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nonexpansive mappings and show that it is well-defined. We apply this mapping
for a ∆-convergence theorem by the Mann algorithm to a common fixed point of
the mappings.

2. Preliminaries

Let (X, d) be a metric space. For x, y ∈ X, a mapping c : [0, l] → X is called a
geodesic with endpoints x and y if c satisfies c(0) = x, c(l) = y and d(c(u), c(v)) =
|u− v| for u, v ∈ [0, l]. If a geodesic with endpoints x and y exists for any x, y ∈ X,
then we call X a geodesic space. Moreover, if a geodesic uniquely exists for each
x, y ∈ X, then we call X a uniquely geodesic space.

Let X be a uniquely geodesic space. For x, y ∈ X, the image of a geodesic
c with endpoints x and y is called a geodesic segment joining x and y, and is
denoted by [x, y]. A geodesic triangle ∆(x, y, z) ⊂ X with vertices x, y, z in X is
the union of geodesic segments joining each pair of vertices. A comparison triangle
∆̄(x̄, ȳ, z̄) ⊂ R2 for ∆(x, y, z) is a triangle such that d(x, y) = ∥x̄− ȳ∥, d(y, z) =
∥ȳ − z̄∥, and d(z, x) = ∥z̄ − x̄∥. If for any p, q ∈ ∆(x, y, z) and their comparison
points p̄, q̄ ∈ ∆̄(x̄, ȳ, z̄), the inequality

d(p, q) ≤ ∥p̄− q̄∥
is satisfied for all triangle in X, then X is called a CAT(0) space, and this inequality
is called the CAT(0) inequality. A Hadamard space is defined as a complete CAT(0)
space.

Let X be a Hadamard space. For t ∈ [0, 1] and x, y ∈ X, there exists unique
z ∈ [x, y] such that d(x, z) = (1− t)d(x, y) and d(y, z) = td(x, y). We denote this z
by tx⊕ (1− t)y. From the CAT(0) inequality, we obtain the following lemma.

Lemma 2.1. Let X be a Hadamard space, x, y, z ∈ X and t ∈ [0, 1]. Then

d(z, tx⊕ (1− t)y)2 ≤ td(z, x)2 + (1− t)d(z, y)2 − t(1− t)d(x, y)2.

Lemma 2.2 ([1, Corollary 1.2.5]). Let X be a Hadamard space. Then for any four
points x0, x1, y0, y1 ∈ X,

d(x0, y1)
2 + d(x1, y0)

2 ≤ d(x0, y0)
2 + d(x1, y1)

2 + 2d(x0, x1)d(y0, y1).

Let X be a Hadamard space and {xn} ⊂ X be a bounded sequence. For any
x ∈ X, we put

r(x, {xn}) = lim sup
n→∞

d(x, xn), r({xn}) = inf
x∈X

r(x, {xn}).

If x ∈ X satisfies that r(x, {xn}) = r({xn}), we call x an asymptotic center of
{xn}. Furthermore, if for any subsequence of {xn}, each asymptotic center is a
unique point x, we say that {xn} is ∆-convergent to x. It means that for {xn} ⊂ X
∆-converging to x and all y ∈ X with x ̸= y, it follows

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

We know that any bounded sequence {xn} ⊂ X has a ∆-convergent subsequence
[4]. Let T be a mapping from X into itself. A mapping T from X into itself is
called a nonexpansive mapping if it satisfies the inequality d(Tx, Ty) ≤ d(x, y) for
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any x, y ∈ X. A point z ∈ X is called a fixed point of T if Tz = z . We denote the
set of all fixed points of T by F (T ).

3. Main results

In this section, we propose a notion of a balanced mapping for a finite family
of nonexpansive mappings. We prove a ∆-convergence theorem for the Mann algo-
rithm of the balanced mapping in a Hadamard space. First we prove a balanced
mapping is well defined. Then we show its nonexpansivenesss and properties of the
set of its fixed points.

Lemma 3.1. Let X be a Hadamard space. Let {T1, T2, . . . , TN} be nonexpansive
mappings from X to X. Let {α1, α2, . . . , αN} ⊂ [0, 1] such that

∑
N
k=1α

k = 1. Then
the set

argmin
y∈X

N∑
k=1

αkd(Tkx, y)
2

consists of one point.

Proof. Let d = infy∈X
∑N

k=1 α
kd(Tkx, y)

2 and {yn} ⊂ X a sequence such that

lim
n→∞

N∑
k=1

αkd(Tkx, yn)
2 = d.

For m,n ∈ N, we have

N∑
k=1

αkd(Tkx,
1

2
yn ⊕ 1

2
ym)2 ≤ 1

2

N∑
k=1

αkd(Tkx, yn)
2 +

1

2

N∑
k=1

αkd(Tkx, ym)2

− 1

4
d(yn, ym)2.

Thus we have

1

4
d(yn, ym)2 ≤ 1

2

N∑
k=1

αkd(Tkx, yn)
2 +

1

2

N∑
k=1

αkd(Tkx, ym)2

−
N∑
k=1

αkd(Tkx,
1

2
yn ⊕ 1

2
ym)2

≤ 1

2

N∑
k=1

αkd(Tkx, yn)
2 +

1

2

N∑
k=1

αkd(Tkx, ym)2 − d.

Hence we obtain {yn} is Cauchy. By the completeness of the Hadamard space, there

exists u = limn→∞ yn. By the continuity of the metric, we get
∑N

k=1 α
kd(Tkx, u)

2 =

infy∈X
∑N

k=1 α
kd(Tkx, y)

2.
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Let u, v ∈ argminy∈X
∑N

k=1 α
kd(Tkx, y)

2. By definition, we have

N∑
k=1

αkd(Tkx, u)
2 ≤

N∑
k=1

αkd(Tkx,
1

2
u⊕ 1

2
v)2

≤ 1

2

N∑
k=1

αkd(Tkx, u)
2 +

1

2

N∑
k=1

αkd(Tkx, v)
2 − 1

4
d(u, v)2.

Therefore we obtain

1

4
d(u, v)2 ≤ −1

2

N∑
k=1

αkd(Tkx, u)
2 +

1

2

N∑
k=1

αkd(Tkx, v)
2.

Similary we obtain

1

4
d(u, v)2 ≤ 1

2

N∑
k=1

αkd(Tkx, u)
2 − 1

2

N∑
k=1

αkd(Tkx, v)
2.

Adding these inequalities, we obtain d(u, v) = 0, and hence u = v. □
From the result above, we can define a new mapping U : X → X by Ux =

argminy∈X
∑N

k=1 α
kd(Tkx, y)

2 for x ∈ X, and we call it a balanced mapping gener-

ated by {T1, T2, . . . , TN} and {α1, α2, . . . , αN}.

Lemma 3.2. Let X be a Hadamard space. Let {T1, T2, . . . , TN} be nonexpansive
mappings from X to X. Let {α1, α2, . . . , αN} ⊂ [0, 1] such that

∑
N
k=1α

k = 1.
Define a mapping U : X → X by

Ux = argmin
y∈X

N∑
k=1

αkd(Tkx, y)
2

for x ∈ X. Then U is a nonexpansive mapping.

Proof. Let t ∈ ]0, 1[ and x, y ∈ X. We may assume that Ux ̸= Uy.

N∑
k=1

αkd(Tkx,Ux)2

≤
N∑
k=1

αkd(Tkx, tUx⊕ (1− t)Uy)2

≤ t

N∑
k=1

αkd(Tkx,Ux)2 + (1− t)

N∑
k=1

αkd(Tkx,Uy)2 − t(1− t)

N∑
k=1

αkd(Ux,Uy)2

= t

N∑
k=1

αkd(Tkx,Ux)2 + (1− t)
N∑
k=1

αkd(Tkx,Uy)2 − t(1− t)d(Ux,Uy)2,

and thus

(1− t)
N∑
k=1

αkd(Tkx,Ux)2 ≤ (1− t)
N∑
k=1

αkd(Tkx,Uy)2 − t(1− t)d(Ux,Uy)2.
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Dividing by 1− t and taking the limit as t → 1, we have

N∑
k=1

αkd(Tkx,Ux)2 ≤
N∑
k=1

αkd(Tkx, y)
2 − d(Ux,Uy)2.(3.1)

Thus we have

d(Ux,Uy)2 ≤
N∑
k=1

αkd(Tkx,Uy)2 −
N∑
k=1

αkd(Tkx,Ux)2.(3.2)

Similarly, we obtain

d(Uy,Ux)2 ≤ −
N∑
k=1

αkd(Tky, Uy)2 +

N∑
k=1

αkd(Tky, Ux)2.(3.3)

By Lemma 2.2, adding (3.2) and (3.3), we have

2d(Ux,Uy)2 ≤ −
N∑
k=1

αkd(Tkx,Ux)2 −
N∑
k=1

αkd(Tky, Uy)2

+

N∑
k=1

αkd(Tkx,Uy)2 +

N∑
k=1

αkd(Tky, Ux)2

≤ 2
N∑
k=1

αkd(Tkx, Tky)d(Ux,Uy).

Since Tk is nonexpansive,

2d(Ux,Uy) ≤ 2
N∑
k=1

αkd(Tkx, Tky) ≤ 2
N∑
k=1

αkd(x, y) = 2d(x, y).

Therefore we have d(Ux,Uy) ≤ d(x, y). □

Lemma 3.3. Let X be a Hadamard space. Let {T1, T2, . . . , TN} be nonexpansive

mappings from X to X such that
∩N

k=1 F (Tk) ̸= ∅. Let {α1, α2, . . . , αN} ⊂ ]0, 1]

such that
∑

N
k=1α

k = 1. Define a mapping U : X → X by

Ux = argmin
y∈X

N∑
k=1

αkd(Tkx, y)
2

for x ∈ X. Then F (U) =
∩

N
k=1F (Tk).



410 T. HASEGAWA AND Y. KIMURA

Proof. For z ∈
∩N

k=1 F (Tk), we have

Uz = argmin
y∈X

N∑
k=1

αkd(Tkz, y)
2

= argmin
y∈X

N∑
k=1

αkd(z, y)2

= argmin
y∈X

d(z, y)2

= z.

Thus z ∈ F (U) and hence
∩N

k=1 F (Tk) ⊂ F (U).

On the other hand, let z ∈ F (U). By (3.1), for w ∈
∩N

k=1 F (Tk) and t ∈ ]0, 1[,
we have

N∑
k=1

αkd(Tkz, z)
2 ≤

N∑
k=1

αkd(Tkz, w)
2 − d(z, w)2

≤
N∑
k=1

αkd(z, w)2 − d(z, w)2

= d(z, w)2 − d(z, w)2

= 0.

Since αk > 0, we obtain Tkz = z for k = 1, 2, . . . , N , and hence F (U) ⊂
∩N

k=1 F (Tk),
which is the desired result. □

In the main theorem, we consider a sequence {Un} of balanced mappings. From

Lemma 3.3, we have F (Un) =
∩N

k=1 F (Tk) for all n ∈ N if {Tk} has a common fixed
point.

Theorem 3.4. Let X be a Hadamard space. Let {T1, T2, . . . , TN} be nonexpansive

mappings from X to X such that
∩N

k=1 F (Tk) ̸= ∅. Let {α1
n, α

2
n, . . . , α

N
n } ⊂ [a, 1] ⊂

]0, 1] such that
∑

N
k=1α

k
n = 1 for every n ∈ N. For n ∈ N, define a mapping

Un : X → X by

Unx = argmin
y∈X

N∑
k=1

αk
nd(Tkx, y)

2

for x ∈ X. Let {δn} ⊂ [c, d] ⊂ ]0, 1[, x1 ∈ X and let {xn} be a sequence in X
generated by

xn+1 = δnxn ⊕ (1− δn)Unxn

for n ∈ N. Then {xn} ∆-converges to an element of
∩N

k=1 F (Tk).
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Proof. First we note that F (Un) =
∩N

k=1 F (Tk) for all n ∈ N. Let z ∈
∩

N
k=1F (Tk).

From Lemma 3.3,

d(xn+1, z)
2 = d(δnxn ⊕ (1− δn)Unxn, z)

2

≤ δnd(xn, z)
2 + (1− δn)d(Unxn, z)

2 − δn(1− δn)d(Unxn, xn)
2

≤ d(xn, z)
2 − δn(1− δn)d(Unxn, xn)

2

≤ d(xn, z)
2.

Thus there exists m = limn→∞ d(xn, z). Since 0 < c(1− d) < δn(1− δn), we obtain
limn→∞ d(Unxn, xn) = 0.

We show limn→∞ d(Tkxn, xn) = 0 for all k = 1, . . . , N . Since {xn} is bounded, it
follows that

m = lim
n→∞

d(xn, z) ≤ lim
n→∞

(d(xn, Unxn) + d(Unxn, z))

= lim
n→∞

d(Unxn, z)

= lim
n→∞

d(Unxn, Unz)

≤ lim
n→∞

d(xn, z) = m.

Thus limn→∞ d(xn, z) = limn→∞ d(Unxn, z) = m. By (3.1), it holds that

N∑
k=1

αk
nd(Tkxn, Unxn)

2 ≤
N∑
k=1

αk
nd(Tkxn, z)

2 − d(z, Unxn)
2

≤
N∑
k=1

αk
nd(xn, z)

2 − d(z, Unxn)
2

= d(xn, z)
2 − d(z, Unxn)

2.

Since 0 < a < αk
n, we get limn→∞ d(Tkxn, Unxn) = 0 and limn→∞ d(Tkxn, xn) = 0

for k = 1, 2, . . . , N . Since {xn} is bounded, there exists a subsequence {xni} of {xn}
which ∆-converges to a point x0 ∈ X. Assume x0 /∈ F (T1). Then we have

lim sup
i→∞

d(xni , x0) < lim sup
i→∞

d(xni , T1x0)

≤ lim sup
i→∞

(d(xni , T1xni) + d(T1xni , T1x0))

≤ lim sup
i→∞

d(xni , x0).

We get a contradiction and x0 ∈ F (T1). Similarly, we can show x0 ∈ F (Tk) for all
k = 1, 2 . . . , N .

Suppose that there are two subsequences {ui} and {vi} of {xn} which ∆-converge

to u0 and v0, respectively. Then it follows that u0, v0 ∈
∩N

k=1 F (Tk) and thus both
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{d(xn, u0)} and {d(xn, v0)} have limits. Suppose that u0 ̸= v0. Then, we have

lim
n→∞

d(xn, u0) = lim
i→∞

d(ui, u0)

< lim
i→∞

d(ui, v0)

= lim
n→∞

d(xn, v0)

= lim
i→∞

d(vi, v0)

< lim
i→∞

d(vi, u0)

= lim
n→∞

d(xn, u0).

We get a contradiction and thus u0 = v0. This shows that {xn} ∆-converges to

x0 ∈
∩N

k=1 F (Tk). □
Remark. Let H be a Hilbert space and x1, . . . , xN ∈ H. Then we can show
argminy∈H

∑N
k=1 α

k ∥xk − y∥2 consists of one point and it coincides with
∑N

k=1 α
kxk.

Indeed, by the parallelogram law, we have

N∑
k=1

αk ∥xk − y∥2 =

∥∥∥∥∥
N∑
k=1

αk(xk − y)

∥∥∥∥∥
2

+
N∑
k=2

k−1∑
j=1

αkαj ∥xk − xj∥2

=

∥∥∥∥∥
N∑
k=1

αkxk − y

∥∥∥∥∥
2

+
N∑
k=2

k−1∑
j=1

αkαj ∥xk − xj∥2 .

Therefore, it attains the minimum when y =
∑N

k=1 α
kxk.
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