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CONVERGENCE ANALYSIS OF MODIFIED PICARD-S HYBRID
WITH ERRORS FOR TOTAL ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS IN CAT(0) SPACES

NUTTAPOL PAKKARANANG, POOM KUMAM*, PRASIT CHOLAMJIAK,
AND NATTAWUT PHOLASA?

ABSTRACT. In this paper, we construct a new type iterative scheme is so call
Picard-S hybrid with errors to prove A-convergence and strong convergence the-
orems under suitable conditions for total asymptotically nonexpansive mappings
in CAT(0) spaces. Our results in the paper improve and extend many results
appeared in the literature. Furthermore, we also illustrate numerical examples of
proposed iterative scheme to compare speed of convergence among the existing
iterative schemes.

1. INTRODUCTION

Let (X, d) be a metric space. A geodesic path joining x € X to y € X (or, more
briefly, a geodesic from z to y) is a mapping ¢ from a closed interval [0,7] C R to
X such that

c(0) =z,c(r) =y, d(c(t), c(s)) = [t — ]
for all s,t € [0,7]. In particular, ¢ is an isometry and d(z,y) = r. The image of ¢ is
call a geodesic (or metric) segment joining x and y. When it is unique, this geodesic
is denoted by [z, y]. We denote the point w € [z, y] such that d(z,w) = ad(z,y) by
w = (1 —a)r® ay, where a € [0, 1].

The space (X,d) is called a geodesic space if any two points of X are joined by
a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x,y € X. A subset D C X is said to be convex if D
includes geodesic segment joining every two points of itself. A geodesic triangle
A(z1,x2,x3) in a geodesic metric space (X, d) consist of three points (the vertices
of A) and a geodesic segment between each pair of vertices (the edges of A). A
comparison triangle for geodesic triangle (or A(z1,z2,23)) in (X,d) is a triangle
A(x1, 79, 23) = A(T1,T2,73) in the Euclidean plane R? such that

dR2 (Eia fj) = d(xlv l‘j)
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for 7,5 € {1,2,3}. A geodesic metric space is called a CAT(0) space (see, [2, 5, 6,
13, 14, 15, 17, 20]) if all geodesic triangle satisfy the following comparison axiom:

Let A be a geodesic triangle in X and A be a comparison triangle for /. Then
A is said to satisfy the CAT(0) inequality if, for all z,y € A and all comparison
points,

d(.’L’, y) < dRQ (fv @)

If x,y1,y2 are points of a CAT(0) space and yo is the midpoint of the segment
[y1, 2], which is denoted by £5¥2, then the CAT(0) inequality implies

(L1) P (i, L2 < 2 () + 5 () — 3 ()
2 2 2 4

The inequality (1.1) is called the (CN) inequality (for more details, see Bruhat and

Titz [4]). In fact, a geodesic space is a CAT(0) space if and only if it satisfies the

(CN) inequality.

It is well known that all complete, simply connected Riemannian manifold having
non-positive section curvature is a CAT(0) space. For other examples, Euclidean
buildings [3], Pre-Hilbert spaces, R-trees [2], the complex Hilbert ball with a Hy-
perbolic metric [9] is a CAT(0) space. Further, complete CAT(0) spaces are called
Hadamard spaces.

In the sequel, we give some fundamental for nonlinear mappings in CAT(0) spaces.
Let C be a nonempty closed subset of a CAT(0) space X. Let T': C — C be a
self-mapping. Recall that a mapping T is said to be:

(M;) nonexpansive if d(Tx,Ty) < d(z,y) Vz,y € C,

(My) asymptotically nonexpansive if there exists a sequence {k,} in [1,00) with
lim,, o kn, = 1 such that
d(T"z, T"y) < kpd(z,y) Vx,y € C and Vn > 1;

(M3) uniformly L-Lipschitzian if there exists a constant L > 0 such that
d(T"z, T"y) < Ld(x,y) Vz,y € C and Vn > 1.

In 2006, Alber et al. [1] first introduced the concept of total asymptotically non-
expansive mappings. Recall that mapping T': C' — C is said to be ({un}, {vn}, )
total asymptotically nonexpansive (or briefly, total asymptotically nonexpansive)
if there exist nonnegative real sequences {u,} and {v,,} with p, — 0,1, — 0 as
n — oo and a continuous strictly increasing function ¢ : [0,00) — [0,00) with
¥ (0) = 0 such that

d(T"z, T"y) < d(z,y) + pnb(d(z,y)) + vn

for all z,y € C'and n > 1.
From definition, it is easy to see that, each nonexpansive mapping is asymptotically
nonexpansive with {k, = 1}, Vn > 1, and each asymptotically nonexpansive map-
ping is total asymptotically nonexpansive mapping with p, = k, —1, v, =0, Vn >
1 and ¥(t) = t, t > 0. Also, for each asymptotically nonexpansive mapping is a
uniformly L-Lipschitzian mapping with L = sup,,cn{kn}

A point x € C'is called a fixed point of T"if z = T'(x). We denote by F(T) the set
of fixed points of T. A sequence {z,} in C is called an approximation fixed point
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sequence of T if
lim d(zp,Tx,) = 0.
n—oo
On the other hand, in 2015 Thakur et al. [21] introduced the modified Picard-
Mann hybrid iterative scheme for approximating a fixed point of a total asymptot-
ically nonexpansive mapping 7' in complete CAT(0) spaces, the sequence {z,} is
defined by
1 € C,
(1.2) wy, = (1 — an)zy ® Ty,
Tpt1 = T"wy
for all n > 1, where {a,} is a real appropriate sequence in [0,1]. They proved
some convergence theorems under mild conditions and they also examined speed
convergence between the modified Picard-Mann hybrid iterative scheme (1.2) and
the modified Mann iterative scheme.
Recently, Pansuwan and Sintunavarat [18] introduced the Picard-Ishikawa hybrid
iterative scheme, the sequence {x,} is given by
Tr1 € C,
wy, = (1 — an)zy ® Ty,

Tn41 = T"yn

(1.3)

for all n > 1, where {a,} and {3,} are real appropriate sequences in [0,1]. They
proved strong and A-convergence theorems of iteration process (1.3) for total asymp-
totically nonexpansive mappings in complete CAT(0) spaces and they also gave
numerical examples and convergence behavior to support the results.

Inspired and motivated by the above works, in this paper, we introduce a new
type iterative scheme called “modified Picard-S hybrid with errors” which is defined
the following manner:

x1 € C,

Wy, = agll)a:n @ a(Q)T”:rn &) a% )e(l)
(1.4) 3) @
Yn = /Bn "Iy @ Bn T"w, © Br en

1 =W Ty & el

for all n > 1, where {a}}, {ai?}, {o; } {Bn } {8 } {8}, (4}, (P} are

real appropriate sequences in [0,1] and {en 1 {en 1 {en } are bounded sequences
in C. Under suitable conditions, we establish A-convergence theorem and strong
theorem of iterative scheme (1.4) for total asymptotically nonexpansive mappings in
framework of complete CAT(0) spaces. Moreover, we also give numerical examples
to illustrate the speed of the convergence of proposed iterative scheme to compare
with others iterative schemes.
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2. PRELIMINARIES

In this section, we give some elementary properties about CAT(0) spaces as
follows:

Lemma 2.1 ([7]). Let X be a CAT(0) space. Then, for any x,y,z € X and
A e(0,1],

d(1=XNzdAy,2) <1 =Nd(z,2)+ A (y,2).

Lemma 2.2 ([7]). Let X be a CAT(0) space. Then, for any x,y,z € X and
A€ [0,1],

A ((1=Nz® My, 2) < (1 =N d*(x,2) + > (y,2) — A (1 = \) d®(z,9).

In 2008, Kirk and Panyanak [10] specialized Lim’s concept of the A-convergence
in a general metric space [16] to CAT(0) spaces and proved some weak convergence
theorems in Banach spaces by using the A-convergence. Now, we introduce some
basic properties and the concept of the A-convergence.

Let {z,,} be a bounded sequence in a CAT(0) space (X, d). For any z € X, we
put
r(z,{zn}) = limsup p(z, {z,}).
n—oo

(1) The asymptotic radius r({xy}) of {z,} is given by

r({zn}) = inf{r(z, {z,}) : x € X};
(2) The asymptotic center A({x,}) of {x,} is the set

A({zn}) = {z € X :r(z, {za}) = r({z.})}-

It is well known that, in a complete CAT(0) space, A({zy}) consists of exactly
one point (see [8]).

(3) A sequence {z,} C X is said to be A-convergent to a point x € X if A({zy, })
= {z} for every subsequence {z,, } of {z,}.

In 2014, Karapinar et al. [11] proved the existence theorem of fixed points for
uniformly continuous and total asymptotically nonexpansive mappings in CAT(0)
spaces which is also useful in our main results.

Lemma 2.3 ([11]). Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space (X,d) and T : C — C be a uniformly continuous total asymptotically
nonexpansive mapping. Then T has a fixed point and the fized point set of F(T')
are closed and convex.

Lemma 2.4 ([22]). Let {an}, {\n} and {c,} be the sequences of nonnegative num-
bers such that

apt1 < (1 + )\n)an + ¢n,
forallm > 1. If 27 1 A\ < 00 and Y 7 ¢y < 00, then lim, o ay exists. When-

ever, if there exists a subsequence {an,} C {an} such that a,, — 0 as i — oo, then
lim,, o a, = 0.



CONVERGENCE ANALYSIS OF MODIFIED PICARD-S HYBRID WITH ERRORS 381

Lemma 2.5. Suppose that (X,d) is a complete CAT(0) space . Then the following
statement hold:

(S1) every bounded sequence in X always has a A-convergent subsequence (see
[12]);

(S2) if {zn} is a bounded sequence in a closed convex subset C' of X, then the
asymptotic center of {x,} is in C (see [8]);

(S3) if {xn} is a bounded sequence X with A({zyn}) = {p},{un} is a subsequence
of {xn} with A({un}) = {u} and a sequence {d(zn,u)} converges, thenp = u

(see [7]).

Lemma 2.6 ([11]). Let C be a closed conver subset of a complete CAT(0) space
(X,d) and T : C — C be a uniformly continuous and total asymptotically nonexpan-
sive mapping. If {zn} is a bounded sequence in C' such that lim,_,o d(zy, Tzy) = 0
and A — lim, oo T, = w, then Tw = w.

3. MAIN RESULTS

Theorem 3.1. Let C' be a bounded closed convex subset of a complete CAT(0)
space (X,d) and T : C — C be a uniformly L-Lipschitzian and ({pn},{vn},)-
total asymptotically nonerpansive mapping. Suppose that the following conditions
are satisfied:
(C1) Y=y pin <00 and 3207 | vy < 00;
(C2) >0y d(eg),p) <00, Yo, d(eg),p) < oo and Y o0, d(e,(f’),p) < oo for all
p € F(T);
(C3) there exist constants b,d with 0 < b < ay(ll),ag),aq(f) < d < 1 such that
ag) + 04%2) + 04%3) =1 for each n € N;
(Cy) there exist constants a,c with 0 < a < BT(LI), 7(12),6783) < ¢ < 1 such that
ﬁg) + 57(12) + @(f’) =1 for each n € N;
(Cs) there exist constants f,h with 0 < f < 77(11), ,(12) < h < 1 such that %(LU +
%(12) =1 for each n € N;
(C6) limyoo @Y = limny0oBY = limn_eor ) = 0;
(Cr) there exists a constant M* such that ¢¥(r) < M*r for each r > 0.

Then the sequence {x,} defined by (1.4) A-converges to a fized point of T.

Proof. By using Lemma 2.3, we get F(T') # (). Next, we will divide the proof into
three steps.

Stepl First, we will prove that lim,_,~ d(x,,p) exists for all p € F(T), where the
sequence {z,} is generated by (1.4). Let p € F(T). By Lemma 2.1 and (1.4) we
have

d(wn,p) = daPz, ®aPD Tz, ® el p)
< ofld(wn, p) + oD d(T 2, p) + aPd(el), p)
< aWd(zn,p) + P [d(@n, p) + pntb(d(zn, ) + va] + aPd(elD) | p)

(@) + i) d(zn, p) + ) [t (d(wn, p) + va] + aPd(ell), p)
(1= af)d(@n, p) + o2 [t (d(wn, p)) + va] + o (e, p)
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< d(@n,p) + [0 (d(2n,p)) + vi] + d(e)), p)
(3.1) < (L4 pnM)d(@n, p) + v + d(e), p)
for each n € N. Also, we have
d(ﬁ,(ll)T”a:n & @@T”wn & 57(13)6512),]))
BT . p) + B (T wy, p) + B d(e?), p)
B [d(@n, p) + st (d(wn, p)) + vl
+5(2)[ d(wn, p) + pnt(d(w, p) + va] + BPd(e), p)
(6! +M M*)d(xn, p)
+Vn] DL+ pn M) d(wn, p) + va] + B (el p)
e +MnM*) (Tn,p) + vl
‘f‘ﬁ@ (1 + pn M) (L + pn M*)d(20, ) + v + d(eg),p)] + vn]
+8Pd(e?), p)
= 57(11 (1 + pn M*)d(2n, p) + Vi)
B+ pn M) 2d (0, p) + (1 + MnM*)
+(1+ pnM*)d(el), p) + va] + B (el p)
(14 pn M*)2d(n, p) + (2 + pn M ¥,
(32) +(1+ pa M*)d(el), p) + d(e?, p),
for each n € N. From (1.4), (3.1) and (3.2), for each n € N, we get
d(y DTy & 7Pel?), p)

YTy, p) + 1P d(el), p)
( [d(Yn, p) + bt (d(Yn, p)) + vi] + 7P d(elD), p)
DI+ M)y, ) + ] + A2 d(e), p)
[(1 + MnM*)[(l + unM*)Qd(xn,p)
(2 4+ i M*) vy + (14 pn M*)d(eD, p) + d(e), p)] + v4]
+Pd(e?), p)
= (14 pnM*)d(2p,p) + (2 + pn M*) (1 + pn M),
1+ pnM*)2d(el), p) + (1+ pM*)d(e?), p)
+uy, +d(e ;),p)
= (1+ unM*)?’d(xn,p) + (34 3unM™ + (NnM*)Q)Vn
(1 20 M+ (1 M*)?)d(e), p)
+(1+ pn M), p) + d(ef?, p)
(3~3) = (1+ gn)d(wmp) + On,
where &, 1= [3M* + 3, (M*)? + p2(M*)3]p,, and

d(Yn, p)

IN [VARVAN

IN

IN

d(anrl?p)

)
)
(1)
)

IN A A IA

G = (3+ 3unM* + (U M*)?)vy + (14 20, M* + (unM*)?)d(elV, p)



CONVERGENCE ANALYSIS OF MODIFIED PICARD-S HYBRID WITH ERRORS 383

+ (L M*)d(e?), p) + d(ef), p).
By assumption (C7) and (C3), we have

(3.4) i§n<oo and i5n<oo
n=1 n=1

By assertion (3.3), (3.4) and Lemma 2.4, we obtain lim,,_,. d(zy, p) exists.

Step 2 Next, we will show that lim,,_,o d(zy, Tx,) = 0. Without loss of generality,
we can assume that

(3.5) r:= lim d(z,,p) > 0.

n—o0

From (3.1), we have
(3.6) lim d(wp,p) <r.

n—o0

And also (3.2), we have

(3.7) lim d(yn, p) < 7.
By Lemma 2.2 and (1.4) we have
E(wn,p) = d(@Wan ®a@ T, & a®el) p)

IN

o Wa(z,, p) + aPd?(T"x,,, p)
—I—ag)dz(e,&l),p) - ag)ag)dQ(xn, T"x,)
oV d*(wn, p) + P [(1 + pnM*)d(wn, p) + ]’
+oz£bg)d2(eg),p) — a,(il)ag)d2 (Tp, T"xy)
= a%l)dQ(xn,p) + 0‘£12)[<1 + MnM*)2d2(xnap)
+2(1 4 pn M*)d® (2, p)vm + 1] + D d* (el p)
—a%l)agz)dQ(xn, T"x,)
= (1- a7(13))d2(wmp) + ag)[@ + NnM*)M*d2<mmp)Mn
+(2(1 + pp M*)d(xp, ) + V) V0]
+a,(13)d2(e%1),p) — ag)ag)dZ (xp, T"xy)
& (@, p) + ((2 4 pnM*)M*d* (2, p)) pin
+(2(1 + p M*)d(20, D) + vi)vp,
(3.8) +ald (e, p) — afl ol d (wn, T"en),
where Q,, = (2 + pnM*)M*d*(zy,,p) and R, = 2(1 + p, M*)d(xp, p) + vy, which
yield
(3.9) d?(wy,p) < d*(2, p) + Qupin + Ruvn + ozfls)dQ(e?(ll),p).
It follows from (3.8) we have
o Ma@@?(x,, Tx,) < d? (2, p) — d?(wn, p) + Qupin + Rnvn + aPd?(elV) p).
By assumptions (C1), (C2), (Cs) and assertions (3.5), (3.6), (3.8) we get

IN

IN

1
d’ (Jjn, Tnxn) < bd [d2 (‘rmp) - d2(wn,p) + Qnpin + Rpvp + a7(l3)d2(egl)’p)
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(3.10) — 0 as n — oo.
Since
E(yn,p) = P(BVT"z, & BT w, & BPe?, p)
< B(l)d (T”x ) + BO A (T wy, p)
D (), p) — B! @S”cz?(T”xn,T"wn)
< >[(1 + pun M*)d(zn, p) + Vn]2
@S)[(lJrﬂnM*)d(wn,p)JrVn] +8Pd(el?, p)
g)ﬁ@ d2(T"x , T wy,)
= B+ pnM*)2d* (@, p) + B 21 + pn M )d(2n, p) + Vnvm
5(2)(1+u M*)?d?(wn, p)
+BP[2(1 + pin M*)d(wn, p) + vn]vm
+80d(e?),p) — B B AP (T, T wy)
< & () + (2 + p MO)YM*d*(wp, p) + 2Qn) pin

+(2(1 + pn M*)d(wn, p) + vy + Rp)vp
+ad (el p)
(3.11) +67d(e?) p) — BV BD A (T wn, T wn),

where P, = (2+ pn M*) M*d? (wy,, p) +2Qn and Sy, = 2(1+ i, M*)d(wy, p) +vn+ Ry,
which implies that

A (Yn,p) < d*(2n,p) + Prpin + Spvm + aP d? (el p)
+ B d(elD), p) — BV BR A (T wp, TMwy).
By assumptions (C1), (C2), (Cs), (C4) and assertions (3.5), (3.7), (3.11) we get
d*(T"z,, T"wy,)
< 2 [ 0) = ) + P + S+ 0Pl ) + B )|
(3.12)
—0 as n — 00.
By assumption (Cs) and assertions (3.10), (3.12) we get
d(yn, ) = (BT 20 @ BT wn & B e?), 7
< 51(11)d(Tn$n7$n) ‘f‘ﬁr(?)d( Wn, $n) +ﬁ(3 d(e n)u$n)
< (T, w0) + (AT wn, T"0) + d(T" 0, )] + B2 d(ef?), o)

(3.13) — 0 as n — 0o.
By assumption (C3), (Cs) and assertion (3.10) we have
d(wp, ) = d@ DTz, & DT w, & oPe@ 2,)
< d(T 2, ) + aPd(elV, x,)
(3.14) — 0 as n — 00.
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It follows from (3.13) and (3.14) which implies that

d(wp,yn) < d(wn,zn) + d(Tn, Yn)
(3.15) - 0 as n — o0o.

By assumptions (C}), (C2) and assertions (3.13) and (3.15) we have

A(Yn, T"yn) < Bél)d(Tnxna T"yn) + B;z)d(anna T"yn) + /37(13)(1(67(12)7 T"yn)
< (I paMT)[d(zn, yn) + d(wn, yn)] + 205 + /87(13)d(€$12)aTnyn>
(3.16) — 0 as n — oo.
By assumptions (C3), (C5) and (Cs) we have
A1, T"yn) = ATy @7 PelY), T"y,)
< Pd(e?), Ty)
(3.17) — 0 as n — o0.

From assertions (3.13), (3.16) and (3.17) which implies that

d(xn-‘rl; mn) < d(xn—f—l) Tnyn) + d(Tnyn’ yn) + d(yn7 xn)
(3.18) — 0 as n — 0.

Since T is uniformly L-Lipschitzian,

d(xpn, Try) < d(@p,Tpi1) +d(XTpgq, T"Han) + d(T”Han, T”+1:cn)
+d(T™ ,,, Ty,
d(xp, Tpi1) + ATy, T 1) + Ld(2py 1, 20)
+Ld(T"xy, xy)
= (1+L)d(xp, xps1) + d@pgpr, T" M 2pi1) + Ld(T 2y, )
— 0 as n — 00.

IN

Step 3 Next, we claim that the sequence {x,} A-converges to a fixed point of T
Indeed, we will show that

wa(za) = (J  A{wa}) S F(T)
{en}Cfon)

and wa (z,) consists of exactly one point. Let v € wa(x,). By the definition of
wa(xy,), there exists a subsequence {v,} of {x,} such that A({v,}) = {v}. From
Lemma 2.5(S7), there is a subsequence {u,} of {v,} such that A — lim,, 0o uyp, = u
and u € C. By Lemma 2.6, we have u € F(T). Since {d(vy,u)} converges, by
Lemma 2.5(S2), we get v = u. Thus wa(zy,) C F(T).

Finally, we prove that wa(x,) consists of exactly one point. Let {v,} be a subse-
quence of {z,} by the uniqueness asymptotic center such that A({v,}) = v and let
A({zn}) = {x}. Since v = u € F(T) and {d(z,,u)} converges, by using Lemma
2.5(S3), we see that x = u € F(T'), Therefore wa(z,) = {x}. This completes the
proof. O

By using a similar technique as in the proof of Theorem 3.2 in the paper of Thakur
et al. [21], we obtain strong convergence theorem without the proof immediately.
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Theorem 3.2. Let X,T,C, (Ch),(Cs), (C3), (Cy), (Cs), (Ce), {ai}, {1aiP}, {aiP)1,

(YA YA Y, () Aeny e’} {en” ) satisfy the assumption of
Theorem 3.1. Then the sequence {x,} which is defined by (1.4) converges strongly
to a fixed point of T if and only if

liminf d(z,, F(T)) = 0,

where d(z, F(T)) = inf{d(x,p) : p € F(T)}.

The concept of special self mapping is called Condition(I) introduced by Senter
and Dotson [19] as follows.

Definition 3.3 ([19]). Let (X, d) be a CAT(0) space and C a nonempty subset. A
self mapping T' with F(T) # () is said to satisfy condition (I) if there is a nonde-
creasing function f : [0,00) — [0,00) with f(0) = 0 and f(I) > 0 for all [ > 0 such
that

d(z,Tx) > f(d(z, F(T)))
for all z € C.

By using Condition (I) with the similar technique as in the proof of Theorem 3.3
in Thakur et al. [21], we obtain the following result.

Theorem 3.4. Let X,T,C,(Ch), (Ca), (C5), (Cu), (C5). (Co), {an}, {ar”}, {an”},
(1) (2) (3) (1) (2) (1) (2) (3) : '

{80 3, B0 1 ABn A}, {w b A{en '} {en”} {en”} satisfy the assumption of

Theorem 3.1 and let self mapping of T satisfy Condition (I). Then the sequence

{zn} which is defined by (1.4) converges strongly to a fixed point of T

Definition 3.5. Let (X,d) be a CAT(0) space and C a nonempty subset. Recall
that a self mapping T is said to be semi— compact if C' is closed and for all bounded
sequence {x,} C C with limy, o d(zn, T,) = 0, there exists a subsequence {w,, }
of {x,} such that {z,,} —pe€ C.

Using a similar technique as in the proof of Theorem 22 in Karapinar et al. [11],
we obtain the following result.

Theorem 3.6. Let X,T,C,(Ch), (Ca), (Cs), (Ca), (Cs), (Cs), {ail}, {al}, {aP},
3 A YA Y, () Aeny e} {en” ) satisfy the assumption of
Theorem 3.1 and let T' be semi— compact. Then the sequence {xy} which is defined
by (1.4) converges strongly to a fized point of T.

4. NUMERICAL EXAMPLES

In this section, we will illustrate numerical examples to compare speed con-
vergence of the modified Picard-S hybrid with error iterative scheme (1.4) with
the modified Picard-Mann hybrid iterative scheme (1.2) and the modified Picard-
Ishikawa hybrid iterative scheme (1.3) by using the mapping same [14, Example 4.1]
and difference a set C' and the initial point.
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Example 4.1. Let X = R be a FEuclidean metric space and C = [1,50]. Let

T:R — R be defined by

Tx = /22 + 18.

It is obvious that T is a continuous uniformly L-Lipschitzian and a total asymptoti-

cally nonexpansive mapping (see more [14, Example 4.1, pp 10.]) with F(T) = {3}.

Let z; = 50. By using MATLAB compute the iterates of (1.2),(1.3) and (1.4)
with different control parameters as follows:

_ 1) _  sn (2) _ _ 280n2+49n 3) _ 187n+28 _
Case 1) an = an’ = g7 dn” = 420n2+2—g6n+28’an = 420n2+2;_6n+28’ Bn
1) _  7n (2) _  3n
n = Topt3' P T Tont3o
B _ 3 L _ on @ _ 1 (1) _ (2 _ () _ 3n2-1
n = Tong30 I T g In T gpy b T 60 = 6n = T
(1) _ _4n (2) _ _10n2+2n (3) _ _ 19n+2 1) _ on (2) _
Case 2) o’ = St O = Fonziosnin O = Sonttosntar Pn = maiqn Pn =
5n+2 (3) _ _ 9
Tn+11° 7" T Tn+11?
1) _ 3 2 _ 2 1) _ (2 _ () _ 3n2-1
T = gpr2 I T 3pq2fn’ =60 = 6n =

Then we obtain numerical results in Table 1, Figures 1 and 2.

TABLE 1. The values of the sequence {z,,} with different control parameters.

Case 1 Case 2
Iterate
Iterative scheme Iterative scheme

Picard-Mann  Picard-Ishikawa Picard-S with error | Picard-Mann  Picard-Ishikawa Picard-S with error
T 50.00000000 50.00000000 50.00000000 | 50.00000000 50.00000000 50.00000000
Ty 12.07191130 8.80033965 3.565161735 9.54930216 9.31484614 3.34214043
T3 3.46195853 3.10805800 3.000384129 3.14850148 3.130444174 3.00017264
Ty 3.00376045 3.00031523 3.000000014 3.00049474 3.000393847 3.00000001
T5 3.00000644 3.00000019 3.00000000 3.00000033 3.000000237 3.00000000
Tg 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000
T7 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000
Ty 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000
g 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000
10 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000

Figures 1 and 2 illustrate the speed of convergence with different control param-
eters for approximating the fixed point set of F/(T') = {3}.

Example 4.2. Let X = R be a Euclidean metric space and C = [1,20]. Let
T :R — R be defined by

Tr=Inz+1.
It is obvious that T is a continuous uniformly L-Lipschitzian and a total asymptot-
ically nonexpansive mapping (see more [14, Example 4.2, pp 11-12.]) with F(T) =

{1}.

Let z; = 20. By using MATLAB compute the iterates of (1.2),(1.3) and (1.4)
with different control parameters as follows:
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modified Picard-Mann hybrid iterative scheme
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FiGure 1. Comparison speed of convergence with Case 1 of Table 1

50

modified Picard-Mann iterative scheme
modified Picard-Ishikawa iterative scheme
modified Picard-S with error iterative scheme | |

40

< 30

20

Value of x

10

Number of iterations

Ficure 2. Comparison speed of convergence with Case 2 of Table 1

_ (1) _  5n (2) _ _ 280n2+49n 3) _ 187n+28 _
Case 1) an = an’ = 5%, = Go.2iosenio8 O = 0n2i356nT8: Pn
1) _ _
n’ = 10n+37ﬂn = 10n+3’
3) _ 3 1) _ 2n 2 _ 1 (1) ( ) 6(3) _ n2-1
n = Topi3 v T o n T T oy € =6n’ = T
1) _ _4n (2) 10n242n (3) _ _ 19n+2 1) _ o2n (2) _
Case 2) an’ = 505,0m = 505,13 M = SontioneT3r Pn = Tntil: =
5n+2 (3) _ 9
Tn+11" - Tn+11>
O _ sn_ @ _ 2 0)_ @) _ 6 _
Tn — 3n+2° Tn — 3n+2? €n 72

Then we get numerical results in Table 2, and we also illustrate the convergence
speed is shown in Figure 3 and 4 respectlvely.
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TABLE 2. The values of the sequence {x,} with different control conditions.

Case 1 Case 2
Tterate .
Iterative scheme Iterative scheme
Picard-Mann  Picard-Ishikawa Picard-S with error | Picard-Mann Picard-Ishikawa Picard-S with error
il 20.00000000 20.00000000 20.00000000 | 20.00000000 20.00000000 20.00000000
10 1.03702638 1.02454010 1.00003167 1.02714689 1.02568315 1.00003340
a0 1.00826911 1.00544124 1.00000001 1.00608066 1.00570201 1.00000002
T30 1.00355046 1.00233278 1.00000001 1.00261609 1.00244453 1.00000001
a0 1.00196428 1.00128981 1.00000000 1.00144904 1.00135143 1.00000001
50 1.00124498 1.00081721 1.00000000 1.00091911 1.00085616 1.00000000
60 1.00085907 1.00056380 1.00000000 1.00063455 1.00059059 1.00000000
70 1.00062832 1.00041231 1.00000000 1.00046428 1.00043186 1.00000000
T30 1.00046755 1.00030678 1.00000000 1.00035438 1.00032948 1.00000000
9o 1.00037785 1.00024790 1.00000000 1.00027935 1.00025963 1.00000000
100 1.00030543 1.00020038 1.00000000 1.00022585 1.00020984 1.00000000
20 T T T
—=&— modified Picard-Mann hybrid iterative scheme
—&— modified Picard-Ishikawa iterative scheme
—*— modified Picard-S with error iterative scheme
15 1
1.5 T T T T
- \\&-’_‘
x
i
S)
e 10 e h *—o 1
o
©
=
0.5 L . L . L
0 B 10 15 20 25 30
51 / ]
]
0 1 L 1 1 Il
0 10 20 30 40 50 60

Number of iterations

Fiqure 3. Comparison speed of convergence with Case 1 of Table 2

From the numerical results of Example 4.1 and 4.2. We see that the convergence
speed of the modified Picard-S hybrid with error iterative scheme (1.4) is faster
than that of the modified Picard-Mann hybrid iterative scheme (1.2) and that of
the modified Picard-Ishikawa hybrid iterative scheme (1.3).
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