — 2, Je(z — v;)) — |25 — y;?
= 0;kj(zj — 2, Jp(25 — (1 = kj)I + k;5;)25))

(3-8) — Iz = (L= k)T + k;S;) 7]
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> lzj — (1= k) + k;S;)z1% = Iz — (1= k;)I + k;9;) 212
=0.

Then G C Cj11. We have by mathematical induction that G C C, for all n € N.
This implies that {x,} is well defined.

Since G is nonempty, closed and convex, there exists w; € G such that w; =
Pgx. From z, = Pg, x1, we have that

[z1 = znll < flz1 =yl
for all y € C,. Since w; € G C C,,, we have that
(3.9) |21 = @p|| < [l — wi.

Let Cy = (,—; Cpn. Since Cy O G # (), we have that Cj is nonempty. Since
Co = M-lim,,_, C, and z,, = P, x; for every n € N, by Lemma 2.8 we have that

(3.10) Ty — 20 = Poyr.
We have from x, 1 € C,41 that
<Zn — Tn+1, JE(CCn - Zn)) Z 0
and hence
<Zn — Tpn + Tpn — Tptl, JE(xn - Zn)> > 0.
This implies that
<xn — Tn+1, JE(fEn - Zn)) > ||Zn - xn||2

Since ||z, — Zp41]| — 0 from (3.10), we get that x,, — 2z, — 0.
On the other hand, we know that

|2n — 2ull = | JE(2n — 20) || = Irn A" Jp(Azy — (1 = h) T + hy/T) Az |
and
Tohn(xn — 2, A" Jp(Axy, — ((1 = hyp)I + h,T),) Axy,))
= Tnhn(Az, — Az, Jp(Azy, — (1 = hp)I + hyTy) Azy))
> || Azn — (1= ha)I + haTn) Azy) |
= h2|| Az, — T, Axy)|*.
Since limy, o ||Zn — 2n|| = 0, we have that

lim || A*Jp(Azp — (1= hn)I + hnTn) Azn) || = 0.

Then we get from h,% > a2 > 0 that
(3.11) lim ||Az, — T, Az,| = 0.

n—oo

Furthermore, we have from x,,+1 € Cj,41 that
ankn<zn — Tn+1, JE(ZR - yn)> > Hzn - ynH2
and hence

enkn<zn — Tp + Tpn — Tptl, JE(Zn - yn)> > HZTL - yn||2
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From ||z, — xpy1|| — 0 and ||z, — z,|| — 0, we have that lim, o ||y, — 20| = 0.
Since ||yn — zn|| = |knl||zn — Snznll = bllzn — Snznl|, we get that
(3.12) lim ||z, — Spzn|| = 0.

n—oo

Since x, — 2o and {S,} satisfies the condition (I), we have from (3.12) that
2o € NS, F(Sy,). Furthermore, since A is bounded and linear, we have that {Ax,}

converges strongly to Azp. Since {7} satisfies the condition (I), we have Azy €
N> F(T},). Therefore, zp € G.
From wy = Pgx1, 20 € G and (3.9), we have that

1 — w1 < [lo1 = 2] = lim [[z1 — n|| < [lzg — wi]-
n—oo
Then we get that ||z; — wi|| = ||z1 — 20| and hence zyp = w;. Therefore, we have

Ty — 20 = w1. This completes the proof. O

4. APPLICATIONS

In this section, using Theorems 3.1 and 3.2, we get new strong convergence theo-
rems which are connected with the split common fixed point problem with families
of generalized demimetric mappings in Hilbert spaces and Banach spaces. We know
the following result obtained by Marino and Xu [19]; see also [36].

Lemma 4.1 ([19, 36]). Let H be a Hilbert space and let C' be a nonempty, closed
and convex subset of H. Let k be a real number with 0 < k <1 and letU : C — H
be a k-strict pseudo-contraction. If x, — z and x,, — Uz, — 0, then z € F(U).

Using Lemma 4.1, we obtain the following result.

Lemma 4.2. Let H be a Hilbert space, let C' be a nonempty, closed and convexr sub-
set of H and let s,t € [0,1). Let S, T : C — H be s, t-strict pseudo-contractionsuchs,
respectively, such that F(S)NF(T) # 0. Let S; = sI+(1—s)S and Ty = tI+(1—t)T
and let {v,} be a sequence of real numbers. Assume that there exist a,b € R such
that 0 < a <y, <b< 1 foralln e N. If T,, = v,51 + (1 — )11 for alln € N,
then NS F(T,,) = F(S)NF(T) and {T,,} satisfies the condition (I).

Proof. Since S and T are s,t-strict pseudo-contractions and F(S) N F(T) # 0,
S1 =8I+ (1—s)S and Ty = tI + (1 —t)T are quasi-nonexpansive mappings. Using
this, we have from (2.2) that, for zp € F(S)NF(T), z € N°2 1 F(T,,) and n € N,

Iz = 20ll* = |1 Tz — 20|
= [[(S1 + (1 = y)T1)z — 20|
= (512 = 20) + (1 = ) (T12 — 20)|®
= 912 = 200* + (1 = va) [ T12 = 201 = Y (1 — ) 1912 — Trz|?
< nllz = 20l + (1 =)z = 20l” = v (1 = ) [[S12 = Trz||?
= [lz = 20[* = Y (1 = ) 1512 — Tiz|*.

This means that v, (1 — 4,)||S12 — Ti2|[> < 0. Since 0 < a < 7, < b < 1 for all
n € N, we have S1z = T1z. From

1512 = z[| = [7nS12 + (1 = 7)1z — 2|
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= [[(S1+ (1 —w)T1)z — 2|
= [lz— 2] =0,
we have that S1z = z and hence Sz = z. Similarly, we have that Tz = z. This im-
plies that N, F(T,,) C F(S)NF(T). It is obvious that F(S)NF(T) C N2, F(T,).
Thus NS 1F(T )= F(S)NF(T).
Suppose that {z,} is a bounded sequence and z,, — 1)z, — 0. Then we have from
(2.1) and (2.2) that, for z € N2>, F(T5),
Iz — 2H2 =|lzn — Thzn + Thzn — z:||2
< HTnZn - ZH2 + 2<Zn —Thzn, 2n — Z>
= |7S12n + (1 — ) T2 — z||2 + 2(zn — Tnzn, 2n — 2)
= Yul[S12n — Z||2 + (1 =) | T12 — ZH2
- 'Yn(l - ')/n)HSlzn - len||2 + 2<Zn - Tnzn> Zn — Z)
< Yallzn = 212 + (1 =)z — 2II?
- '711(1 - 'Yn)HSlzn - T‘lznn2 + 2<Zn - Tnzru Zn — Z)
= |lzn — ZH2 = Yn(1 = 7n)[1S120 — TIZnHZ + 2(zn — Tn2n, 2n — 2)

and hence
(1 — ) ||S12n — T1,2:n||2 < 2(zp — Thzn, 2n — 2).

Since z, — Tz, — 0 and {z,} is bounded, we have that Sz, — T12, — 0. Using
this, we have that

(1= 8)l[zn = Sznll = [[2n — S12a|
= Hzn - Tnzn + Tnzn - Slan
< llzn = Toznll + [[Thz — S12a]|
= llzn — Tozall + (1 = )| T12n — S120]|
— 0.

If a subsequence {zy,} of {z,} converges weakly to w, then we have from Lemma
4.1 and z, — Sz, — 0 that w € F(95). Similarly, w € F(T). Thus every weak cluster
point {z,} belongs to F'(S) N F(T) =Ny, F(T,). This completes the proof. O

Using Theorem 3.1, we get the following strong convergence theorems in Hilbert
spaces and Banach spaces.

Theorem 4.3. Let Hy and Hy be Hilbert spaces and let s,t € [0,1). Let S,T
C — H be s,t-strict pseudo-contractions, respectively, such that F(S) N F(T) #
and let U,V : Hy — Hs be nonexpansive mappings with F(U) N F(V) # 0. Let
{n} and {6,} be sequences of real numbers. Assume that there exists s,t,u,v € R
suchthat0<s§7n§t<1and0<u§(5n§v<1f0ralln€N. Let
A : Hi — Hs be a bounded linear operator such that A # 0. Suppose that G =
FS)NFT) NA Y FU)NFWV)) # 0. Let {u,} be a sequence in Hy such that
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Up — u. For x1 € Hy and Cy = Hy, let {x,} be a sequence generated by

,

Sp = Ty — T A*(Azy, — (0,U + (1 = 6,)V) Axy,),

Zn = (W(sI+ (1 —=5)S)+ (1 —vn)(tL + (1 —t)T)) s,
Yn = (1 — ap)xn + anzp,

Cnt1 =1z € H1:[lyn — 2|l < |lzp — 2|} N Ch,
Tny1 = P, Unt1, Vn €N,

where a,d,e € R, {a,} C [0,1] and {r,} C (0,00) satisfy the following:

1
0<a<a,<1 and 0<d<r,<e< HA||2
for all n € N. Then the sequence {x,} converges strongly to a point o € G, where
z9 = Pgu.

Proof. Since S and T are s, t-strict pseudo-contractions of H; into Hi, respectively,
Sp = Yn(sI + (1 —15)S)+ (1 —~,)(tI + (1 —¢)T) is a nonexpansive mapping. Since
U and V are nonexpansive mappings of Hs into Hs, T, = 6,U + (1 — ,)V is
a nonexpansive mapping. From F(S) N F(T) # 0 and F(U)NF(V) # 0, Sy

(sl + (1 —5)S)+ (1 — )t + (1 —t)T) and T,, = 6,U + (1 — 0)V are quasi-
nonexpansive mappings and hence they are 2-generalized demimetric mappings.
Furthermore, {S,} and {7, } satisfy the condition (I) from Lemma 4.2. Putting
ko, =1, h, = 1 and A, = 1 in Theorem 3.1, we obtain the desired result from
Theorem 3.1. O

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. A family S = {T'(¢t) : t € [0,00)} of mappings of C' into itself satisfying the
following conditions is said to be a one-parameter nonexpansive semigroup on C:

(1) For each t € [0,00), T(t) is nonexpansive;
(2) T(0) =

(3) (t+s) T(t)T'(s) for every t,s € [0,00);
(4) for each z € C, t — T'(t)x is continuous.

Theorem 4.4. Let Hi and Hy be Hilbert spaces. Let S, T : Hy — Hy be commuta-
tive generalized hybrid mappings with F(S) N F(T) # 0 and define

Sn l—i-nQZZSkTZ

k=0 t=0

for allm € N. Let S = {T'(t) : t € [0,00)} be a one-parameter nonexpansive
semigroup on Hy with the common fized point set F(S) = Nicpo,00)F (T (1)) # 0.

Define T,z = % g" T(s)xds for all x € Hy and n € N with t, — oco. Let A :
Hy — Hs be a bounded linear operator such that A # 0. Suppose that G =
FS)NF(T)NALF(S) #0. Let {u,} be a sequence in H such that u, — u. For
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x1 € Hy and Cy = Hy, let {x,} be a sequence generated by
Zn = Sh, (a:n —rp A% (Axy, — TnAxn)),

Yn = (1 - an)xn + Qn2n,
Cny1 ={2 € Hy t lyp — 2|| < [lzn — 2]} N Cy,
Tn+1 = PC,L_HUn-&-la Vn € N7

where a,d,e € R and {ayn} C [0,1] and {r,} C (0,00) satisfy the following:

1
O0<a<a,<1 and O<d§rn§e<w
for alln € N. Then the sequence {x,} converges strongly to a point xo € G, where
Trog = PGu.

Proof. Since S and T are generalized hybrid and F(S) N F(T) # 0, S, is quasi-
nonexpansive and N> F(S,) = F(S) N F(T). We also have from [12, Lemma
3.1] that {S,} satisfies the condition (I). Furthermore, since 7;, is a nonexpansive
mapping of Hs into itself, from (1) or (2) in Examples, T}, is 2-generalized demi-
metric. We also know from [24] that N2, F(T,,) = F(S). Furthermore, let {z,}
be a bounded sequence of Hs such that z, — Tz, — 0. Then we have from [22]
that z, — T'(s)z, — 0 for all s € [0,00). Sinve T'(s) is nonexpansive, every weak
cluster point of {z,} belongs to F(T'(s)); see [26]. Then, every weak cluster point
of {z,} belongs to NS, F(T;,) = F(S). This means that the family {7},} satisfies
the condition (I). Putting k, = 1, h, = 1 and A\, = 1 in Theorem 3.1, we obtain
the desired result from Theorem 3.1. O

Using Theorem 3.1, we also have the following theorem for the split common null
point problem in Banach spaces; see also Hojo and Takahashi [12].

Theorem 4.5. Let H be a Hilbert space and let F be a uniformly conver and
smooth Banach space. Let Jp be the duality mapping on F. Let G and B be
mazimal monotone operators of H and I, respectively. Let Js and Q¢ be the metric
resolvents of G for s > 0 and B fort > 0, respectively. Let A: H — F be a bounded
linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose
that GTL0N A=Y (B~10) # 0. Let {u,} be a sequence in H such that u, — u. For
x1 € H and Cy = H, let {z,,} be a sequence generated by

2 = Js, (20 — T A" Tp(Azy — Qp, Azy)),
Yn = (1 - an)xn + anzn,
Cos = {2 € H : lyn — 2 < lm — 2} N C,
Tn+1 = Pcn+1un+17 Vn € N7
where a,b,c,d,e € R, {a,} C [0,1], {rn} C (0,00) and {sn},{tn} C (0,00) satisfy
the following:
O0<a<a,<1,58,>b>0,t,>c>0 and O<d§rn||A||2§e<2

for all n € N. Then {z,} converges strongly to a point zo € G~10N A~1(B~10),
where zo = Pg-10nA-1(B-10)21-
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Proof. Since @y, is the metric resolvent of B for ¢, > 0, from (4) in Examples,
Q¢, is 1-generalized demimetric. We also have that if {z,} is a bounded sequence
in F such that z, — Qy, 2z, — 0, then every weak cluster point of {z,} belongs to
B0 =N, F(Qy,). In fact, suppose that {z,,} is a subsequence of {z,} such that
Zp, — p. Since ()¢, is the metric resolvent of B, we have that

Jr(2n — Qt,2n)/tn € BQ4,2n

for all n € N; see [5, 25]. From the monotonicity of B, we have

Jr(zn; — Qt, Zm-)>
tn.

(3

0< <u— Qt, 20, 0 —

for all (u,v*) € B and ¢ € N. Taking i — oo, we get that (u — p,v*) > 0 for all
(u,v*) € B. Since B is a maximal monotone operator, we have

p€BTI0=n2,F(Qy,).

This means that the family {Q;,} satisfies the condition (I). On the other hand,
since Jg, is the metric resolvent (the resolvent) of G' on a Hilbert space H, it is
1-generalized demimetric. Furthermore, as in the proof of {Q, }, {Js, } satisfies the
condition (I). Therefore, we have the desired result from Theorem 3.1. g

Similarly, using Theorem 3.2, we have the following results.

Theorem 4.6. Let Hy and Hy be Hilbert spaces and let s,t € [0,1). Let S,T : C —
H be s, t-strict pseudo-contractionsuchs, respectively, such that F(S)N F(T) # 0
and let U,V : Hy — Hs be nonexpansive mappings with F(U) N F(V) # 0. Let
{7} and {6,,} be sequences of real numbers. Assume that there exists s,t,u,v € R
such that 0 < s < v, <t < land 0 < u <6, <v <1 foralln € N. Let
A : Hy — Hs be a bounded linear operator such that A # 0. Suppose that G :=
FS)NF(T)NA Y FU)NF(V)) # 0. For x1 € Hy and C; = Hy, let {z,} be a
sequence generated by

Zn = Ty — 1A (Azy, — (6,U + (1 = 6,)V) Axzy),
Yn = (sl + (1= 5)8) + (L = 7))t + (1 = £)T))zn,
Cni1=9{2€Ch: (2 — 2,2 — z5) > 0}

and  2(zn — 2, 2n — Yn) > |20 — ynl?*},

Tnt+1 = Cn+1x17 Vn € N?

where d € R and {r,} C (0,00) satisfy the following:

1
0<d<rp<—s
IA]I?

for alln € N. Then the sequence {x,} converges strongly to a point wy € G, where
w1 = Pgl'l.

Theorem 4.7. Let Hi and Hy be Hilbert spaces. Let S, T : Hy — Hy be commuta-
tive generalized hybrid mappings with F(S) N F(T) # 0 and define

Sn = TR SO>St

k=0 =0
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for allm € N. Let S = {T(t) : t € [0,00)} be a one-parameter nonexpansive
semigroup on Hy with the common fized point set F(S) = Nicpo,00)F (T (1)) # 0.
Define Thx = %fo" T(s)xds for all x € Hy and n € N with t, — oco. Let A :
H{ — Hs be a bounded linear operator such that A # 0. Suppose that G =
FS)NF(T)NAIF(S) # 0. Forxz; € E and C; = E, let {z,} be a sequence
generated by

;

Zn = Ty — A" Az, — T, Axy),
Yn = Snzn,
Cpnt1={2€Cp:{(zn— 2,2y — 2z,) >0}
and  2(zn — 2,20 — Yn) > |20 — ynH2}7
Tny1 = Po, 71, Vn €N,

where d € R and {r,} C (0,00) satisfy the following:

0<d<r,< =
ST S 7o
" lA
for all n € N. Then the sequence {x,} converges strongly to a point wy € G, where
wy = Pgx.

Using Theorem 3.2, we also have the following theorem for the split common null
point problem in two Banach spaces;

Theorem 4.8. Let E and F' be uniformly conver and smooth Banach spaces and
let Jg and Jp be the duality mappings on E and F', respectively. Let G and B
be maximal monotone operators of E into E* and F into F*, respectively. Let J
and Q; be the metric resolvents of G for s > 0 and B for t > 0, respectively. Let
A: E — F be a bounded linear operator such that A # 0 and let A* be the adjoint
operator of A. Suppose that G := G0N A~Y(B~10) # 0. Forxz; € E and C; = E,
let {zy} be a sequence generated by

;

Zn = Ty — rnngA*JF(Axn — Q, Axy),
Yn = anzm
Chny1=1{2€Cpn:(zn— 2z, Jeg(xy — 2)) >0}
and (2, — 2, Jp (20 = yn)) > 20 — yall*},
Tpi1 = Po,,, 71, Vn €N,

where b,c,d € R and {r,} C (0,00) satisfy the following:

2

$p>b>0,t,>c>0 and O<d§rn§W

for alln € N. Then the sequence {x,} converges strongly to a point wy € G, where
w1 = Ple.
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