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A NEW RESOLVENT OPERATOR APPROACH FOR SOLVING
A GENERAL VARIATIONAL INCLUSION PROBLEM
INVOLVING XOR OPERATION WITH CONVERGENCE
AND STABILITY ANALYSIS

IQBAL AHMAD, CHIN-TZONG PANG, RAIS AHMAD, AND IMRAN ALI

ABSTRACT. This work is focused on the construction of a new resolvent operator
using XOR operation and it is shown that it is single-valued, comparison and
Lipschitz continuous. We apply this new resolvent operator approach to solve a
general variational inclusion problem which also involves XOR operation. Finally,
we prove some results for existence of solution, convergence of iterative sequences
generated by Ishikawa type iterative algorithm and stability analysis for general
variational inclusion problem.

1. INTRODUCTION

2

The term “resolvent” was a term coined by Fredholm in the 19** century when he

initiated a study of integral equations arising from the study of partial differential
equations. The resolvent captures the spectral properties of an operator in the
analytic structure of the functional. The resolvent operator technique is important
to study the existence of solution and to develop iterative procedures for several
types of variational inequalities and their generalizations.

To study wide class of nonlinear problems arising in many diverse fields of pure
mathematics, applied and basic sciences, the techniques based on variational in-
equalities theory are very effective, see [8, 9, 10, 14, 18]. A useful and important
generalization of variational inequalities is a variational inclusion problem intro-
duced and studied by Hassouni and Moudafi [19], which is applicable to solve many
problems related to optimization and control, nonlinear programming, engineering,
elasticity theory, economics and game theory etc., see [1, 2, 4, 5, 7, 11, 13].

Further, Adly [1], Chang [8], Ahmad and Ansari [4], Fang and Huang [15, 16],
Chang et al. [9], Fang et al. [17] and others studied the properties of many kinds of
resolvent operators related to generalized variational inequalities (inclusions) etc..

Many problems related to ordered variational inequalities and ordered equations
were studied by H-G Li together with his co-authors, see [24, 25]. In a slight different
direction some work is done by I. Ahmad et al., see [3, 6].
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Motivated by the applications of above mentioned works, in this paper, we in-
troduced a new resolvent operator involving XOR operation and prove some of its
properties. Using this approach, we solve a variational inclusion problem involving
XOR operation. We prove an existence result, a convergence result as well as a
result for stability analysis.

2. PRELIMINARIES

Throughout this paper, we suppose that H,, is a real ordered positive Hilbert space
endowed with a norm || - | and an inner product (-,-), d is the metric induced by
the norm || - || and 2% is the family of all nonempty subsets of H,.

For the presentation of the results, let us demonstrate some known definitions
and results.

Definition 2.1 ([12, 27]). A nonempty subset C' of 1, is called

(7) a normal cone if there exists a constant N > 0 such that for 0 <z <y, we
have |[z]| < N][y]-
(1) for any z,y € Hp, z <y ifand only if y —z € C.
(#i7) = and y are said to be comparative to each other if and only if, we have
either x <y or y < x and is denoted by = o y.

Definition 2.2 ([27]). For arbitrary elements x,y € H,, lub{z,y} and glb{z,y}
mean least upper bound and greatest upper bound of the set {z,y}. Suppose
lub{z,y} and glb{x,y} exist, some binary operations are defined as follows:
(1) zVy=lub{z,y};

(i1) z Ay = glb{z, y};

(i) z@y = (v —y)V(y—a);

() 20y =(r—-y)A(y— =)
The operations V, A, ® and ® are called OR, AND, XOR and XNOR operations,
respectively.

Lemma 2.3 ([12]). If x < y, then lub{z,y} and glb{x,y} exist, x —y x y —x and
0<(z-y)V(y—=),

Lemma 2.4 ([12]). For any natural number n, x < y, and y, — y* as n — oo,
then x o y*.

Proposition 2.5 ([12, 22, 24]). Let & be an XOR operation and ® be an XNOR
operation. Then the following relations hold:
(') r0r=0,20y=y0r=—(r®y)=—(yd ),
i1) if x < 0, then —x 0 <z < 2 & 0;
(“) (Az) & (Ay) = [A(z © y);
() 0< Dy, ifrxy;
v) if x <y, then x ®y =0 if and only if x = y;
(vi) (@+9) 6 (u+v) > (Ou) + (y ©v);
(vii) (z+9) ® (u+v) > (2 ©v) + (y © u);
(viii) if x,y and w are comparative to each other, then (x ®y) <z ® w + w B y;
(iz) ax® pr=|a—Plz=(a® Bz, ifr x0,V z,y,u,v € Hp and o, B, X € R.
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Proposition 2.6 ([12]). Let C' be a normal cone in H, with normal constant N,
then for each x,y € H,, the following relations hold:
(1) 0@ 0] = 0] = 0
(1) [l vyl < [zl V[lyll < [zl + [lyl;
(iii) lz @yl < llz —yl < Nlz & yl|;
(i) if x ocy, then [z &yl = [z —y.
Definition 2.7 ([22]). Let A : H,, — H, be a single-valued mapping.
(i) A is said to be comparison mapping, if for each z,y € H,, o y then
A(z) x A(y), © < A(x) and y < A(y).
(7i) A is said to be strongly comparison mapping, if A is a comparison mapping
and A(z) < A(y) if and only if x  y, for any x,y € H,,.

Definition 2.8 ([20]). A mapping A : H, — H,, is said to be S-ordered compression
mapping, if A is a comparison mapping and

Alx) D Aly) < Bz dy), for 0 < B < 1.

Definition 2.9 ([22, 25]). Let M : H, — 2" be a set-valued mapping. Then
(i) M is said to be a comparison mapping, if for any v, € M(x), x x v, and if
x < y, then for any v, € M(z) and any vy, € M(y), vz X vy, ¥V z,y € Hp;
(7i) a comparison mapping M is said to be a-non-ordinary difference mapping,
if for each z,y € Hp, v, € M(x) and vy € M(y) such that

(vz D vy) & a(z®y) =0;

(7i7) a comparison mapping M is said to be #-ordered rectangular, if there exists
a constant § > 0, for any z,y € H,, there exist v, € M(x) and v, € M(y)
such that

(vz O vy, —(z DY) > 0llz & y”27
holds.

Now, we introduce some new definitions of XOR-ordered strongly compression
mapping, XOR-NODSM mapping and a resolvent operator associated with XOR-
NODSM mapping.

Definition 2.10. A mapping M : H, — 2Mr is said to be \-XOR-ordered strongly
monotone compression mapping, if z o y, then there exists a constant A > 0 such
that

AMug @vy) > 2@y, Va,y € Hp, vy € M(x),vy € M(y).

Definition 2.11. Let A : H, — H, be a strongly comparison and S-ordered com-

pression mapping. Then, a comparison set-valued mapping M : H,, — 2Mr is said to
be (a, A)-XOR-NODSM if M is a a-non-ordinary difference mapping and A\-XOR-
ordered strongly monotone mapping and [A & AM|(H,) = H,, for A\, B, > 0.

Definition 2.12. Let A : H, — H, be a strongly comparison and [-ordered
compression mapping. Suppose that M : H, — 2% is a set-valued, (a, \)-XOR-
NODSM mapping. The resolvent operator 7, /\AM : Hp — H, associated with A and
M is defined by 7

(2.1) Ti(z) = [A@ AM]| 7 (2),Vz € H,,
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where A > 0 is a constant.

Definition 2.13 ([26]). Let S, T : H,, — H, be the single-valued mappings, zg € H,
and let

Tny1 = ST, zp)

defines an iterative sequence which yields a sequence of points {z,} in H,. Suppose
that F(T) = {x € Hp : Tx = x} # () and {z,} converges to a fixed point z* of T
Let {un} C H, and

ﬂn = ||un+1 - S(T’ un)”
If lim,,_y o0 ¥, = 0, which implies that w,, — x*, then the iterative sequence {z,} is
said to be T-stable or stable with respect to T

Lemma 2.14 ([28]). Let {xn} be a nonnegative real sequence and {(,} be a real
sequence in [0,1] such that Y 7 (= oo. If there exists a positive integer m such
that

(2'2) Xn < (1 - gn)Xn + Cnﬁm Vn > m,
where n, > 0, for alln >0 and n, — 0 (n — 0), then lim, o Xn = 0.

Now, we show that the resolvent operator defined by (2.1) is single-valued, a
comparison mapping as well as Lipschitz continuous.

Proposition 2.15. Let A : H, — H, be a [3-ordered compression mapping and
M :H, — 2Mr be the set-valued 0-ordered rectangular mapping with OX > 5. Then
the resolvent operator j/(}M : Hp — Hp is a single-valued, for all X > 0.

Proof. For any given u € H,, and a constant A > 0, let z,y € [A® AM]~Y(u). Then,
let
1
Vyp = X(U@ A(x)) € M(x),

and

vy = 1 (0 Aly)) € M(y).

Using (i) and (4¢) of Proposition 2.5, we have

0O, = (O AE) O (s AW)

_ %[(u @ A(z)) ® (u® A(y))]

_ _§[<u@ A(z)) @ (u® A(y))]

= uwewe (4@ e Aw)

— oo (A e Aw)

> > =

< —[Al@) © A(y)].
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Thus, we have
1
(2.3) v © vy < —[A() © A(y)].

Since M is B-ordered rectangular mapping, A is S-ordered compression mapping
and using (2.3), we have

Olzoyl* < (ve © vy, —(z D Y))
1
< (~1A@ ® AW) @ o y)
< AR e Ap).rey)
< JBeey),ey)
e
= Sleeyl?
ie.,
dleeyl’ < Slreyl,
(9-%)\@@;1!\2 < 0, for O) > 5,

which implies that
lz@y|=0=>z®y=0.
Therefore, x = y. Hence the resolvent operator 7. /(4M is single-valued, for A > 5. O

Proposition 2.16. Let M : H, — 2%» be a (a, \)-XOR-NODSM set-valued map-
ping with respect to j/\“}M. Let A : H, — H, be a strongly comparison mapping
with respect to J/{‘}M. Then the resolvent operator JXL}M : Hp — Hyp is a comparison
mapping.

Proof. Let M be a (a, A\)-XOR-NODSM set-valued mapping with respect to J;\“M.
That is, M is a-non-ordinary difference and A-XOR-ordered strongly monotone
comparison mapping with respect to j/\AM so that = j/(“M(x). For any z,y € H,,
let z oc y and 7 7

(24) ver = 1 (1 AT (@))) € M(T ()

and

(25) vy = 50 ® AT () € (T (w).
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Since M is A-XOR-ordered strongly monotone mapping, using (2.4) and (2.5), we
have

(rdy) < Mg @ Uy*)

oy < (20 AT @) o (vo AT Y)
@ey) < @eye (AKu@) e ATW))
0 < AT (@) ® AT ()
0 < AT @) - AT )| V AT W) — AT ()]
0 < (AT @) — AT ()] or 0 < [T W) - AT ().

Thus, we have

AT (@) = AT () or AT () = AT (@),
which implies that

AT (2)) o< AT ().

Since A is strongly comparison mapping with respect to J, )f}M. Therefore, J )‘:‘M(:U) o
J fM(y). That is, the resolvent operator J, ;‘M is a comparison mapping. O

Proposition 2.17. Let M : H, — 2" be a (o, \)-XOR-NODSM set-valued map-
ping with respect to j)f‘M' Let A : H, — H, be a comparison and B-ordered com-
pression mapping with respect to ij, for ax > B. Then the following condition
holds:

Tit(@) & T0) < gy (@ )

Vx,y € Hp,1.e., the resolvent operator is Lipschitz continuos.

Proof. Let x,y € Hp, uy = j)‘f}M(x), Uy = j/\“}M(y), and let
1 1
Vgrr = X(a: ® A(ug)) € M(uy) and vye = X(y ® A(uy)) € M(uy).

As M be an (a, \)-XOR-NODSM set-valued mapping with respect to jjf}M and A
is p-ordered compression mapping with respect to ‘7/\‘4M. It follows that M is also
an a-non-ordinary difference mapping with respect to J /{L}M, we have

(2.6) (Vgre @ Vyer ) B (g B uy) =0,
and
v B = 5[0® Aw) @ (y© Alu))

_ %[(x Dy) ® (A(uz) & A(uy))]

IN

%[(m B y) B Blug B uy).
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From (2.6), we have

g ®uy) = Vger D Vyes
< Jl@®y) ®Hu 0w,
ie.,
aX(uz Buy) < [(z@y) & Blug D uy).
Now,

(a/\(ux@uy))@(ﬁ(ux@uy)) < (z0y)e0=xdy
(@A & B) (ue ®uy) <

It follows that u, @ uy < (W) (z @ y) and consequently, we have

rdy.

T (@) ® Tt (y) < (@@ y).

_
(aX® p

3. FORMULATION OF THE PROBLEM AND EXISTENCE RESULT

Let C' C H, be a normal cone with constant N. Let P : H,, — H, be the single-
valued mapping and M : H, — 2Mr be a set-valued mapping. We consider the
following problem:

Find x € H,, such that
(3.1) 0€ P(z) ® M(z).
We call problem (3.1) as general ordered variational inclusion problem involving
XOR operation (in short, GOVIP).
Below we list some special cases of problem (3.1).
(1) If M is single-valued and M(x) = F(x,g(z)), then GOVIP (3.1) becomes
the problem of finding x € H, such that
(3.2) P() @ F(x, g(x)) > 0.
Problem (3.2) is introduced and studied by Li [21].
(2) If P =0, then GOVIP (3.1) reduces to the problem of finding z € #,, such
that
(3.3) 0€e M(x).
Problem (3.3) is introduced and studied by Li [22].
(731) If M is single-valued and M (x) = F'(g(x)), then problem (3.3) becomes the
problem of finding x € H, such that
(3.4) Flg(x)) > 0.

Problem (3.4) is introduced and studied by Li [20].
Hence, we claim that our problem is much more general that many existing

problems in the literature. The following lemma is a fixed point formulation of
GOVIP (3.1).
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Lemma 3.1. The GOVIP (3.1) admits a solution x € H,, if and only if it satisfies
the following equation:

(3.5) z = J{u\P(z) & A(z))],

where A > 0 is constant.

Proof. Proof is a direct consequence of the definition of resolvent operator (2.1). O

Theorem 3.2. Let P/A : H, — H, be the single-valued mappings such that P
is comparison, T-ordered compression mapping and A is comparison and [-ordered
compression mapping, respectively. Suppose that M : H, — 2% s a (a, \)-XOR-
NODSM set-valued mapping. In addition, if M o< A, A x P and for all A\, > 0,
such that the following conditions are satisfied:

{rwwn < lo2%8,

(3.6) o> B,

then, GOVIP (3.1) admits a solution x* € H,, which is a fized point ofj)‘:‘M[)\P(a:*)EB
Proof. By Proposition 2.16, if 1 o« z9, then
T AP() ® A())(x1) o Ty INP() @ A())(2).

Since P is 7-ordered compression, A is B-ordered compression mapping and using
Proposition 2.17, we have

0 < j{‘M[AP( )@ AQ)(z1) ® J{,‘M[AP(.) @ A()](22)

< M@B 21) © \P() @ A()](22))
= m( [AP(z1) ® A(z1)] ® [A\P(x2) ® A(“;?)])
e, 55 (NPE) © P © [A@) © A)
< W( AT (x1 @ 22)] @ [B(21 & mz)])
- T@B( A7 @ Bl ©22))
_ (Mreps)
ERCEE A
(3.7) 0 < T AP() © AO(21) & T P() @ AL (22) < U(21 & 22),
where ¥ = w

(aA® B)
Using (3.7), Definition 2.1 and Proposition 2.6, we have

(3.8) | AP © AO)](@1) = T IAP() @ A (2)]| < NI lllzy - o).



GENERAL VARIATIONAL INCLUSION PROBLEM INVOLVING XOR OPERATION 421

It is clear from (3.6), that |¥| < 3. It follows that from (3.8) that j)f}M[)\P(.)@A(.)]
is contraction mapping. Therefore, there exists a unique z* € H, such that

ot = T IAP(z*) & A(zY)].
By Lemma 3.1, z* is a unique solution of GOVIP (3.1), which is a fixed point of
TP (x*) & A(z")]. O
4. CONVERGENCE AND STABILITY ANALYSIS

First we establish an Ishikawa type iterative algorithm based on Lemma 3.1 for
finding the approximate solution of GOVIP (3.1), and then we prove a convergence
result and a result for stability of the iterative sequence generalized by the proposed
algorithm.

Iterative Algorithm 4.1. Let A, P : H,, — H,, be the single-valued mappings and
M:H, — 2Mr be a set-valued mapping. Given any zg € H,, compute the sequence
{z,,} defined by the following iterative scheme:

Tn+l = (1 - an)xn + an (ij[)‘P(yn) S3] A(Z/n)]) + anQnp,

Yn = (1= bp)n + b (j/(‘}M[)\P(acn) ® A(:cn)]) ¥ byfn.

Let {u,} be any sequence in H, and define {1J,,} by

O = ( i1 — [(1 — ) + an (JfM[Ap(tn) ® A(tn)]> + anan}
to = (1= bu)un + b (T4 AP () @ A(un)]) + buB,

(4.1)

)

(4.2)

where 0 < ap, b, <1, >0 ja, =00,V n >0, {o,} and {S,} are two sequences in
H,, introduced to take into account the possible inexact computation provided that
anp ®0=0a, and 8, ®0=05,,Vn>0.

Remark 4.1. If b, = 0,V n > 0, then Algorithm 4.1 becomes Mann type iterative
algorithm. Also, we remark that for suitable choices of operators involved in Algo-
rithm 4.1, we can easily obtain many more algorithms studied by several authors
for solving ordered variational inclusion problems, see e.g. [3, 6, 22, 23, 24, 25].

Theorem 4.2. Let M, A and P be the same as in Theorem 3.2 such that all the
conditions of Theorem 3.2 are satisfied. Additionally if the following conditions are
satisfied:

(4.3)

(A7 @ B)| < lad @ 8| min{,1};
al > f,

and limy, o0 || V (—a)|| = limp oo ||Bn V (=Bn)|| = 0, then
(I) the sequence {x,} generated by Algorithm 4.1 converges strongly to the
unique solution x* of GOVIP (3.1).
(II) Moreover, if 0 < m < ay, then limy, o0 uy, = z* if and only if lim, o ¥, = 0,
where U, is defined in (4.2) i.e., the sequence {x,} generated by (4.1) is
stable with respect to j/{‘}M.
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Proof. (I). First, we show that the sequence {x,} converges strongly to the unique
solution z* of GOVIP (3.1). Theorem 3.2 implies that z* is a unique solution of
GOVIP (3.1). Then, we have

w 2* = (1 — an)z* + an (j/(‘}M[)\P(m*) ® A(:c*)])
' = (1 — by)a* + by (j;}M[AP(a;*) @ A(a:*)]).
Using Algorithm 4.1, (4.4), Proposition 2.5 and Proposition 2.17, it follows that

0 < zpy1 @ z*

- [(1 — Q)T + an (ij[AP(yn) ® A(?/n)]) + ano‘”]

&[(1 = an)e” +an (TIPE") © A@")]) + an0]

< (1 —apn)(zn @ x*) + an(oy, ©0)
tan | (TP © Al)]) @ (TuAP@E) © A@) )|
(4.5) < (1 —ap)(xn ® ) + Vay(yn @ %) + an(an © 0),
_(Arep)
where ¥ = (ar@ B

We evaluate,
0 < y,®x"

= (1= b)an + b (Tu VP (n) © A(20)]) + buba
&[(1 = bu)a” + bu (T NP@") & A@)]) + ba0)]
(1= bp) (20 ® %) + bu (B @ 0)
+bu | (T AP @) © A()]) @ (T APE") @ Al")))]
< (1 =bp)(zn @ 2*) + Vb (2, D %) + bp(Bn ©0).
Combining (4.5) and (4.6), it follows that

IN

(4.6)

0 < zpy1 B2
< (1=ap)(zn ® %) + Yan [(1 = by)(@n © %) + Wby (3,  z¥)
+by (B ® 0)] + an(an @ 0)
(4.7) < (1= an(1 =20)) (@, ® 2") + an [Uby(Br @ 0) + (an, @ 0)].

Using definition of normal cone and Proposition 2.6, we have
[#n41 — 2" < N1 —an(l —20))[|lz, — 27|

Wb, |18,V (= B)|| + [l Vv <—an>u>
(1—20) ’

+Nan(1 - 2@)(

(4.8)
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3 bn n —Pn n —Gn *
By setting 7, = “eelfn( (61_)%!0‘ Yl vy = Jlan — 2*], G = Nag(1 - 29),
inequality (4.8) can be rewritten as

From Lemma 2.14 and using the hypothesis lim,,_,« ||an V (=) || = limy o0 || Bn V
(=Bn)|l = 0, we deduce that x, — 0, as n — oo, and so {x,} converges strongly to
a unique solution z* of GOVIP (3.1).

(IT). Let H(z*) = ij [AP(x*) ® A(z*)]. Using Algorithm 4.1 and Proposition 2.5,
we obtain

0 < upp1®x*
< Upi1 D ((1 — ap)Un + anH(t,) + anan)
+((1 = an)un + anH(tn) + anoy) ® ((1 — an)z™ + ap H(z"))
< [un+1 @ ((1 — ap)Up, + anH(t,) + anan)]
+(1 = an)(up ® %) + an(H(t,) ® H(x¥)) + an(ay, & 0)
< Junt1 @ (1 = an)un + anH(tn) + anoy,)]
(4.10) +(1 —an)(up ® ) + ap¥(t, ® ") + ap(a, $0),
(AT @ B)
where U = BT
From (4.2) and (4.10), we have
0 < ty®a"
< (1= bp)un + bpH (up) + bnBn) ® (1 = by)z* + b H(z*))
< (1= bp)(un © %) + b (H (un) © H(z")) + bn(Bn ©0)
(4.11) < (1= bp)(up ® %) + bV (up @ x¥) + by (Br @ 0).

Combining (4.10) and (4.11), we obtain
0 < uUpr1®ax*
< [un_H @ ((1 — ap)Up, + anH(t,) + anan)]
+(1 = an)(un ® ) + Vay [(1 = by) (up ® *) + by ¥ (uy ® 2*)
+b,(Bn ® 0)] + an(ay, @ 0)
[unﬂ P ((1 — ap)Un + anH(t,) + anan)]
(4.12) +(1 = an(1 = 20))(up ® %) + an [V, (B ® 0) + (i, ® 0)].

Using the definition of normal cone and Proposition 2.6, (4.12) becomes

IN

IN

Nlunt1 — ((1 = an)un + anH (tn) + ano‘n) |

N1 = an(l = 29))jun — 2"[| + Nan[Lbn||Bn V (=5n) |
+Hlan V (—am)]]

NV, + N(1 —ap(1 —29))||u, — =¥

(4.13) +Nan [$bnl|Bn V (=Bn) | + lom V (—am)]]-

[uns1 =27

IN
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Since 0 < 7 < ay, (4.13) becomes

U

s =< N(U= an(1 = 20)) fun ="+ an N (1= 20) | s

N <\I!bn|]5n V (=Ba)ll + [l V <—an>u)]
(1—20) '
(4.14)

Assume that lim, o ¥, = 0, then lim,, o0 u, = =¥, where lim,, o [|an V (—aw)|| =

lim,, 00 Hﬁn Vv (_/Bn>H =0.

Conversely, suppose that lim,,_,+ u, = *. From (4.9) and lim,,_, » ||at, V(—an)|| =
lim,, o0 || Bn V (—5n)|| = 0, we have

0 < U1 D [(1 = an)un + anH (tn) + anan]
< (Upy1 ®x¥) + [((1 — ap)Up, + anH(t,) + apay,) ® 93*]
< (Ungr @ 2%) + [(1 = an)up + anH (tn) + anan)
S((1 —an) +aH(t n)x*)]
< (U1 ©27) + (1 — an)(un ® 27) + an(H(tn) ® H(z")) + an(an $0)
< (Up1 @ 2™) + (1 —an)(up ® ") + an¥(t, & ) + an(an ®0)
< (s ®27) + (1 — an(1 — 20)) (g & 2°)

(4.15) +an [y (Br @ 0) + (o ® 0)].

Again applying the definition of normal cone and Proposition 2.6, it follows that

U = ||unt1 — [(1 — ap)Uup, + anH(t,) + anan] I
< Nluptr — 2%+ N(1 = an(1 = 2V))[lup — 27|
(4.16) +an N[O, |18 V (=B || + [lem V (=) ],
which implies that
(4.17) Tim 9, = 0.

Hence, the iterative sequence {x,} generated by (4.2) is stable with respect to
Tt O

5. NUMERICAL EXAMPLE

In this section, we construct a numerical example to illustrate our Algorithm 4.1
and to justify Proposition 2.17 and Theorem 4.2.

Example 5.1. Let H = [0,00) with the usual inner product and C' = [0, 1] be a
normal cone with normal constant N = 1. Let A, P : H, — H, be the mappings
defined by

+ -, Vo € Hp.

I

A(z) = % + % and P(z) =

|8
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For each z,y € H,, = oc y. We calculate

Alz) ® Aly) =

IN

ie.,

(G+3)2(+2)
(G+2) -Gl [G+3)
~(5+3)]

1
A(z) © A(y) < 5(96 ®y), Yo,y € Hy.

1_
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Hence, A is j-ordered compression mapping. Similarly, it is easy to check that P

3_

is g-ordered compression mapping.

4

Suppose that M : H, — 2Mr is a set-valued mapping defined by

M(x) = {32+ i},Vm cH,.

Let v, = 3z 4+ 1 € M(z) and vy, = 3y + 1 € M(y), we evaluate

1 1
U B vy = <3m+7>@<3y+*>

4

- [y

4

) ] [l ) o

3z —y)V (y— )]

= 3(zdy) >

and also,

(z®y),

(ve ®vy) ®3(xdy) =0.

Thus, M is a 2-XOR-ordered strongly monotone and 3-non-ordinary difference com-
parison mapping. It is clear that for A = 2, [A & AM|(#H,,) = H,. Hence, M is an
(3,2)-XOR-NODSM set-valued mapping.

The resolvent operator defined by (2.1) associated with A and M is given by

(5.1) Ty () =

2x
ﬁ,VI’ € Hp.
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It is easy to examine that the resolvent operator defined above is comparison and
single-valued mapping. We evaluate

T (@) ® T y) =

1
(7-9)v G- 5)]

A
|
=
3
s

i.e.,

2

Hence, all the conditions of Proposition 2.17 are satisfied.

For A = 2, we calculate

TAP@) @ A@)] = 2AP@ O A@)

- R(Ee (e
= e e (2l
2+

|
~/
8
+
N | =
~—

——su{Qx QE}
BT A U
_ 4z
51

Clearly, 0 is a fixed point of j/(‘}M[AP(.) ® A()].

Let a, = %, b, = nLH, a, = ﬁ and (8, = % It is easy to show that
the sequences {a,}, {bn},{an} and {f,} satisfying the conditions 0 < a,,b, < 1,
Yol gn =00, ap &0 = o, and B, & 0 = Bp.

Now, we can estimate the sequences {x,} and {y,} by the following schemes:

1 7 1
- 1_,) :
ntl ( B OOy S L (R
1 L™ Lo
T xT .
n+1"" " 52(n+1)""  n2(n+1)

Yn =
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It is also verified that condition (4.3) is satisfied. Thus, all the assumptions of
Theorem 4.2 are fulfilled. Hence, the sequence {z,} converges strongly to the
unique solution z* = 0 of GOVIP (3.1).

All codes are written in MATLAB Version 7.13, we have the following different
initial values g = 5 and xy = 10 which shows that the sequence {z,} converges to
z* = 0, shown in Figure 1 and Figure 2.

TABLE 1. The values of x,, with initial values o = 5 and xg = 10

No. of | For xyo =5 | For g = 10
Iteration Tn, Ty
n=1 5 10
n=2 1.86406 3.6579156
n=3 0.40432 0.78350
n=4 0.06366 0.12038
n=>5 0.00871 0.01538
n=6 0.00152 0.00219
n="7 5.15234e-04 | 5.64551e-04
n=~8 2.84366e-04 | 2.87758e-04
n=9 1.83785e-04 | 1.83991e-04
n=10 1.26786e-04 | 1.26793e-04
n=11 9.12714e-05 | 9.12726e-05
n=12 | 6.79151e-05 | 6.79152e-05
n=13 5.19099¢-05 | 5.19099¢-05
n=14 | 4.05704e-05 | 4.05708e-05
n=15 | 3.23115e-05 | 3.23111e-05
n=16 2.61523e-05 | 2.61524e-05
n=17 | 2.14654e-05 | 2.14656e-05
n=18 1.78351e-05 | 1.78352¢-05
n=19 0 0
n=20 0 0

6. CONCLUSION

In this article, we study a general ordered variational inclusion problem based on
XOR operator in a real ordered positive Hilbert space and prove the existence of
solution. We establish an Ishikawa-type iterative algorithms with error terms for
this class of general ordered variational inclusion problem which is more general than
Mann-type and many other iterative schemes studies by several author’s, see e.g.,
[3, 6, 22, 23, 24, 25]. We prove that the iterative sequence generated by the suggested
iterative algorithm converges to a unique solution GONVIP (3.1). Stability analysis
is also discussed. In the last of this paper, we construct a numerical example in
support of Proposition 2.17 and Theorem 4.2.
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0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 1: The convergence of x, with initial value g =5
10 T T T T T T

0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 2: The convergence of x, with initial value x¢ = 10



GENERAL VARIATIONAL INCLUSION PROBLEM INVOLVING XOR OPERATION 429

[1]
2]
3]
[4]
[5]

[6]

(10]
(11]
(12]

(13]

(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
(22]
23]

24]

REFERENCES

S. Adly, Perturbed algorithm and semsitivity analysis for a genmeral class of variational inclu-
sions, J. Math. Anal. Appl. 201 (1996), 609-630.

H. Amann, On the number of solutions of monlinear equations in ordered Banch spaces, J.
Funct. Anal. 11 (1972), 346-384.

I. Ahmad, C. T. Pang, R. Ahmad and M. Ishtyak, System of Yosida inclusions involving XOR
operator, J. Nonlinear Convex Anal. 18 (2017), 831-845.

R. Ahmad and Q. H. Ansari, An iterative algorithm for gemeralized nonlinear variational
inclusions, Appl. Math. Lett. 13 (2000), 23-26.

R. P. Agarwal, Y. J. Cho and N. J. Huang, Sensitivity analysis for strongly nonlinear quasi-
variational inclusions, Appl. Math. Lett. 13 ( (2000), 19-24.

I. Ahmad, R. Ahmad and J. Igbal, A Resolvent approach for solving a set-valued variational
inclusion problem using weak-RRD set-valued mapping, Korean J. Math. 24 (2016), 199-213.
C. Baiocchi and A. Capelo, Variational and Quasi- Variational Inequalities, Wiley, New York,
1984.

S. S. Chang, Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 248
(2000), 438—-454.

S. S. Chang, Y. J. Cho, B. S. Lee and I. H. Jung, Generalized set-valued variational inclusions
in Banach spaces, J. Math. Anal. Appl. 246 (2000), 409-422.

G. Cohen, Auziliary problem principle extend to variational inequality, J. Optim. Theory Appl.
59 (1988), 325-333.

R.W. Cottle, F. Giannessi and J. Lions, Variational Inequality: Theory and Applications,
Wiley, New York, 1980.

Y. H. Du, Fized points of increasing operators in ordered Banach spaces and applications,
Appl. Anal. 38 (1990), 1-20.

V. F. Demyanov, G. E. Stavroulakis, L. N. Polyakova and P. D. Panagiotopoulos, Quasid-
ifferentiability and Nonsmooth Modelling in Mechanics, Engineering and FEconomics, Kluwer
Academic publishers, Dordrecht, 1996.

X. P. Ding, Existence and algorithms of solutions for nonlinear mized variational-like inequal-
ities in Banach spaces, J. Comput. Appl. Math. 157 (2003), 419-434.

Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for vari-
ational inclusions, Appl. Math. Comput. 145 (2003), 795-803.

Y. P. Fang and N. J. Huang, Approzimate solutions for non-linear variational inclusions with
(H, n)-monotone operator, Research Report, Sichuan University, 2003.

Y. P. Fang, N. J. Huang and H. B. Thompson, A new system of variational inclusions with
(H,n)-monotone operators in Hilbert spaces, Comput. Math. Appl. 49 (2005), 365-374.

D. J. Ge and V. LakshmiKantham, Coupled fixed points of nonlinear operators with applica-
tions, Nonlinear Anal. TMA 11 (1987), 623-632.

A. Hassouni and A. Moudafi, A perturbed algorithms for variational inequalities, J. Math.
Anal. Appl. 185 (1994), 706-712.

H. G. Li, Approxzimation solution for general nonlinear ordered variatinal inequalities and
ordered equations in ordered Banach space, Nonlinear Anal. Forum 13 (2008), 205-214.

H. G. Li, Approzimation solution for a new class general nonlinear ordered variatinal inequal-
ities and ordered equations in ordered Banach space, Nonlinear Anal. Forum 14 (2009), 89-97.
H. G. Li, A nonlinear inclusion problem involving (o, \)-NODM set-valued mappings in ordered
Hilbert space, Appl. Math. Lett. 25 (2012), 1384-1388.

H. G. Li, Nonlinear inclusion problems for ordered RME set-valued mappings in ordered Hilbert
spaces, Nonlinear Funct. Anal. Appl. 16 (2001), 1-8.

H. G. Li, L. P. Li and M. M. Jin, A class of nonlinear mized ordered inclusion problems for
ordered (a g, \)-ANODM set-valued mappings with strong comparison mapping A, Fixed Point
Theory Appl. 2014 (2014): 79.



430 I. AHMAD, C.T. PANG, R. AHMAD, AND I. ALI

[25] H. G. Li, X. B. Pan, Z. Y. Deng and C. Y. Wang, Solving GNOVI frameworks involving
(vg» M) -weak-GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl.
(2014), 2014: 146.

[26] M. O. Osilike, Stability results for the Ishikawa fized point iteration procedure, Ind. J. Pure
Appl. Math. 26 (1995), 937-945.

[27] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974.

[28] X. L. Weng, Fized point iteration for local srictly pseudocontractive mapping, Proc. A.M.S.
113 (1991), 727-731.

Manuscript received 17 July 2018

I. AHUMAD
College of Engineering, Qassim University, P.O. Box 6677, Buraidah 51452, Al-Qassim, Saudi
Arabia

E-mail address: igbalahmad.1200gmail.com

C.T. PANG
Corresponding Author. Department of Information Management, and Innovation Centre for Big
Data and Digital Convergence, Yuan Ze University, Chung-Li 32003, Taiwan

E-mail address: imctpang@saturn.yzu.edu.tw

R. AHMAD
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
FE-mail address: raisain 123@rediffmail.com

I. ALl
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail address: imran97591@gmail.com





