
LNALNA ISSN 2188-8167 
2018



432 S. M. ALSULAMI, A. LATIF, AND W. TAKAHASHI

problem: Given two set-valued mappings G : H1 → 2H1 and B : H2 → 2H2 ,
and a bounded linear operator A : H1 → H2, the split common null point problem
[8] is to find a point z ∈ H1 such that

z ∈ G−10 ∩A−1(B−10),

where G−10 and B−10 are the null point sets of G and B, respectively. Given
two mappings T : H1 → H1 and U : H2 → H2, and a bounded linear operator
A : H1 → H2, the split common fixed point problem [10, 21] is to find a point z ∈ H1

such that z ∈ F (T ) ∩ A−1F (U), where F (T ) and F (U) are the fixed point sets of
T and U , respectively.

Defining U = A∗(I−PQ)A in the split feasibility problem, we have that U : H1 →
H1 is an inverse strongly monotone operator [3], where A∗ is the adjoint operator
of A and PQ is the metric projection of H2 onto Q. Furthermore, if D ∩ A−1Q is
nonempty, then z ∈ D ∩A−1Q is equivalent to

(1.2) z = PD(I − λA∗(I − PQ)A)z,

where λ > 0 and PD is the metric projection of H1 onto D. By using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem, the split common null point problem and the split common fixed
point problem in Hilbert spaces; see, for instance, [1, 2, 3, 8, 10, 21, 37]. However,
it is difficult to prove such results outside Hilbert spaces. Recently, Takahashi
[28, 29] extended the result of (1.2) to Banach spaces. Furthermore, by using
the shrinking projection method [34], Takahashi [30] proved strong convergence
theorems for demimetric mappings in two Banach spaces.

In this paper, motivated by these problems and results, we consider the split
common fixed point problem with families of mappings in Banach spaces. Then
using the shrinking projection method, we prove two strong convergence theorems
for finding a solution of the split common fixed point problem with families of
mappings in Banach spaces. We also apply these results to obtain new results for
the split common fixed point problem with families of mappings in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨· , ·⟩ and
norm ∥ · ∥. For x, y ∈ H and λ ∈ R, we have from [26] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
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all x ∈ H and y ∈ C. Such a mapping PC is called the metric projection of H onto
C. We know that the metric projection PC is firmly nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [24].

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [11, 23].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [24] and [25]. We know the
following result.

Lemma 2.1 ([24]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call such a
mapping PC the metric projection of E onto C.

Lemma 2.2 ([24]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x ∈ E and z ∈ C.
Then, the following conditions are equivalent:
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(1) z = PCx;
(2) ⟨z − y, J(x− z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let B be a mapping of E into 2E
∗
. The effective

domain of B is denoted by dom(B), that is, dom(B) = {x ∈ E : Bx ̸= ∅}. A
multi-valued mapping B on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all
x, y ∈ dom(B), u∗ ∈ Bx, and v∗ ∈ By. A monotone operator B on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [6]; see also [25, Theorem
3.5.4].

Theorem 2.3 ([6]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let B be a monotone operator of E into
2E

∗
. Then B is maximal if and only if for any r > 0,

R(J + rB) = E∗,

where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let B be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rBxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of B. The set of null points of B is defined by
B−10 = {z ∈ E : 0 ∈ Bz}. We know that B−10 is closed and convex; see [25].

Let B be a maximal monotone operator on a Hilbert space H. In a Hilbert space
H, the metric resolvent Jr of B is simply called the resolvent of B. It is known that
the resolvent Jr of B for r > 0 is firmly nonexpansive, i.e.,

∥Jrx− Jry∥2 ≤ ⟨x− y, Jrx− Jry⟩, ∀x, y ∈ H.

Let E be a smooth Banach space, let C be a nonempty, closed and convex subset
of E and let θ be a real number with θ ̸= 0. Then a mapping U : C → E with
F (U) ̸= ∅ is called generalized demimetric [14] if it satisfies (1.1), i.e.,

θ⟨x− q, J(x− Ux)⟩ ≥ ∥x− Ux∥2

for all x ∈ C and q ∈ F (U), where J is the duality mapping on E.

Examples We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let t be a real number with 0 ≤ t < 1. A mapping U : C → H is called a
t-strict pseudo-contraction [7] if

∥Ux− Uy∥2 ≤ ∥x− y∥2 + t∥x− Ux− (y − Uy)∥2

for all x, y ∈ C. If U is a t-strict pseudo-contraction and F (U) ̸= ∅, then U is
2

1−t -generalized demimetric; see [14].
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(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. A mapping U : C → H is called generalized hybrid [15] if there exist α, β ∈ R
such that

(2.6) α∥Ux− Uy∥2 + (1− α)∥x− Uy∥2 ≤ β∥Ux− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Such a mapping U is called (α, β)-generalized hybrid. If U is
generalized hybrid and F (U) ̸= ∅, then U is 2-generalized demimetric. In fact,
setting x = u ∈ F (U) and y = x ∈ C in (2.6), we have that

α∥u− Ux∥2 + (1− α)∥u− Ux∥2 ≤ β∥u− x∥2 + (1− β)∥u− x∥2

and hence ∥Ux− u∥2 ≤ ∥x− u∥2. From

∥Ux− u∥2 = ∥Ux− x∥2 + ∥x− u∥2 + 2⟨Ux− x, x− u⟩,

we have that

2⟨x− u, x− Ux⟩ ≥ ∥x− Ux∥2

for all x ∈ C and u ∈ F (U). This means that U is 2-generalized demimetric. Notice
that the class of generalized hybrid mappings covers several well-known mappings.
For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[16, 17] for α = 2 and β = 1, i.e.,

2∥Ux− Uy∥2 ≤ ∥Ux− y∥2 + ∥Uy − x∥2, ∀x, y ∈ C.

It is also hybrid [27] for α = 3
2 and β = 1

2 , i.e.,

3∥Ux− Uy∥2 ≤ ∥x− y∥2 + ∥Ux− y∥2 + ∥Uy − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [13].
(3) Let E be a smooth, strictly convex and reflexive Banach space and let D be

a nonempty, closed and convex subset of E. Let PD be the metric projection of E
onto D. Then PD is 1-generalized demimetric; see [14].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B−10 ̸= ∅. Let λ > 0. Then the metric resolvent
Jλ is 1-generalized demimetric; see [14].

(5) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let T be a mapping from C into H. Suppose that T is Lipschitzian, that is,
there exists L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥

for all x, y ∈ C. Let S = (L + 1)I − T . Then S is (−2L)-generalized demimetric;
see [14, 33].

(6) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let α > 0. If B be an α-inverse strongly monotone mapping from C into H
with B−10 ̸= ∅, then T = I +B is

(
− 1

α

)
-generalized demimetric; see [14, 33].

The following lemmas are important and crucial in the proofs of our main results.

Lemma 2.4 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. If a mapping U : C → E
is θ-generalized demimetric and θ > 0, then U is

(
1− 2

θ

)
-demimetric.
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Lemma 2.5 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let θ be a real number
with θ ̸= 0. Let T be a θ-generalized demimetric mapping of C into E. Then F (T )
is closed and convex.

Lemma 2.6 ([14]). Let E be a smooth Banach space, let C be a nonempty subset
of E and let θ be a real number with θ ̸= 0. Let T be a θ-generalized demimetric
mapping from C into E and let k ∈ R with k ̸= 0. Then (1 − k)I + kT is θk-
generalized demimetric from C into E.

We also know the following lemma from [35]:

Lemma 2.7 ([35]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k ∈ (−∞, 1) and let T be a k-demimetric mapping of C
into H such that F (T ) is nonempty. Let λ be a real number with 0 < λ ≤ 1−k and
define S = (1− λ)I + λT . Then S is a quasi-nonexpansive mapping of C into H.

For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space
E, define s-LinCn and w-LsnCn as follows: x ∈ s-LinCn if and only if there exists
{xn} ⊂ E such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N.
Similarly, y ∈ w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and
a sequence {yi} ⊂ E such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N.
If C0 satisfies

(2.7) C0 = s-Li
n
Cn = w-Ls

n
Cn,

it is said that {Cn} converges to C0 in the sense of Mosco [20] and we write C0 =
M-limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to
inclusion, then {Cn} converges to

∩∞
n=1Cn in the sense of Mosco. For more details,

see [20]. The following lemma was proved by Tsukada [38].

Lemma 2.8 ([38]). Let E be a uniformly convex Banach space. Let {Cn} be a
sequence of nonempty, closed and convex subsets of E. If C0 =M-limn→∞Cn exists
and nonempty, then for each x ∈ E, {PCnx} converges strongly to PC0x, where PCn

and PC0 are the mertic projections of E onto Cn and C0, respectively.

3. Main results

In this section, using the shrinking projection method introduced by Takahashi,
Takeuchi and Kubota [34], we prove two strong convergence theorems for finding
a solution of the split common fixed point problem with families of generalized
demimetric mappings in Banach spaces. Let E be a Banach space and let C be a
nonempty, closed and convex subset of E. Let {Un} be a sequence of mappings of C
into E such that ∩∞

n=1F (Un) ̸= ∅. The sequence {Un} is said to satisfy the condition
(I) [4] if for any bounded sequence {zn} of C such that limn→∞ ∥zn − Unzn∥ = 0,
every weak cluster point of {zn} belongs to ∩∞

n=1F (Un).

Theorem 3.1. Let H be a Hilbert space and let F be a smooth, strictly convex and
reflexive Banach space. Let JF be the duality mapping on F . Let {θn} and {τn}
be sequences of real numbers with θn, τn ̸= 0 and let {kn} and {hn} be sequences
of real numbers with θnkn > 0 and τnhn > 0, respectively. Let {Sn} be a sequence
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of θn-generalized demimetric mappings of H to H with ∩∞
n=1F (Sn) ̸= ∅ satisfying

the condition (I) and let {Tn} be a sequence of τn-generalized demimetric mappings
of F to F with ∩∞

n=1F (Tn) ̸= ∅ satisfying the condition (I). Let A : H → F be a
bounded linear operator such that A ̸= 0. Suppose that

G := ∩∞
n=1F (Sn) ∩A−1(∩∞

n=1F (Tn)) ̸= ∅.

Let {un} be a sequence in H such that un → u. For x1 ∈ H and C1 = H, let {xn}
be a sequence generated by

zn = ((1− λn)I + λnSn)
(
xn − rnhnA

∗JF (Axn − TnAxn)
)
,

yn = (1− αn)xn + αnzn,

Cn+1 = {z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥} ∩ Cn,

xn+1 = PCn+1un+1, ∀n ∈ N,

where a, b, c, d, e, f, λ0 ∈ R, {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) and {λn}, {kn}, {hn} ⊂ R
satisfy the following: 0 < a ≤ αn ≤ 1, 0 < b ≤ |hn| ≤ c,

0 < d ≤ rn ≤ e < f ≤ 2

τnhn∥A∥2
, 0 <

λn

kn
≤ 2

θnkn
and 0 < λ0 ≤ |λn|

for all n ∈ N. Then {xn} converges strongly to a point x0 ∈ G, where x0 = PGu.

Proof. We first show that the sequence {xn} is well defined. It is obvious that
G ⊂ C1 = H. Suppose that G ⊂ Cj for some j ∈ N. To show G ⊂ Cj+1, let us
show that ∥yj − z∥ ≤ ∥xj − z∥ for all z ∈ G. Since Tn : F → F is τn-generalized
demimetric, we have from Lemma 2.6 that (1 − hn)I + hnTn is τnhn-generalized
demimetric. Since Sn : H → H is θn-generalized demimetric, we also have from
Lemma 2.6 that (1−kn)I+knSn is θnkn-generalized demimetric. Furthermore, from

Lemma 2.4 and θnkn > 0, we have that (1− kn)I + knSn is
(
1− 2

θnkn

)
-demimetric

in the sense of [31]. Since 0 < λn
kn

≤ 2
θnkn

= 1−
(
1− 2

θnkn

)
and

(1− λn)I + λnSn =

(
1− λn

kn

)
I +

λn

kn
((1− kn)I + knSn),

we have from Lemma 2.7 that (1 − λn)I + λnSn is quasi-nonexpansive. Putting
sj = xj − rjhjA

∗JF (Axj − TjAxj), from 0 < d ≤ rj ≤ e < f ≤ 2
τjhj∥A∥2 , we have

that for z ∈ G,

∥zj − z∥2 = ∥((1− λj)I + λjSj)sj − ((1− λj)I + λjSj)z∥2

≤ ∥xj − rjhjA
∗JF (Axj − TjAxj)− z∥2

= ∥xj − z∥2 − 2⟨xj − z, rjhjA
∗JF (Axj − TjAxj)⟩

+ ∥rjhjA∗JF (Axj − TjAxj)∥2

≤ ∥xj − z∥2 − 2rj⟨Axj −Az, JF (Axj − ((1− hj)I + hjTj)Axj)⟩(3.1)

+ r2jh
2
j∥A∥2∥JF (Axj − TjAxj)∥2

≤ ∥xj − z∥2 − 2rj
τjhj

∥Axj − ((1− hj)I + hjTj)Axj∥2
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+ r2jh
2
j∥A∥2∥Axj − TjAxj∥2

= ∥xj − z∥2 − 2rj
τjhj

h2j∥Axj − TjAxj∥2 + r2jh
2
j∥A∥2∥Axj − TjAxj∥2

= ∥xj − z∥2 + rjh
2
j (rj∥A∥2 − 2

τjhj
)∥Axj − TjAxj∥2

≤ ∥xj − z∥2

and hence

∥yj − z∥ = ∥(1− αj)xj + αjzj − z∥
≤ (1− αj)∥xj − z∥+ αj∥zj − z∥
≤ (1− αj)∥xj − z∥+ αj∥xj − z∥
= ∥xj − z∥.

Then G ⊂ Cj+1. We have by mathematical induction that G ⊂ Cn for all n ∈ N.
Moreover, since

{z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥} = {z ∈ H : ∥yn − z∥2 ≤ ∥xn − z∥2}

= {z ∈ H : ∥yn∥2 − ∥xn∥2 ≤ 2⟨yn − xn, z⟩},
it is closed and convex. Applying these facts inductively, we obtain that Cn are
nonempty, closed, and convex for all n ∈ N, and hence {xn} is well defined.

Let C0 =
∩∞

n=1Cn. Then since C0 ⊃ G ̸= ∅, C0 is nonempty. Let wn = PCnu
for every n ∈ N. Then, by Lemma 2.8, we have wn → w0 = PC0u. Since a metric
projection on H is nonexpansive, it follows that

∥xn − w0∥ ≤ ∥xn − wn∥+ ∥wn − w0∥
= ∥PCnun − PCnu∥+ ∥wn − w0∥
≤ ∥un − u∥+ ∥wn − w0∥

and hence xn → w0.
Since w0 ∈ C0 ⊂ Cn+1, we have ∥yn − w0∥ ≤ ∥xn − w0∥ for all n ∈ N. Tending

n → ∞, we get that yn → w0. Then we have that

(3.2) ∥xn − yn∥ ≤ ∥xn − w0∥+ ∥w0 − yn∥ → 0.

From yn − xn = (1− αn)xn + αnzn − xn = αn(zn − xn), we also have that

∥yn − xn∥ = αn∥zn − xn∥ ≥ a∥zn − xn∥
and hence

(3.3) ∥zn − xn∥ → 0.

On the other hand, from (3.1) we know that for z ∈ G,

∥zn − z∥2 ≤ ∥xn − z∥2 + rnh
2
n(rn∥A∥2 −

2

τnhn
)∥Axn − TnAxn∥2.

Then we get that

rnh
2
n(

2

τnhn
− rn∥A∥2)∥Axn − TnAxn∥2 ≤ ∥xn − z∥2 − ∥zn − z∥2

= (∥xn − z∥ − ∥zn − z∥)(∥xn − z∥+ ∥zn − z∥)
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≤ ∥xn − zn∥(∥xn − z∥+ ∥zn − z∥).

Since 0 < d ≤ rn ≤ e < f ≤ 2
τnhn∥A∥2 and ∥xn − zn∥ → 0, we have that

(3.4) lim
n→∞

∥Axn − TnAxn∥ = 0.

Since xn → w0 and A is bounded and linear, we have that {Axn} converges strongly
to Aw0 and hence {Axn} converges weakly to Aw0. Since a family {Tn} satisfies
the condition (I) and limn→∞ ∥Axn−TnAxn∥ = 0, we have that Aw0 ∈ ∩∞

n=1F (Tn)
and hence w0 ∈ A−1 ∩∞

n=1 F (Tn). We show that w0 ∈ ∩∞
n=1F (Sn). Putting sn =

xn − rnhnA
∗JF (Axn − TnAxn), we have that

∥sn − zn∥ = ∥sn − ((1− λn)I + λnSn)sn∥ = ∥λn(sn − Snsn)∥ ≥ λ0∥sn − Ssn∥.

Furthemore, we have that ∥sn − xn∥ = ∥rnhnA∗JF (Axn − TnAxn)∥ → 0. We have
from ∥sn − zn∥ ≤ ∥sn −xn∥+ ∥xn − zn∥ and (3.3) that ∥sn − zn∥ → 0. This implies
that

(3.5) lim
n→∞

∥sn − Snsn∥ = 0.

Since ∥sn − xn∥ → 0, we also have that {sn} converges strongly to w0 and hence
{sn} converges weakly to w0. Since {Sn} satisfies the condition (I), we have w0 ∈
∩∞
n=1F (Sn). This implies that w0 ∈ G.
Since G is nonempty, closed and convex, there exists z0 ∈ G such that z0 = PGu.

From xn+1 = PCn+1un+1, we have that

∥un+1 − xn+1∥ ≤ ∥un+1 − y∥

for all y ∈ Cn+1. Since z0 ∈ G ⊂ Cn+1, we have that

(3.6) ∥un+1 − xn+1∥ ≤ ∥un+1 − z0∥.

From z0 = PGu, w0 ∈ G and (3.9), we have that

∥u− z0∥ ≤ ∥u− w0∥ = lim
n→∞

∥un+1 − xn+1∥

≤ lim
n→∞

∥un+1 − z0∥ = ∥u− z0∥.

Then we get that ∥u − w0∥ = ∥u − z0∥ and hence z0 = w0. Therefore, we have
xn → w0 = z0. This completes the proof. □

Next, using the shrinking projection method [34], we prove a strong convergence
theorem of finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in two Banach spaces.

Theorem 3.2. Let E and F be uniformly convex and smooth Banach spaces and let
JE and JF be the duality mappings on E and F , respectively. Let {θn} and {τn} be
sequences of real numbers with θn, τn ̸= 0. Let {Sn} be a sequence of θn-generalized
demimetric mappings of E into E satisfying the condition (I) and ∩∞

n=1F (Sn) ̸= ∅
and let {Tn} be a sequence of τn-generalized demimetric mappings of F into F
satisfying the condition (I) and ∩∞

n=1F (Tn) ̸= ∅. Let {kn} and {hn} be sequences
of real numbers with θnkn > 0 and τnhn > 0, respectively. Let A : E → F be a
bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
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Suppose that G := ∩∞
n=1F (Sn) ∩ A−1(∩∞

n=1F (Tn)) ̸= ∅. For x1 ∈ E and C1 = E,
let {xn} be a sequence generated by

zn = xn − rnhnJ
−1
E A∗JF (Axn − TnAxn),

yn = ((1− kn)I + knSn)zn,

Cn+1 = {z ∈ Cn : ⟨zn − z, JE(xn − zn)⟩ ≥ 0}
and θnkn⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},

xn+1 = PCn+1x1, ∀n ∈ N,

where a, b, c, d ∈ R, {rn} ⊂ (0,∞) and {kn}, {hn} ⊂ R satisfy the following:

0 < a ≤ |hn|, 0 < b ≤ |kn|, θnkn ≤ c

and 0 < d ≤ rn ≤ 1

τnhn∥A∥2

for all n ∈ N. Then {xn} converges strongly to a point w1 ∈ G, where w1 = PGx1.

Proof. Since Sn is θn-generalized demimetric and Tn is τn-generalized demimetric,
from Lemma 2.5, F (Sn) and F (Tn) are closed and convex. Furthermore, since A is
bounded and linear, G is also closed and convex. It also follows that Cn are closed
and convex for all n ∈ N. We show that G ⊂ Cn for all n ∈ N. It is obvious that
G ⊂ C1 = E. Suppose that G ⊂ Cj for some j ∈ N. To show G ⊂ Cj+1, let us
show that ⟨zj − z, JE(xj − zj)⟩ ≥ 0 and θnkn⟨zj − z, JE(zj − yj)⟩ ≥ ∥zj − yj∥2 for all
z ∈ G. Since (1− kj)I + kjSj is θjkj-generalized demimetric and (1− hj)I + hjTj

is τjhj-generalized demimetric, we have that, for all z ∈ G,

⟨zj − z, JE(xj − zj)⟩ = ⟨zj − xj + xj − z, JE(xj − zj)⟩
= ⟨−rjhjJ

−1
E A∗JF (Axj − TjAxj)

+ xj − z, JE(rjhjJ
−1
E A∗JF (Axj − TjAxj))⟩

= ⟨−rjJ
−1
E A∗JF (Axj − ((1− hj)I + hjTj)Axj)

+ xj − z, rjA
∗JF (Axj − ((1− hj)I + hjTj)Axj)⟩

≥ −r2j∥A∥2∥Axj − ((1− hj)I + hjTj)Axj∥2(3.7)

+ ⟨Axj −Az, rjJF (Axj − ((1− hj)I + hjTj)Axj)⟩
≥ −r2j∥A∥2∥Axj − ((1− hj)I + hjTj)Axj∥2

+
rj
τjhj

∥Axj − ((1− hj)I + hjTj)Axj∥2

= rj
( 1

τjhj
− rj∥A∥2)∥Axj − ((1− hj)I + hjTj)Axj∥2

≥ 0

and

θjkj⟨zj − z, JE(zj − yj)⟩ − ∥zj − yj∥2

= θjkj⟨zj − z, JE(zj − ((1− kj)I + kjSj)zj)⟩
− ∥zj − ((1− kj)I + kjSj)zj∥2(3.8)
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≥ ∥zj − ((1− kj)I + kjSj)zj∥2 − ∥zj − ((1− kj)I + kjSj)zj∥2

= 0.

Then G ⊂ Cj+1. We have by mathematical induction that G ⊂ Cn for all n ∈ N.
This implies that {xn} is well defined.

Since G is nonempty, closed and convex, there exists w1 ∈ G such that w1 =
PGx1. From xn = PCnx1, we have that

∥x1 − xn∥ ≤ ∥x1 − y∥

for all y ∈ Cn. Since w1 ∈ G ⊂ Cn, we have that

(3.9) ∥x1 − xn∥ ≤ ∥x1 − w1∥.

Let C0 =
∩∞

n=1Cn. Since C0 ⊃ G ̸= ∅, we have that C0 is nonempty. Since
C0 = M-limn→∞Cn and xn = PCnx1 for every n ∈ N, by Lemma 2.8 we have that

(3.10) xn → z0 = PC0x1.

We have from xn+1 ∈ Cn+1 that

⟨zn − xn+1, JE(xn − zn)⟩ ≥ 0

and hence

⟨zn − xn + xn − xn+1, JE(xn − zn)⟩ ≥ 0.

This implies that

⟨xn − xn+1, JE(xn − zn)⟩ ≥ ∥zn − xn∥2.

Since ∥xn − xn+1∥ → 0 from (3.10), we get that xn − zn → 0.
On the other hand, we know that

∥xn − zn∥ = ∥JE(xn − zn)∥ = ∥rnA∗JF (Axn − ((1− hn)I + hnTn)Axn)∥

and

τnhn⟨xn − z,A∗JF (Axn − ((1− hn)I + hnTn)Axn)⟩
= τnhn⟨Axn −Az, JF (Axn − ((1− hn)I + hnTn)Axn)⟩
≥ ∥Axn − ((1− hn)I + hnTn)Axn)∥2

= h2n∥Axn − TnAxn)∥2.

Since limn→∞ ∥xn − zn∥ = 0, we have that

lim
n→∞

∥A∗JF (Axn − ((1− hn)I + hnTn)Axn)∥ = 0.

Then we get from h2n ≥ a2 > 0 that

(3.11) lim
n→∞

∥Axn − TnAxn∥ = 0.

Furthermore, we have from xn+1 ∈ Cn+1 that

θnkn⟨zn − xn+1, JE(zn − yn)⟩ ≥ ∥zn − yn∥2

and hence

θnkn⟨zn − xn + xn − xn+1, JE(zn − yn)⟩ ≥ ∥zn − yn∥2.
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From ∥xn − xn+1∥ → 0 and ∥xn − zn∥ → 0, we have that limn→∞ ∥yn − zn∥ = 0.
Since ∥yn − zn∥ = |kn|∥zn − Snzn∥ ≥ b∥zn − Snzn∥, we get that

(3.12) lim
n→∞

∥zn − Snzn∥ = 0.

Since xn → z0 and {Sn} satisfies the condition (I), we have from (3.12) that
z0 ∈ ∩∞

n=1F (Sn). Furthermore, since A is bounded and linear, we have that {Axn}
converges strongly to Az0. Since {Tn} satisfies the condition (I), we have Az0 ∈
∩∞
n=1F (Tn). Therefore, z0 ∈ G.
From w1 = PGx1, z0 ∈ G and (3.9), we have that

∥x1 − w1∥ ≤ ∥x1 − z0∥ = lim
n→∞

∥x1 − xn∥ ≤ ∥x1 − w1∥.

Then we get that ∥x1 − w1∥ = ∥x1 − z0∥ and hence z0 = w1. Therefore, we have
xn → z0 = w1. This completes the proof. □

4. Applications

In this section, using Theorems 3.1 and 3.2, we get new strong convergence theo-
rems which are connected with the split common fixed point problem with families
of generalized demimetric mappings in Hilbert spaces and Banach spaces. We know
the following result obtained by Marino and Xu [19]; see also [36].

Lemma 4.1 ([19, 36]). Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → H
be a k-strict pseudo-contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

Using Lemma 4.1, we obtain the following result.

Lemma 4.2. Let H be a Hilbert space, let C be a nonempty, closed and convex sub-
set of H and let s, t ∈ [0, 1). Let S, T : C → H be s, t-strict pseudo-contractionsuchs,
respectively, such that F (S)∩F (T ) ̸= ∅. Let S1 = sI+(1−s)S and T1 = tI+(1−t)T
and let {γn} be a sequence of real numbers. Assume that there exist a, b ∈ R such
that 0 < a ≤ γn ≤ b < 1 for all n ∈ N. If Tn = γnS1 + (1 − γn)T1 for all n ∈ N,
then ∩∞

n=1F (Tn) = F (S) ∩ F (T ) and {Tn} satisfies the condition (I).

Proof. Since S and T are s, t-strict pseudo-contractions and F (S) ∩ F (T ) ̸= ∅,
S1 = sI + (1− s)S and T1 = tI + (1− t)T are quasi-nonexpansive mappings. Using
this, we have from (2.2) that, for z0 ∈ F (S) ∩ F (T ), z ∈ ∩∞

n=1F (Tn) and n ∈ N,
∥z − z0∥2 = ∥Tnz − z0∥2

= ∥(γnS1 + (1− γn)T1)z − z0∥2

= ∥γn(S1z − z0) + (1− γn)(T1z − z0)∥2

= γn∥S1z − z0∥2 + (1− γn)∥T1z − z0∥2 − γn(1− γn)∥S1z − T1z∥2

≤ γn∥z − z0∥2 + (1− γn)∥z − z0∥2 − γn(1− γn)∥S1z − T1z∥2

= ∥z − z0∥2 − γn(1− γn)∥S1z − T1z∥2.

This means that γn(1 − γn)∥S1z − T1z∥2 ≤ 0. Since 0 < a ≤ γn ≤ b < 1 for all
n ∈ N, we have S1z = T1z. From

∥S1z − z∥ = ∥γnS1z + (1− γn)S1z − z∥
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= ∥(γnS1 + (1− γn)T1)z − z∥
= ∥z − z∥ = 0,

we have that S1z = z and hence Sz = z. Similarly, we have that Tz = z. This im-
plies that ∩∞

n=1F (Tn) ⊂ F (S)∩F (T ). It is obvious that F (S)∩F (T ) ⊂ ∩∞
n=1F (Tn).

Thus ∩∞
n=1F (Tn) = F (S) ∩ F (T ).

Suppose that {zn} is a bounded sequence and zn−Tnzn → 0. Then we have from
(2.1) and (2.2) that, for z ∈ ∩∞

n=1F (Tn),

∥zn − z∥2 = ∥zn − Tnzn + Tnzn − z∥2

≤ ∥Tnzn − z∥2 + 2⟨zn − Tnzn, zn − z⟩
= ∥γnS1zn + (1− γn)T1zn − z∥2 + 2⟨zn − Tnzn, zn − z⟩
= γn∥S1zn − z∥2 + (1− γn)∥T1zn − z∥2

− γn(1− γn)∥S1zn − T1zn∥2 + 2⟨zn − Tnzn, zn − z⟩
≤ γn∥zn − z∥2 + (1− γn)∥zn − z∥2

− γn(1− γn)∥S1zn − T1zn∥2 + 2⟨zn − Tnzn, zn − z⟩
= ∥zn − z∥2 − γn(1− γn)∥S1zn − T1zn∥2 + 2⟨zn − Tnzn, zn − z⟩

and hence

γn(1− γn)∥S1zn − T1zn∥2 ≤ 2⟨zn − Tnzn, zn − z⟩.

Since zn − Tnzn → 0 and {zn} is bounded, we have that S1zn − T1zn → 0. Using
this, we have that

(1− s)∥zn − Szn∥ = ∥zn − S1zn∥
= ∥zn − Tnzn + Tnzn − S1zn∥
≤ ∥zn − Tnzn∥+ ∥Tnz − S1zn∥
= ∥zn − Tnzn∥+ (1− γn)∥T1zn − S1zn∥
→ 0.

If a subsequence {zni} of {zn} converges weakly to w, then we have from Lemma
4.1 and zn−Szn → 0 that w ∈ F (S). Similarly, w ∈ F (T ). Thus every weak cluster
point {zn} belongs to F (S) ∩ F (T ) = ∩∞

n=1F (Tn). This completes the proof. □

Using Theorem 3.1, we get the following strong convergence theorems in Hilbert
spaces and Banach spaces.

Theorem 4.3. Let H1 and H2 be Hilbert spaces and let s, t ∈ [0, 1). Let S, T :
C → H be s, t-strict pseudo-contractions, respectively, such that F (S) ∩ F (T ) ̸= ∅
and let U, V : H2 → H2 be nonexpansive mappings with F (U) ∩ F (V ) ̸= ∅. Let
{γn} and {δn} be sequences of real numbers. Assume that there exists s, t, u, v ∈ R
such that 0 < s ≤ γn ≤ t < 1 and 0 < u ≤ δn ≤ v < 1 for all n ∈ N. Let
A : H1 → H2 be a bounded linear operator such that A ̸= 0. Suppose that G :=
F (S) ∩ F (T ) ∩ A−1(F (U) ∩ F (V )) ̸= ∅. Let {un} be a sequence in H1 such that
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un → u. For x1 ∈ H1 and C1 = H1, let {xn} be a sequence generated by

sn = xn − rnA
∗(Axn − (δnU + (1− δn)V )Axn),

zn = (γn(sI + (1− s)S) + (1− γn)(tI + (1− t)T ))sn,

yn = (1− αn)xn + αnzn,

Cn+1 = {z ∈ H1 : ∥yn − z∥ ≤ ∥xn − z∥} ∩ Cn,

xn+1 = PCn+1un+1, ∀n ∈ N,

where a, d, e ∈ R, {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following:

0 < a ≤ αn ≤ 1 and 0 < d ≤ rn ≤ e <
1

∥A∥2

for all n ∈ N. Then the sequence {xn} converges strongly to a point x0 ∈ G, where
x0 = PGu.

Proof. Since S and T are s, t-strict pseudo-contractions of H1 into H1, respectively,
Sn = γn(sI + (1− s)S) + (1− γn)(tI + (1− t)T ) is a nonexpansive mapping. Since
U and V are nonexpansive mappings of H2 into H2, Tn = δnU + (1 − δn)V is
a nonexpansive mapping. From F (S) ∩ F (T ) ̸= ∅ and F (U) ∩ F (V ) ̸= ∅, Sn =
γn(sI + (1 − s)S) + (1 − γn)(tI + (1 − t)T ) and Tn = δnU + (1 − δ)V are quasi-
nonexpansive mappings and hence they are 2-generalized demimetric mappings.
Furthermore, {Sn} and {Tn} satisfy the condition (I) from Lemma 4.2. Putting
kn = 1, hn = 1 and λn = 1 in Theorem 3.1, we obtain the desired result from
Theorem 3.1. □

Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. A family S = {T (t) : t ∈ [0,∞)} of mappings of C into itself satisfying the
following conditions is said to be a one-parameter nonexpansive semigroup on C:

(1) For each t ∈ [0,∞), T (t) is nonexpansive;
(2) T (0) = I;
(3) T (t+ s) = T (t)T (s) for every t, s ∈ [0,∞);
(4) for each x ∈ C, t 7→ T (t)x is continuous.

Theorem 4.4. Let H1 and H2 be Hilbert spaces. Let S, T : H1 → H1 be commuta-
tive generalized hybrid mappings with F (S) ∩ F (T ) ̸= ∅ and define

Sn =
1

(1 + n)2

n∑
k=0

n∑
i=0

SkT i

for all n ∈ N. Let S = {T (t) : t ∈ [0,∞)} be a one-parameter nonexpansive
semigroup on H2 with the common fixed point set F (S) = ∩t∈[0,∞)F (T (t)) ̸= ∅.
Define Tnx = 1

tn

∫ tn
0 T (s)xds for all x ∈ H2 and n ∈ N with tn → ∞. Let A :

H1 → H2 be a bounded linear operator such that A ̸= 0. Suppose that G :=
F (S) ∩ F (T ) ∩ A−1F (S) ̸= ∅. Let {un} be a sequence in H such that un → u. For
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x1 ∈ H1 and C1 = H1, let {xn} be a sequence generated by
zn = Sn

(
xn − rnA

∗(Axn − TnAxn)
)
,

yn = (1− αn)xn + αnzn,

Cn+1 = {z ∈ H1 : ∥yn − z∥ ≤ ∥xn − z∥} ∩ Cn,

xn+1 = PCn+1un+1, ∀n ∈ N,

where a, d, e ∈ R and {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following:

0 < a ≤ αn ≤ 1 and 0 < d ≤ rn ≤ e <
1

∥A∥2

for all n ∈ N. Then the sequence {xn} converges strongly to a point x0 ∈ G, where
x0 = PGu.

Proof. Since S and T are generalized hybrid and F (S) ∩ F (T ) ̸= ∅, Sn is quasi-
nonexpansive and ∩∞

n=0F (Sn) = F (S) ∩ F (T ). We also have from [12, Lemma
3.1] that {Sn} satisfies the condition (I). Furthermore, since Tn is a nonexpansive
mapping of H2 into itself, from (1) or (2) in Examples, Tn is 2-generalized demi-
metric. We also know from [24] that ∩∞

n=1F (Tn) = F (S). Furthermore, let {zn}
be a bounded sequence of H2 such that zn − Tnzn → 0. Then we have from [22]
that zn − T (s)zn → 0 for all s ∈ [0,∞). Sinve T (s) is nonexpansive, every weak
cluster point of {zn} belongs to F (T (s)); see [26]. Then, every weak cluster point
of {zn} belongs to ∩∞

n=1F (Tn) = F (S). This means that the family {Tn} satisfies
the condition (I). Putting kn = 1, hn = 1 and λn = 1 in Theorem 3.1, we obtain
the desired result from Theorem 3.1. □

Using Theorem 3.1, we also have the following theorem for the split common null
point problem in Banach spaces; see also Hojo and Takahashi [12].

Theorem 4.5. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let G and B be
maximal monotone operators of H and F , respectively. Let Js and Qt be the metric
resolvents of G for s > 0 and B for t > 0, respectively. Let A : H → F be a bounded
linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A. Suppose
that G−10 ∩ A−1(B−10) ̸= ∅. Let {un} be a sequence in H such that un → u. For
x1 ∈ H and C1 = H, let {xn} be a sequence generated by

zn = Jsn
(
xn − rnA

∗JF (Axn −QtnAxn)
)
,

yn = (1− αn)xn + αnzn,

Cn+1 = {z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥} ∩ Cn,

xn+1 = PCn+1un+1, ∀n ∈ N,

where a, b, c, d, e ∈ R, {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) and {sn}, {tn} ⊂ (0,∞) satisfy
the following:

0 < a ≤ αn ≤ 1, sn ≥ b > 0, tn ≥ c > 0 and 0 < d ≤ rn∥A∥2 ≤ e < 2

for all n ∈ N. Then {xn} converges strongly to a point z0 ∈ G−10 ∩ A−1(B−10),
where z0 = PG−10∩A−1(B−10)x1.
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Proof. Since Qtn is the metric resolvent of B for tn > 0, from (4) in Examples,
Qtn is 1-generalized demimetric. We also have that if {zn} is a bounded sequence
in F such that zn − Qtnzn → 0, then every weak cluster point of {zn} belongs to
B−10 = ∩∞

n=1F (Qtn). In fact, suppose that {zni} is a subsequence of {zn} such that
zni ⇀ p. Since Qtn is the metric resolvent of B, we have that

JF (zn −Qtnzn)/tn ∈ BQtnzn

for all n ∈ N; see [5, 25]. From the monotonicity of B, we have

0 ≤
⟨
u−Qtni

zni , v
∗ −

JF (zni −Qtni
zni)

tni

⟩
for all (u, v∗) ∈ B and i ∈ N. Taking i → ∞, we get that ⟨u − p, v∗⟩ ≥ 0 for all
(u, v∗) ∈ B. Since B is a maximal monotone operator, we have

p ∈ B−10 = ∩∞
n=1F (Qtn).

This means that the family {Qtn} satisfies the condition (I). On the other hand,
since Jsn is the metric resolvent (the resolvent) of G on a Hilbert space H, it is
1-generalized demimetric. Furthermore, as in the proof of {Qtn}, {Jsn} satisfies the
condition (I). Therefore, we have the desired result from Theorem 3.1. □

Similarly, using Theorem 3.2, we have the following results.

Theorem 4.6. Let H1 and H2 be Hilbert spaces and let s, t ∈ [0, 1). Let S, T : C →
H be s, t-strict pseudo-contractionsuchs, respectively, such that F (S) ∩ F (T ) ̸= ∅
and let U, V : H2 → H2 be nonexpansive mappings with F (U) ∩ F (V ) ̸= ∅. Let
{γn} and {δn} be sequences of real numbers. Assume that there exists s, t, u, v ∈ R
such that 0 < s ≤ γn ≤ t < 1 and 0 < u ≤ δn ≤ v < 1 for all n ∈ N. Let
A : H1 → H2 be a bounded linear operator such that A ̸= 0. Suppose that G :=
F (S) ∩ F (T ) ∩ A−1(F (U) ∩ F (V )) ̸= ∅. For x1 ∈ H1 and C1 = H1, let {xn} be a
sequence generated by

zn = xn − rnA
∗(Axn − (δnU + (1− δn)V )Axn),

yn = (γn(sI + (1− s)S) + (1− γn)(tI + (1− t)T ))zn,

Cn+1 = {z ∈ Cn : ⟨zn − z, xn − zn⟩ ≥ 0}
and 2⟨zn − z, zn − yn⟩ ≥ ∥zn − yn∥2},

xn+1 = PCn+1x1, ∀n ∈ N,

where d ∈ R and {rn} ⊂ (0,∞) satisfy the following:

0 < d ≤ rn ≤ 1

∥A∥2

for all n ∈ N. Then the sequence {xn} converges strongly to a point w1 ∈ G, where
w1 = PGx1.

Theorem 4.7. Let H1 and H2 be Hilbert spaces. Let S, T : H1 → H1 be commuta-
tive generalized hybrid mappings with F (S) ∩ F (T ) ̸= ∅ and define

Sn =
1

(1 + n)2

n∑
k=0

n∑
i=0

SkT i
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for all n ∈ N. Let S = {T (t) : t ∈ [0,∞)} be a one-parameter nonexpansive
semigroup on H2 with the common fixed point set F (S) = ∩t∈[0,∞)F (T (t)) ̸= ∅.
Define Tnx = 1

tn

∫ tn
0 T (s)xds for all x ∈ H2 and n ∈ N with tn → ∞. Let A :

H1 → H2 be a bounded linear operator such that A ≠ 0. Suppose that G :=
F (S) ∩ F (T ) ∩ A−1F (S) ̸= ∅. For x1 ∈ E and C1 = E, let {xn} be a sequence
generated by

zn = xn − rnA
∗(Axn − TnAxn),

yn = Snzn,

Cn+1 = {z ∈ Cn : ⟨zn − z, xn − zn⟩ ≥ 0}
and 2⟨zn − z, zn − yn⟩ ≥ ∥zn − yn∥2},

xn+1 = PCn+1x1, ∀n ∈ N,

where d ∈ R and {rn} ⊂ (0,∞) satisfy the following:

0 < d ≤ rn ≤ 1

∥A∥2

for all n ∈ N. Then the sequence {xn} converges strongly to a point w1 ∈ G, where
w1 = PGx1.

Using Theorem 3.2, we also have the following theorem for the split common null
point problem in two Banach spaces;

Theorem 4.8. Let E and F be uniformly convex and smooth Banach spaces and
let JE and JF be the duality mappings on E and F , respectively. Let G and B
be maximal monotone operators of E into E∗ and F into F ∗, respectively. Let Js
and Qt be the metric resolvents of G for s > 0 and B for t > 0, respectively. Let
A : E → F be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint
operator of A. Suppose that G := G−10∩A−1(B−10) ̸= ∅. For x1 ∈ E and C1 = E,
let {xn} be a sequence generated by

zn = xn − rnJ
−1
E A∗JF (Axn −QtnAxn),

yn = Jsnzn,

Cn+1 = {z ∈ Cn : ⟨zn − z, JE(xn − zn)⟩ ≥ 0}
and ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},

xn+1 = PCn+1x1, ∀n ∈ N,

where b, c, d ∈ R and {rn} ⊂ (0,∞) satisfy the following:

sn ≥ b > 0, tn ≥ c > 0 and 0 < d ≤ rn ≤ 2

∥A∥2

for all n ∈ N. Then the sequence {xn} converges strongly to a point w1 ∈ G, where
w1 = PGx1.
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