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Motivated by the applications of above mentioned works, in this paper, we in-
troduced a new resolvent operator involving XOR operation and prove some of its
properties. Using this approach, we solve a variational inclusion problem involving
XOR operation. We prove an existence result, a convergence result as well as a
result for stability analysis.

2. preliminaries

Throughout this paper, we suppose that Hp is a real ordered positive Hilbert space
endowed with a norm ∥ · ∥ and an inner product ⟨·, ·⟩, d is the metric induced by
the norm ∥ · ∥ and 2Hp is the family of all nonempty subsets of Hp.

For the presentation of the results, let us demonstrate some known definitions
and results.

Definition 2.1 ([12, 27]). A nonempty subset C of Hp is called

(i) a normal cone if there exists a constant N > 0 such that for 0 ≤ x ≤ y, we
have ||x|| ≤ N ||y||.

(ii) for any x, y ∈ Hp, x ≤ y if and only if y − x ∈ C.
(iii) x and y are said to be comparative to each other if and only if, we have

either x ≤ y or y ≤ x and is denoted by x ∝ y.

Definition 2.2 ([27]). For arbitrary elements x, y ∈ Hp, lub{x, y} and glb{x, y}
mean least upper bound and greatest upper bound of the set {x, y}. Suppose
lub{x, y} and glb{x, y} exist, some binary operations are defined as follows:

(i) x ∨ y = lub{x, y};
(ii) x ∧ y = glb{x, y};
(iii) x⊕ y = (x− y) ∨ (y − x);
(iv) x⊙ y = (x− y) ∧ (y − x).

The operations ∨,∧, ⊕ and ⊙ are called OR, AND, XOR and XNOR operations,
respectively.

Lemma 2.3 ([12]). If x ∝ y, then lub{x, y} and glb{x, y} exist, x− y ∝ y − x and
0 ≤ (x− y) ∨ (y − x).

Lemma 2.4 ([12]). For any natural number n, x ∝ yn and yn → y∗ as n → ∞,
then x ∝ y∗.

Proposition 2.5 ([12, 22, 24]). Let ⊕ be an XOR operation and ⊙ be an XNOR
operation. Then the following relations hold:

(i) x⊙ x = 0, x⊙ y = y ⊙ x = −(x⊕ y) = −(y ⊕ x);
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0;
(iii) (λx)⊕ (λy) = |λ|(x⊕ y);
(iv) 0 ≤ x⊕ y, if x ∝ y;
(v) if x ∝ y, then x⊕ y = 0 if and only if x = y;
(vi) (x+ y)⊙ (u+ v) ≥ (x⊙ u) + (y ⊙ v);
(vii) (x+ y)⊙ (u+ v) ≥ (x⊙ v) + (y ⊙ u);
(viii) if x, y and w are comparative to each other, then (x⊕ y) ≤ x⊕ w + w ⊕ y;
(ix) αx⊕ βx = |α− β|x = (α⊕ β)x, if x ∝ 0, ∀ x, y, u, v ∈ Hp and α, β, λ ∈ R.
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Proposition 2.6 ([12]). Let C be a normal cone in Hp with normal constant N,
then for each x, y ∈ Hp, the following relations hold:

(i) ∥0⊕ 0∥ = ∥0∥ = 0;
(ii) ∥x ∨ y∥ ≤ ∥x∥ ∨ ∥y∥ ≤ ∥x∥+ ∥y∥;
(iii) ∥x⊕ y∥ ≤ ∥x− y∥ ≤ N |x⊕ y∥;
(iv) if x ∝ y, then ∥x⊕ y∥ = ∥x− y∥.

Definition 2.7 ([22]). Let A : Hp → Hp be a single-valued mapping.

(i) A is said to be comparison mapping, if for each x, y ∈ Hp, x ∝ y then
A(x) ∝ A(y), x ∝ A(x) and y ∝ A(y).

(ii) A is said to be strongly comparison mapping, if A is a comparison mapping
and A(x) ∝ A(y) if and only if x ∝ y, for any x, y ∈ Hp.

Definition 2.8 ([20]). A mapping A : Hp → Hp is said to be β-ordered compression
mapping, if A is a comparison mapping and

A(x)⊕A(y) ≤ β(x⊕ y), for 0 < β < 1.

Definition 2.9 ([22, 25]). Let M : Hp → 2Hp be a set-valued mapping. Then

(i) M is said to be a comparison mapping, if for any vx ∈ M(x), x ∝ vx, and if
x ∝ y, then for any vx ∈ M(x) and any vy ∈ M(y), vx ∝ vy, ∀ x, y ∈ Hp;

(ii) a comparison mapping M is said to be α-non-ordinary difference mapping,
if for each x, y ∈ Hp, vx ∈ M(x) and vy ∈ M(y) such that

(vx ⊕ vy)⊕ α(x⊕ y) = 0;

(iii) a comparison mapping M is said to be θ-ordered rectangular, if there exists
a constant θ > 0, for any x, y ∈ Hp, there exist vx ∈ M(x) and vy ∈ M(y)
such that

⟨vx ⊙ vy,−(x⊕ y)⟩ ≥ θ∥x⊕ y∥2,
holds.

Now, we introduce some new definitions of XOR-ordered strongly compression
mapping, XOR-NODSM mapping and a resolvent operator associated with XOR-
NODSM mapping.

Definition 2.10. A mapping M : Hp → 2Hp is said to be λ-XOR-ordered strongly
monotone compression mapping, if x ∝ y, then there exists a constant λ > 0 such
that

λ(vx ⊕ vy) ≥ x⊕ y, ∀x, y ∈ Hp, vx ∈ M(x), vy ∈ M(y).

Definition 2.11. Let A : Hp → Hp be a strongly comparison and β-ordered com-
pression mapping. Then, a comparison set-valued mapping M : Hp → 2Hp is said to
be (α, λ)-XOR-NODSM if M is a α-non-ordinary difference mapping and λ-XOR-
ordered strongly monotone mapping and [A⊕ λM ](Hp) = Hp, for λ, β, α > 0.

Definition 2.12. Let A : Hp → Hp be a strongly comparison and β-ordered
compression mapping. Suppose that M : Hp → 2Hp is a set-valued, (α, λ)-XOR-
NODSM mapping. The resolvent operator J A

λ,M : Hp → Hp associated with A and
M is defined by

(2.1) J A
λ,M (x) = [A⊕ λM ]−1(x), ∀x ∈ Hp,
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where λ > 0 is a constant.

Definition 2.13 ([26]). Let S, T : Hp → Hp be the single-valued mappings, x0 ∈ Hp

and let

xn+1 = S(T, xn)

defines an iterative sequence which yields a sequence of points {xn} in Hp. Suppose
that F (T ) = {x ∈ Hp : Tx = x} ̸= ∅ and {xn} converges to a fixed point x∗ of T .
Let {un} ⊂ Hp and

ϑn = ∥un+1 − S(T, un)∥.
If limn→∞ ϑn = 0, which implies that un → x∗, then the iterative sequence {xn} is
said to be T -stable or stable with respect to T.

Lemma 2.14 ([28]). Let {χn} be a nonnegative real sequence and {ζn} be a real
sequence in [0, 1] such that

∑∞
n=0 ζn = ∞. If there exists a positive integer m such

that

(2.2) χn ≤ (1− ζn)χn + ζnηn, ∀n ≥ m,

where ηn ≥ 0, for all n ≥ 0 and ηn → 0 (n → 0), then limn→∞ χn = 0.

Now, we show that the resolvent operator defined by (2.1) is single-valued, a
comparison mapping as well as Lipschitz continuous.

Proposition 2.15. Let A : Hp → Hp be a β-ordered compression mapping and
M : Hp → 2Hp be the set-valued θ-ordered rectangular mapping with θλ > β. Then
the resolvent operator J A

λ,M : Hp → Hp is a single-valued, for all λ > 0.

Proof. For any given u ∈ Hp and a constant λ > 0, let x, y ∈ [A⊕λM ]−1(u). Then,
let

vx =
1

λ
(u⊕A(x)) ∈ M(x),

and

vy =
1

λ
(u⊕A(y)) ∈ M(y).

Using (i) and (ii) of Proposition 2.5, we have

vx ⊙ vy =
1

λ
(u⊕A(x))⊙ 1

λ
(u⊕A(y))

=
1

λ
[(u⊕A(x))⊙ (u⊕A(y))]

= − 1

λ
[(u⊕A(x))⊕ (u⊕A(y))]

= − 1

λ
[(u⊕ u)⊕ (A(x)⊕A(y))]

= − 1

λ
[0⊕ (A(x)⊕A(y))]

≤ − 1

λ
[A(x)⊕A(y)].
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Thus, we have

vx ⊙ vy ≤ − 1

λ
[A(x)⊕A(y)].(2.3)

Since M is θ-ordered rectangular mapping, A is β-ordered compression mapping
and using (2.3), we have

θ∥x⊕ y∥2 ≤ ⟨vx ⊙ vy,−(x⊕ y)⟩

≤ ⟨− 1

λ
[A(x)⊕A(y)],−(x⊕ y)⟩

≤ 1

λ
⟨A(x)⊕A(y), x⊕ y⟩

≤ 1

λ
⟨β(x⊕ y), x⊕ y⟩

=
β

λ
∥x⊕ y∥2,

i.e.,

θ∥x⊕ y∥2 ≤ β

λ
∥x⊕ y∥2,(

θ − β

λ

)
∥x⊕ y∥2 ≤ 0, for θλ > β,

which implies that

∥x⊕ y∥ = 0 ⇒ x⊕ y = 0.

Therefore, x = y. Hence the resolvent operator J A
λ,M is single-valued, for θλ > β. □

Proposition 2.16. Let M : Hp → 2Hp be a (α, λ)-XOR-NODSM set-valued map-
ping with respect to J A

λ,M . Let A : Hp → Hp be a strongly comparison mapping

with respect to J A
λ,M . Then the resolvent operator J A

λ,M : Hp → Hp is a comparison
mapping.

Proof. Let M be a (α, λ)-XOR-NODSM set-valued mapping with respect to J A
λ,M .

That is, M is α-non-ordinary difference and λ-XOR-ordered strongly monotone
comparison mapping with respect to J A

λ,M so that x ∝ J A
λ,M (x). For any x, y ∈ Hp,

let x ∝ y and

(2.4) vx∗ =
1

λ
(x⊕A(J A

λ,M (x))) ∈ M(J A
λ,M (x))

and

(2.5) vy∗ =
1

λ
(y ⊕A(J A

λ,M (y)) ∈ M(J A
λ,M (y)).
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Since M is λ-XOR-ordered strongly monotone mapping, using (2.4) and (2.5), we
have

(x⊕ y) ≤ λ(vx∗ ⊕ vy∗)

(x⊕ y) ≤
(
x⊕A(J A

λ,M (x))
)
⊕
(
y ⊕A(J A

λ,M (y))
)

(x⊕ y) ≤ (x⊕ y)⊕
(
A(J A

λ,M (x))⊕A(J A
λ,M (y))

)
0 ≤ A(J A

λ,M (x))⊕A(J A
λ,M (y))

0 ≤
[
A(J A

λ,M (x))−A(J A
λ,M (y))

]
∨
[
A(J A

λ,M (y))−A(J A
λ,M (x))

]
0 ≤

[
A(J A

λ,M (x))−A(J A
λ,M (y))

]
or 0 ≤

[
A(J A

λ,M (y))−A(J A
λ,M (x))

]
.

Thus, we have

A(J A
λ,M (x)) ≥ A(J A

λ,M (y)) or A(J A
λ,M (y)) ≥ A(J A

λ,M (x)),

which implies that

A(J A
λ,M (x)) ∝ A(J A

λ,M (y)).

Since A is strongly comparison mapping with respect to J A
λ,M . Therefore, J A

λ,M (x) ∝
J A
λ,M (y). That is, the resolvent operator J A

λ,M is a comparison mapping. □

Proposition 2.17. Let M : Hp → 2Hp be a (α, λ)-XOR-NODSM set-valued map-
ping with respect to J A

λ,M . Let A : Hp → Hp be a comparison and β-ordered com-

pression mapping with respect to J A
λ,M , for αλ > β. Then the following condition

holds:

J A
λ,M (x)⊕ J A

λ,M (y) ≤ 1

(αλ⊕ β)
(x⊕ y),

∀x, y ∈ Hp, i.e., the resolvent operator is Lipschitz continuos.

Proof. Let x, y ∈ Hp, ux = J A
λ,M (x), uy = J A

λ,M (y), and let

vx∗∗ =
1

λ

(
x⊕A(ux)

)
∈ M(ux) and vy∗∗ =

1

λ

(
y ⊕A(uy)

)
∈ M(uy).

As M be an (α, λ)-XOR-NODSM set-valued mapping with respect to J A
λ,M and A

is β-ordered compression mapping with respect to J A
λ,M . It follows that M is also

an α-non-ordinary difference mapping with respect to J A
λ,M , we have

(2.6) (vx∗∗ ⊕ vy∗∗)⊕ α(ux ⊕ uy) = 0,

and

vx∗∗ ⊕ vy∗∗ =
1

λ
[(x⊕A(ux))⊕ (y ⊕A(uy))]

=
1

λ
[(x⊕ y)⊕ (A(ux)⊕A(uy))]

≤ 1

λ
[(x⊕ y)⊕ β(ux ⊕ uy)].
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From (2.6), we have

α(ux ⊕ uy) = vx∗∗ ⊕ vy∗∗

≤ 1

λ
[(x⊕ y)⊕ β(ux ⊕ uy)],

i.e.,

αλ(ux ⊕ uy) ≤ [(x⊕ y)⊕ β(ux ⊕ uy)].

Now, (
αλ(ux ⊕ uy)

)
⊕
(
β(ux ⊕ uy)

)
≤ (x⊕ y)⊕ 0 = x⊕ y(

αλ⊕ β
)(
ux ⊕ uy

)
≤ x⊕ y.

It follows that ux ⊕ uy ≤
(

1
(αλ⊕β)

)
(x⊕ y) and consequently, we have

J A
λ,M (x)⊕ J A

λ,M (y) ≤ 1

(αλ⊕ β)
(x⊕ y).

□

3. Formulation of the problem and existence result

Let C ⊆ Hp be a normal cone with constant N. Let P : Hp → Hp be the single-
valued mapping and M : Hp → 2Hp be a set-valued mapping. We consider the
following problem:

Find x ∈ Hp such that

(3.1) 0 ∈ P (x)⊕M(x).

We call problem (3.1) as general ordered variational inclusion problem involving
XOR operation (in short, GOVIP).

Below we list some special cases of problem (3.1).

(i) If M is single-valued and M(x) = F (x, g(x)), then GOVIP (3.1) becomes
the problem of finding x ∈ Hp such that

(3.2) P (x)⊕ F (x, g(x)) ≥ 0.

Problem (3.2) is introduced and studied by Li [21].
(ii) If P = 0, then GOVIP (3.1) reduces to the problem of finding x ∈ Hp such

that

(3.3) 0 ∈ M(x).

Problem (3.3) is introduced and studied by Li [22].
(iii) If M is single-valued and M(x) = F (g(x)), then problem (3.3) becomes the

problem of finding x ∈ Hp such that

(3.4) F (g(x)) ≥ 0.

Problem (3.4) is introduced and studied by Li [20].

Hence, we claim that our problem is much more general that many existing
problems in the literature. The following lemma is a fixed point formulation of
GOVIP (3.1).
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Lemma 3.1. The GOVIP (3.1) admits a solution x ∈ Hp if and only if it satisfies
the following equation:

(3.5) x = J A
λ,M [λP (x)⊕A(x)],

where λ > 0 is constant.

Proof. Proof is a direct consequence of the definition of resolvent operator (2.1). □

Theorem 3.2. Let P,A : Hp → Hp be the single-valued mappings such that P
is comparison, τ -ordered compression mapping and A is comparison and β-ordered
compression mapping, respectively. Suppose that M : Hp → 2Hp is a (α, λ)-XOR-
NODSM set-valued mapping. In addition, if M ∝ A, A ∝ P and for all λ, α > 0,
such that the following conditions are satisfied:

(3.6)

{
|(|λ|τ ⊕ β)| < |αλ⊕β|

N ;

αλ > β,

then, GOVIP (3.1) admits a solution x∗ ∈ Hp, which is a fixed point of J A
λ,M [λP (x∗)⊕

A(x∗)].

Proof. By Proposition 2.16, if x1 ∝ x2, then

J A
λ,M [λP (.)⊕A(.)](x1) ∝ J A

λ,M [λP (.)⊕A(.)](x2).

Since P is τ -ordered compression, A is β-ordered compression mapping and using
Proposition 2.17, we have

0 ≤ J A
λ,M [λP (.)⊕A(.)](x1)⊕ J A

λ,M [λP (.)⊕A(.)](x2)

≤ 1

(αλ⊕ β)

(
[λP (.)⊕A(.)](x1)⊕ [λP (.)⊕A(.)](x2)

)
=

1

(αλ⊕ β)

(
[λP (x1)⊕A(x1)]⊕ [λP (x2)⊕A(x2)]

)
=

1

(αλ⊕ β)

(
[|λ|(P (x1)⊕ P (x2))]⊕ [A(x1)⊕A(x2)]

)
≤ 1

(αλ⊕ β)

(
[|λ|τ(x1 ⊕ x2)]⊕ [β(x1 ⊕ x2)]

)
=

1

(αλ⊕ β)

(
[|λ|τ ⊕ β](x1 ⊕ x2)

)
=

(|λ|τ ⊕ β)

(αλ⊕ β)
(x1 ⊕ x2),

i.e.,

0 ≤ J A
λ,M [λP (.)⊕A(.)](x1)⊕ J A

λ,M [λP (.)⊕A(.)](x2) ≤ Ψ(x1 ⊕ x2),(3.7)

where Ψ =
(|λ|τ ⊕ β)

(αλ⊕ β)
.

Using (3.7), Definition 2.1 and Proposition 2.6, we have∥∥∥J A
λ,M [λP (.)⊕A(.)](x1)− J A

λ,M [λP (.)⊕A(.)](x2)
∥∥∥ ≤ N |Ψ|∥x1 − x2∥.(3.8)
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It is clear from (3.6), that |Ψ| < 1
N . It follows that from (3.8) that J A

λ,M [λP (.)⊕A(.)]
is contraction mapping. Therefore, there exists a unique x∗ ∈ Hp such that

x∗ = J A
λ,M [λP (x∗)⊕A(x∗)].

By Lemma 3.1, x∗ is a unique solution of GOVIP (3.1), which is a fixed point of
J A
λ,M [λP (x∗)⊕A(x∗)]. □

4. Convergence and stability analysis

First we establish an Ishikawa type iterative algorithm based on Lemma 3.1 for
finding the approximate solution of GOVIP (3.1), and then we prove a convergence
result and a result for stability of the iterative sequence generalized by the proposed
algorithm.

Iterative Algorithm 4.1. Let A,P : Hp → Hp be the single-valued mappings and
M : Hp → 2Hp be a set-valued mapping. Given any x0 ∈ Hp, compute the sequence
{xn} defined by the following iterative scheme:

(4.1)

xn+1 = (1− an)xn + an

(
J A
λ,M [λP (yn)⊕A(yn)]

)
+ anαn,

yn = (1− bn)xn + bn

(
J A
λ,M [λP (xn)⊕A(xn)]

)
+ bnβn.

Let {un} be any sequence in Hp and define {ϑn} by

(4.2)

ϑn =
∥∥∥un+1 −

[
(1− an)un + an

(
J A
λ,M [λP (tn)⊕A(tn)]

)
+ anαn

]∥∥∥,
tn = (1− bn)un + bn

(
J A
λ,M [λP (un)⊕A(un)]

)
+ bnβn,

where 0 ≤ an, bn ≤ 1,
∑∞

n=0 an = ∞, ∀ n ≥ 0, {αn} and {βn} are two sequences in
Hp introduced to take into account the possible inexact computation provided that
αn ⊕ 0 = αn and βn ⊕ 0 = βn, ∀ n ≥ 0.

Remark 4.1. If bn = 0,∀ n ≥ 0, then Algorithm 4.1 becomes Mann type iterative
algorithm. Also, we remark that for suitable choices of operators involved in Algo-
rithm 4.1, we can easily obtain many more algorithms studied by several authors
for solving ordered variational inclusion problems, see e.g. [3, 6, 22, 23, 24, 25].

Theorem 4.2. Let M,A and P be the same as in Theorem 3.2 such that all the
conditions of Theorem 3.2 are satisfied. Additionally if the following conditions are
satisfied:

(4.3)

{
|(|λ|τ ⊕ β)| < |αλ⊕ β| min{ 1

N , 12};
αλ > β,

and limn→∞ ∥αn ∨ (−αn)∥ = limn→∞ ∥βn ∨ (−βn)∥ = 0, then

(I) the sequence {xn} generated by Algorithm 4.1 converges strongly to the
unique solution x∗ of GOVIP (3.1).

(II) Moreover, if 0 < π ≤ an, then limn→∞ un = x∗ if and only if limn→∞ ϑn = 0,
where ϑn is defined in (4.2) i.e., the sequence {xn} generated by (4.1) is
stable with respect to J A

λ,M .
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Proof. (I). First, we show that the sequence {xn} converges strongly to the unique
solution x∗ of GOVIP (3.1). Theorem 3.2 implies that x∗ is a unique solution of
GOVIP (3.1). Then, we havex∗ = (1− an)x

∗ + an

(
J A
λ,M [λP (x∗)⊕A(x∗)]

)
= (1− bn)x

∗ + bn

(
J A
λ,M [λP (x∗)⊕A(x∗)]

)
.

(4.4)

Using Algorithm 4.1, (4.4), Proposition 2.5 and Proposition 2.17, it follows that

0 ≤ xn+1 ⊕ x∗

=
[
(1− an)xn + an

(
J A
λ,M [λP (yn)⊕A(yn)]

)
+ anαn

]
⊕
[
(1− an)x

∗ + an

(
J A
λ,M [λP (x∗)⊕A(x∗)]

)
+ an0

]
≤ (1− an)(xn ⊕ x∗) + an(αn ⊕ 0)

+an

[(
J A
λ,M [λP (yn)⊕A(yn)]

)
⊕
(
J A
λ,M [λP (x∗)⊕A(x∗)]

)]
≤ (1− an)(xn ⊕ x∗) + Ψan(yn ⊕ x∗) + an(αn ⊕ 0),(4.5)

where Ψ =
(|λ|τ ⊕ β)

(αλ⊕ β)
.

We evaluate,

0 ≤ yn ⊕ x∗

=
[
(1− bn)xn + bn

(
J A
λ,M [λP (xn)⊕A(xn)]

)
+ bnβn

]
⊕
[
(1− bn)x

∗ + bn

(
J A
λ,M [λP (x∗)⊕A(x∗)]

)
+ bn0

]
≤ (1− bn)(xn ⊕ x∗) + bn(βn ⊕ 0)

+bn

[(
J A
λ,M [λP (xn)⊕A(xn)]

)
⊕
(
J A
λ,M [λP (x∗)⊕A(x∗)]

)]
≤ (1− bn)(xn ⊕ x∗) + Ψbn(xn ⊕ x∗) + bn(βn ⊕ 0).(4.6)

Combining (4.5) and (4.6), it follows that

0 ≤ xn+1 ⊕ x∗

≤ (1− an)(xn ⊕ x∗) + Ψan
[
(1− bn)(xn ⊕ x∗) + Ψbn(xn ⊕ x∗)

+bn(βn ⊕ 0)
]
+ an(αn ⊕ 0)

≤ (1− an(1− 2Ψ))(xn ⊕ x∗) + an
[
Ψbn(βn ⊕ 0) + (αn ⊕ 0)

]
.(4.7)

Using definition of normal cone and Proposition 2.6, we have

∥xn+1 − x∗∥ ≤ N(1− an(1− 2Ψ))∥xn − x∗∥

+Nan(1− 2Ψ)

(
Ψbn∥βn ∨ (−βn)∥+ ∥αn ∨ (−αn)∥

(1− 2Ψ)

)
.

(4.8)
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By setting ηn = Ψbn∥βn∨(−βn)∥+∥αn∨(−αn)∥
(1−2Ψ) , χn = ∥xn − x∗∥, ζn = Nan(1 − 2Ψ),

inequality (4.8) can be rewritten as

(4.9) χn ≤ (1− ζn)χn + ζnηn.

From Lemma 2.14 and using the hypothesis limn→∞ ∥αn ∨ (−αn)∥ = limn→∞ ∥βn ∨
(−βn)∥ = 0, we deduce that χn → 0, as n → ∞, and so {xn} converges strongly to
a unique solution x∗ of GOVIP (3.1).

(II). Let H(x∗) = J A
λ,M [λP (x∗)⊕A(x∗)]. Using Algorithm 4.1 and Proposition 2.5,

we obtain

0 ≤ un+1 ⊕ x∗

≤ un+1 ⊕
(
(1− an)un + anH(tn) + anαn

)
+
(
(1− an)un + anH(tn) + anαn

)
⊕
(
(1− an)x

∗ + anH(x∗)
)

≤
[
un+1 ⊕

(
(1− an)un + anH(tn) + anαn

)]
+(1− an)(un ⊕ x∗) + an(H(tn)⊕H(x∗)) + an(αn ⊕ 0)

≤
[
un+1 ⊕

(
(1− an)un + anH(tn) + anαn

)]
+(1− an)(un ⊕ x∗) + anΨ(tn ⊕ x∗) + an(αn ⊕ 0),(4.10)

where Ψ =
(|λ|τ ⊕ β)

(αλ⊕ β)
.

From (4.2) and (4.10), we have

0 ≤ tn ⊕ x∗

≤
(
(1− bn)un + bnH(un) + bnβn

)
⊕
(
(1− bn)x

∗ + bnH(x∗)
)

≤ (1− bn)(un ⊕ x∗) + bn(H(un)⊕H(x∗)) + bn(βn ⊕ 0)

≤ (1− bn)(un ⊕ x∗) + bnΨ(un ⊕ x∗) + bn(βn ⊕ 0).(4.11)

Combining (4.10) and (4.11), we obtain

0 ≤ un+1 ⊕ x∗

≤
[
un+1 ⊕

(
(1− an)un + anH(tn) + anαn

)]
+(1− an)(un ⊕ x∗) + Ψan

[
(1− bn)(un ⊕ x∗) + bnΨ(un ⊕ x∗)

+bn(βn ⊕ 0)] + an(αn ⊕ 0)

≤
[
un+1 ⊕

(
(1− an)un + anH(tn) + anαn

)]
+(1− an(1− 2Ψ))(un ⊕ x∗) + an

[
Ψbn(βn ⊕ 0) + (αn ⊕ 0)

]
.(4.12)

Using the definition of normal cone and Proposition 2.6, (4.12) becomes

∥un+1 − x∗∥ ≤ N∥un+1 −
(
(1− an)un + anH(tn) + anαn

)
∥

N(1− an(1− 2Ψ))∥un − x∗∥+Nan
[
Ψbn∥βn ∨ (−βn)∥

+∥αn ∨ (−αn)∥
]

≤ Nϑn +N(1− an(1− 2Ψ))∥un − x∗∥
+Nan

[
Ψbn∥βn ∨ (−βn)∥+ ∥αn ∨ (−αn)∥

]
.(4.13)
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Since 0 < π ≤ an, (4.13) becomes

∥un+1 − x∗∥ ≤ N(1− an(1− 2Ψ))∥un − x∗∥+ anN(1− 2Ψ)

[
ϑn

π(1− 2Ψ)

+

(
Ψbn∥βn ∨ (−βn)∥+ ∥αn ∨ (−αn)∥

(1− 2Ψ)

)]
.

(4.14)

Assume that limn→∞ ϑn = 0, then limn→∞ un = x∗, where limn→∞ ∥αn∨ (−αn)∥ =
limn→∞ ∥βn ∨ (−βn)∥ = 0.

Conversely, suppose that limn→∞ un = x∗. From (4.9) and limn→∞ ∥αn∨(−αn)∥ =
limn→∞ ∥βn ∨ (−βn)∥ = 0, we have

0 ≤ un+1 ⊕
[
(1− an)un + anH(tn) + anαn

]
≤ (un+1 ⊕ x∗) +

[
((1− an)un + anH(tn) + anαn)⊕ x∗

]
≤ (un+1 ⊕ x∗) +

[
((1− an)un + anH(tn) + anαn)

⊕((1− an) + anH(tn)x
∗)
]

≤ (un+1 ⊕ x∗) + (1− an)(un ⊕ x∗) + an(H(tn)⊕H(x∗)) + an(αn ⊕ 0)

≤ (un+1 ⊕ x∗) + (1− an)(un ⊕ x∗) + anΨ(tn ⊕ x∗) + an(αn ⊕ 0)

≤ (un+1 ⊕ x∗) + (1− an(1− 2Ψ))(un ⊕ x∗)

+an
[
Ψbn(βn ⊕ 0) + (αn ⊕ 0)

]
.(4.15)

Again applying the definition of normal cone and Proposition 2.6, it follows that

ϑn = ∥un+1 −
[
(1− an)un + anH(tn) + anαn

]
∥

≤ N∥un+1 − x∗∥+N(1− an(1− 2Ψ))∥un − x∗∥
+anN

[
Ψbn∥βn ∨ (−βn)∥+ ∥αn ∨ (−αn)∥

]
,(4.16)

which implies that

(4.17) lim
n→∞

ϑn = 0.

Hence, the iterative sequence {xn} generated by (4.2) is stable with respect to
J A
λ,M . □

5. Numerical example

In this section, we construct a numerical example to illustrate our Algorithm 4.1
and to justify Proposition 2.17 and Theorem 4.2.

Example 5.1. Let H = [0,∞) with the usual inner product and C = [0, 1] be a
normal cone with normal constant N = 1. Let A,P : Hp → Hp be the mappings
defined by

A(x) =
x

3
+

1

2
and P (x) =

x

2
+

1

4
, ∀x ∈ Hp.



GENERAL VARIATIONAL INCLUSION PROBLEM INVOLVING XOR OPERATION 425

For each x, y ∈ Hp, x ∝ y. We calculate

A(x)⊕A(y) =
(x
3
+

1

2

)
⊕
(y
3
+

1

2

)
=

[(x
3
+

1

2

)
−
(y
3
+

1

2

)]
∨
[(y

3
+

1

2

)
−
(x
3
+

1

2

)]
=

[x
3
− y

3

]
∨
[y
3
− x

3

]
=

1

3

[
(x− y) ∨ (y − x)

]
=

1

3
(x⊕ y)

≤ 1

2
(x⊕ y),

i.e.,

A(x)⊕A(y) ≤ 1

2
(x⊕ y), ∀x, y ∈ Hp.

Hence, A is 1
2 -ordered compression mapping. Similarly, it is easy to check that P

is 3
4 -ordered compression mapping.

Suppose that M : Hp → 2Hp is a set-valued mapping defined by

M(x) =
{
3x+

1

4

}
, ∀x ∈ Hp.

Let vx = 3x+ 1
4 ∈ M(x) and vy = 3y + 1

4 ∈ M(y), we evaluate

vx ⊕ vy =
(
3x+

1

4

)
⊕
(
3y +

1

4

)
=

[(
3x+

1

4

)
−
(
3y +

1

4

)]
∨
[(

3y +
1

4

)
−
(
3x+

1

4

)]
= 3

[
(x− y) ∨ (y − x)

]
= 3(x⊕ y) ≥ (x⊕ y),

and also,

(vx ⊕ vy)⊕ 3(x⊕ y) = 0.

Thus, M is a 2-XOR-ordered strongly monotone and 3-non-ordinary difference com-
parison mapping. It is clear that for λ = 2, [A ⊕ λM ](Hp) = Hp. Hence, M is an
(3, 2)-XOR-NODSM set-valued mapping.

The resolvent operator defined by (2.1) associated with A and M is given by

J A
λ,M (x) =

2x

17
, ∀x ∈ Hp.(5.1)
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It is easy to examine that the resolvent operator defined above is comparison and
single-valued mapping. We evaluate

J A
λ,M (x)⊕ J A

λ,M (y) =
[2x
17

⊕ 2y

17

]
=

[(2x
17

− 2y

17

)
∨
(2y
17

− 2x

17

)]
=

2

17

[
(x− y) ∨ (y − x)

]
=

2

17
(x⊕ y)

≤ 2

11
(x⊕ y),

i.e.,

J A
λ,M (x)⊕ J A

λ,M (y) ≤ 2

11
(x⊕ y), ∀x, y ∈ Hp.

Hence, all the conditions of Proposition 2.17 are satisfied.
For λ = 2, we calculate

J A
λ,M [λP (x)⊕A(x)] =

2[λP (x)⊕A(x)]

17

=
2

17

[
2
(x
2
+

1

4

)
⊕
(x
3
+

1

2

)]
=

2

17

[(
x+

1

2

)
⊕
(x
3
+

1

2

)]
=

2

17

[((
x+

1

2

)
−
(x
3
+

1

2

))
∨
((x

3
+

1

2

)
−
(
x+

1

2

))]
=

2

17

[(2x
3

)
∨
(
− 2x

3

)]
=

2

17
sup

{2x
3
,−2x

3

}
=

4x

51
.

Clearly, 0 is a fixed point of J A
λ,M [λP (.)⊕A(.)].

Let an = 1
n , bn = n

n+1 , αn = n
6n2+1

and βn = 1
n3 . It is easy to show that

the sequences {an}, {bn}, {αn} and {βn} satisfying the conditions 0 ≤ an, bn ≤ 1,∑∞
n=0 an = ∞, αn ⊕ 0 = αn and βn ⊕ 0 = βn.

Now, we can estimate the sequences {xn} and {yn} by the following schemes:

xn+1 =
(
1− 1

n

)
xn +

7

52(2n+ 1)
yn +

1

(6n2 + 1)
,

yn =
1

n+ 1
xn +

7n

52(n+ 1)
xn +

1

n2(n+ 1)
.
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It is also verified that condition (4.3) is satisfied. Thus, all the assumptions of
Theorem 4.2 are fulfilled. Hence, the sequence {xn} converges strongly to the
unique solution x∗ = 0 of GOVIP (3.1).

All codes are written in MATLAB Version 7.13, we have the following different
initial values x0 = 5 and x0 = 10 which shows that the sequence {xn} converges to
x∗ = 0, shown in Figure 1 and Figure 2.

Table 1. The values of xn with initial values x0 = 5 and x0 = 10

No. of For x0 = 5 For x0 = 10

Iteration xn xn
n=1 5 10
n=2 1.86406 3.6579156
n=3 0.40432 0.78350
n=4 0.06366 0.12038
n=5 0.00871 0.01538
n=6 0.00152 0.00219
n=7 5.15234e-04 5.64551e-04
n=8 2.84366e-04 2.87758e-04
n=9 1.83785e-04 1.83991e-04
n=10 1.26786e-04 1.26793e-04
n=11 9.12714e-05 9.12726e-05
n=12 6.79151e-05 6.79152e-05
n=13 5.19099e-05 5.19099e-05
n=14 4.05704e-05 4.05708e-05
n=15 3.23115e-05 3.23111e-05
n=16 2.61523e-05 2.61524e-05
n=17 2.14654e-05 2.14656e-05
n=18 1.78351e-05 1.78352e-05
n=19 0 0
n=20 0 0

6. Conclusion

In this article, we study a general ordered variational inclusion problem based on
XOR operator in a real ordered positive Hilbert space and prove the existence of
solution. We establish an Ishikawa-type iterative algorithms with error terms for
this class of general ordered variational inclusion problem which is more general than
Mann-type and many other iterative schemes studies by several author’s, see e.g.,
[3, 6, 22, 23, 24, 25]. We prove that the iterative sequence generated by the suggested
iterative algorithm converges to a unique solution GONVIP (3.1). Stability analysis
is also discussed. In the last of this paper, we construct a numerical example in
support of Proposition 2.17 and Theorem 4.2.
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Figure 1: The convergence of xn with initial value x0 = 5
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Figure 2: The convergence of xn with initial value x0 = 10
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