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ON THE TRACE INEQUALITIES RELATED TO LEFT-RIGHT
MULTIPLICATION OPERATORS AND THEIR APPLICATIONS

KENJIRO YANAGI

ABSTRACT. Recently in [6] we obtained non-hermitian extensions of Heisenberg
type and Schrodinger type uncertainty relations for generalized quasi-metric ad-
justed skew information or generalized quasi-metric adjusted correlation measure
and applied to the inequalities related to fidelity and trace distance for different
two generalized states which were given by Audenaert et al; and Powers-Stérmer
[1, 2, 5]. In this paper we state the properties of left or right multiplication
operators and obtain some related inequalities.

1. INTRODUCTION

Let M, (C)(resp. M, sa(C)) be the set of all n x n complex matrices (resp.
all n x n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product
(X,Y)ys = Tr[X*Y]. Let M, +(C) be the set of strictly positive elements of
M, (C) and M,, 4+ 1(C) be the set of density matrices. Let L4, Ra be left (right)
multiplication operator for A € M, (C) as follows.

La(X) = AX, Ro(X) = XA, (X € M,(C)).

Proposition 1.1. L4, Rs are linear operators on (M,(C), (-, )gs) satisfying the
following properties.

(1) For A,B € Mn((C), LoaRp = RpLy,

(2) For A,B € M,(C),

Layp=La+Lp, Ratp=Ra+ Rp, Lap=LaLp, Rap = RpRa.

(3) For A € Mn((C), ANEC, Lyga=ALa, Ryxa=ARy4.

(4) For A € M,(C), Lax = (La)*, Rax = (Ra)*.

(5) For A>0, Ly >0, Rqa>0.

Proposition 1.2. Let A, B € M, +(C) have the following spectral decompositions

A= Zaz|¢z ¢z ZBJWJJ ¢]

7j=1
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where a; > 0 are positive eigenvalues of A, |¢;) are corresponding eigenvectors
making orthnormal basis and B; > 0 are positive eigenvalues of B, |1;) are corrre-
sponding eigenvectors making orthnormal basis. Then (1), (2) hold.

(1) La =Ly agpii0:] = Z?:nl Ly, () = Z?:% Z?:% i L.y (a Ry 51
(2) Bp = Byn | gijw) w1 = 2j=1 BiBlw) il = 2im1 2oj=1 Bilis o By (w1

In this paper we state the properties of L4, R4 in section 2. In setion 3, we give
some uncertainty relations for generalized quasi-metric adjusted skew informations.
In section 4, we state the trace inequality representing the relationship between
fidelity and trace distance. Also we give some interesting inequalities of generalized
quasi-metric adjusted skew informations by using refined norm inequalities.

2. PROPERTIES OF L4, R4

Now we give the theorem.

Theorem 2.1. For A € M,(C),
Tr(La) = nTr(A), Tr(Ra) = nTr(A),
where Tt represents the trace of operator on (M, (C), (-, )ms)-

Proof. Let e;; be matrix unit. That is n x n positive matrices with 1 for (7, j) entry
and 0 for other entries. Then since {e;;} are orthnormal basis of M, (C),

n

TT(LA) = Z <€ijaA€ij>HS = Z Tr(efjAeij) = Z Tr(Aeije;‘j)

ij=1 ij=1 ij=1
= ) Tr(Aey) =) _Tr(>_ Aey) =Y Tr(A)_ei))
ij=1 j=1 i=1 j=1 i=1
= ) Tr(A) =nTr(A).
j=1
It is similar to show about Tr(R4). O

Theorem 2.2. For A, B € M, (C),
(1) |La — Rpl = 32700 2520 lod — Bil Ly (i Biws) s

(2) Tr(|La — Rpl) = 221 220 loi — Bl
(3) Te(|La — Rp|l) = 320, 2271 low — Byl [{¢sley) |
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Proof. (1) It is clear from Proposition 1.2.

(2) We put P; = |¢;)(oi], Qj = [v5)(w;-

n n
Tr(|La—Rpl) = D loi—Bj1 > {est, L Rg est) s
i,7=1 s,t=1
n n
= > i —Bi| Y est, PiesQj)us
3,j=1 st=1
n n
= Yl =Bl > TreyPiesQy)
ij=1 sit=1
n n
= > i —Bj| Y Tr(ewPiesQ;).
ij=1 si=1

Since

T'r(ets|pi) (Bilest| ) (Wi]) = (bjlers|pi) (dilest|s),

Z wj|et8|¢z ¢>z|€st|¢y Z ‘<¢i|est|¢j>|2

s,t=1

Let ¢;s be s component of |¢;), ¥; be t component of [¢);). Since

[{ilestlv)* = |distnsl,

Do [ilesdvd? = D 1Bt =D 1D vl
s=1 t=1

st=1 s,t=1
n n
= > 16al*> |yl =1.
s=1 t=1
Thus

Tr(|La = Rp)) =) Y lai = Bjl.

i=1 j=1
(3) By (1),
DD e = BilLigy o Biuyy iy I

i=1 j=1

= 303 Jai - Billon) il

i=1 j=1

|Ls — Rp|I
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Then

Tr(|La— Rpll) = DD i — Byl (wnldi) (dilthy) (154w

k=1i=1 j=1
= D> lai — Byl (51 (dils)
i=1 j=1
= 33l = Byl .
i=1 j=1

g

Theorem 2.3. We define D(A, B) = Tr(|La — R|I) for A,B € M, _(C). Then
D(A, B) is a metric on M, (C).

(1) D(A,B) >0, D(A, B) =0 is equivalent to A = B.

(2) D(A,B) = D(B, A).
(3) D(A,B) < D(A.C) + D(C, B).
Proof. (1) D(A, B) = Tr(|La — Rp|I) = 375, lei — Bj|[{#ile5) > > 0.
Since A = B = D(A, B) = 0 is clear, we prove the reverse. If D(A, B) = 0, then
la; — Bj|[{¢ilwj)] = 0 for all 4,j. Then for all 4,7, a; = B; or (¢i]ep;) = 0. For
simplicity we prove the case of n = 2. For

_ ( cos) —sinf

<0<
sinf cos@ >’0—9—27T’

we don’t lose the generization by putting

!¢1>:(é>7|¢2>=(?>,

i) = Ule)
In this case A, B are represented by

. a1 0
(5 0 ),

cos? 6 cosfsind 48 sin 6 —cosfsinf
cos@sind sin? 0 2\ —cosfsinf cos2 6 '

and

B=m<

When 6 # 0, 3, , %71’,271’, a1 = 1 = ag = B2 = A. Then we obtain A = B = Al
When cosf =0, |sinf| = 1. Then oy = 52,0 = 1. And

. o a7 0
EEE]

When sinf = 0, |cosf| = 1. Then oy = 1, a9 = B2. And

o - (05} 0
om0,
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Thus we give A = B.
(2) Weput A =305 =37, 0il¢i)(¢il, B=32;8iQ; =3, B51¥;){(¥;|. Then

Tr(|La— Rpll) = |ai — Bil|(dilt) [,

1,5

Tr(|Lp — Rall) = |85 — ail (Wsloa) > = lai — By[| (il wy) >
gt ]
Then Tr(|La — Rp|I) = Tr(|Lp — Rall). We give D(A, B) = D(B, A).
(3) We show the triangle inequality. We put

La=Y aiLp, L= Bilq;, Lo =Y vilr,,

Ra=) aiRp, Rp=Y BiRq, Ro =) viRn,
where P; = |¢;)(i], Qi = [¢i)(¢i], Ri = [&)(&[- Then
|La—Rel =) |ai —w|LpRg, = > |ai — w|Lp,Ls,Rs; Rg,,

i7£ i7j7k7£
Lo Bl = e ARy = 3 oo lbnLs R R,
i,j ,5,k,L
|Lp — Rc| = Z |8k — ve|Ls, Rg, = Z |Br — VE‘LPiLSkLSjRQe'
N i,5,k,¢
Now we have
|La — Rc|
/[:7j7k:7é
< Y (lei = Bl + 185 — Bel + 18k — vel) L, Ls, Rs, Rg,
/[:7j7k77é
= > lai—Bj|Lp,Ls,Rs,Ro, + Y _ |8j — BrlLr,Ls, Rs, Ro,
’L’,j,k,é ivj’ke
+ Z |G — 'Y@’LPiLSkRSjRQe
i7j’k:’g
- Z o — 5j’LPiR5j + Z |8 — ﬁk‘LSkRSj + Z 1B — el Ls, R,
ivj ]’k k’e

= |Ls—Rp|+|Lp— Rp|+|Lp — Rcl|.
Since |LB - RB| == Z’L,j |B’L - /B]|LP~LRPJ5

|Lp— Rp|I =) |B; — Bj|PiP; =) |8 — BilPi = 0.
ij i
Then
Tr(|La — Re|I) < Tr(|La — Rp|I)+ Tr(|Lp — Rc|I).
We give D(A,C) < D(A,B) + D(B,C). O
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Remark 2.1. We state the two remarks.

(1) For A,B € M, (C), there are no relationship between Tr(|La — Rp|I) and
Tr(|A — B|). Because when

()
|
3

Tr(|La — Rp|I) = 3, Tr(|]A — B|) = v/10. On the other hand when
1

=(F)e(2)

Tr(|La — Rp|I) =8, Tr(|A — BJ|) = v/58.
(2) For A,B € My 1(C), we can prove Tr(|Ly — Rp|l) < Tr(|A — B|) but we
expect the same result in the case of n > 3.

3. GENERALIZED QUASI-METRIC ADJUSTED SKEW INFORMATION AND
CORRELATION MEASURE

A function f : (0,+00) — R is said operator monotone if, for any n € N, and
A,B € M, +(C) such that 0 < A < B, the inequality 0 < f(A) < f(B) holds. An
operator monotone function is said symmetric if f(x) = zf(2~!) and normalized if
f1) =1
Definition 3.1. Let §,, be the class of functions f : (0,+00) — (0, +00) satisfying

(1) f(1) =1,
(2) tf(t™) = f(1),

(3) f is operator monotone.

Example 3.1. Ezamples of elements of §op are given by the following list, for any
x>0,

frip(x) = a:2—i:—6y’ fsip(z) = ° ; 1, fBrm(x) = 31:0;337
T 2 r—1)2
fwy (z) = (\F2+ 1> , fwyp(x) = a(l —a) = _(1)(;1(1 - 1),(1 € (0,1).

For f € §,p define f(0) = lim, 0 f(z). We introduce the sets of regular and
non-regular functions

Sop = {f € Boplf(0) # 0}, Fo, = {f € Foplf(0) =0}

and notice that trivially §op = op U Sop- In Kubo-Ando theory of matrix means
one associates a mean to each operator monotone function f € §,, by the formula

mf(A,B) _ A1/2f(A—1/ZBA—1/2)A1/2’

where A, B € M, +(C). By using the notion of matrix means we define the gener-
alized monotone metrics for X,Y € M, (C) by the following formula

(X,Y)p =Tr[X*ms(La, Rp)~'Y],
where L4(X) = AX,Rp(X) = XB.
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Definition 3.2. Let g, f € §y, satisfy

(z—1)
=5
for some k > 0. We define
Fix) = o) — (r —1)2
(3.) M) = gla) ~ KT € Sop

Definition 3.3. Notation as in Definition 3.2. For X,Y € M,(C) and A,B €
M, +(C), we define the following quantities:
(1) I'PD(X.Y) = K((La — Rp)X. (La — Rp)Y);
= kTr[X*(La— Rg)ms(La,Rp) " (Las— Rp)Y]
=Tr(X*mg(La,Rp)Y] — T'r’[X*mAg (La,Rp)Y],
(

(2) f”( X) =19 (x x),

3) v (x, Y) Tr[X*mg(LA,RB)Y] + Tr[X*mys(La, Rp)Y,
(4) J“"f( X) = v (x,x),

(5) U 9f)( \/Igf) Jgf)( X).

The quantities Iﬁlg{;) (X) and F%’g) (X,Y) are said generalized quasi-metric adjusted
skew information and generalized quasi-metric adjusted correlation measure, respec-
tively.

We state an interesting uncertainty relation which is proved in [7]. We omit the
proof.

Theorem 3.1 ([7]). For f € §,,

ops 1t holds

1 2
19900 150 2 IR P = o (19 + ) -1 (x -v))
where X,Y € M, (C) and A, B € M,, +(C).

By setting g = fsrp, f = fwy, k = i, A =DB=pe M,41(C), we have the
following corollary.

Corollary 3.1 ([4], Theorem 3.3). Let X,Y € M,(C) and p € My +1(C) be a
quantum state. Then

LG 1) 2 505100 +7) = [L]X - Y))2

where |I,|(X) = —3Tr[[p*/2, X*][p}/2,X]] and [X,Y] = XY - Y X.
We note the equation

La = Rel =D > 1N = w5l Li600: Bl w1
i=1 j=1
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where A = Y71, Nil¢i)(il, B = "7 1j|15) (| are the spectral decompositions.
Next we state an interesting uncertainty relation which is proved in [7]. We omit
the proof.

Theorem 3.2 ([7]). For f € &y, if

(3.2) g(@) + Af(x) = (f(2)

for some £ > 0, then the followings hold for X,Y € M,(C) and A, B € M, 4 (C)
1) P X)) > k:€|Tr[X*|LA Rp|Y]2.
@ Uf x)- P ) = I x v

By setting A = B = p € M,, 1 1(C) we have the following corollary.
Corollary 3.2 ([3], Theorem 3.5). If f,g € §op satisfy (3.2), then

UymxyWMMq>ﬂmﬁc7rkxyn

where X,Y € M,(C) and p € M,, 1 1(C). Here U,gg’f) (X) and C’orr( )(X Y) are
defined in [3].

4. OTHER TRACE INEQUALITIES

We assume that

o+1 @1 SO,

, f(@) = a(l - a) =2.

9(z) = @ —D@—o—1) " 2

Then, since (3.1), (3.2) are satisfied for g, f,k and ¢, we have the following trace
inequality by putting X = I.

a(l = a)(Tr(|La - Rp|1])*
2 2
< <;TT[A—{—B}> — <;T7“[A0<B1—a +A1—aBa]>

This is a generalization of trace inequality given in [2]. And also we give the following
new inequality by combining the Chernoff type inequality with the above theorem.
We omit the proof.

Theorem 4.1 ([8]). We have the following:

1 . l1—a pa
5TrlA+ B —|La—Rp|l] < inf TrlA""B"]

< [A1/2B1/2] 1

[AaBl a Al aBa]

2
2
( TTA+B> a(l —a)(Tr[|La — Rp|I)2.

IN
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Theorem 4.2. Let A, B € M,, . (C) have the following spectral decompositions

A= Zasz ¢z Zﬁﬂw] w]

7=1
Then we give an inequality.

S e —agl + D> D 18 =851 2D ) e — Byl

=1 j=1 =1 j=1 =1 j=1
That is
n n
Dl —ai| + D> 1B =B < DD i — Byl
i<j i<j i=1 j=1

We also represent as follows.
Tr(|La — Ra|) + Tr(| L — Rp|) < 2Tr(|La — RB|).

We need the following lemma in order to prove.

Lemma 4.1. For any x € R, let A, be the numbers of the line segments combining
a; and o through x, B, be the numbers of the line segments combining 3; and ;
through x and D, be the numbers of the line segments combing o; and B; through
x, respectively. We put S, = Ay + By, S = fj—;o Sydr and D = fj;o D, dx. Then
we have S < D.

Proof. We may prove S, < D, for any = € R. Let B, be the numbers of «; which
are located in left place of x and R, be the numbers of 5; which are located in left
place of z. Since

Sy = By(n— By) + Ry(n — Ry), Dy = By(n— Ry;) + Ry(n — By),

we have
Dy — Sy = (By — Ry)(n — Ry) + (R — By)(n — B,) = (R, — B;)> > 0.
Thus S < D. O

Theorem 4.3. Let {X;}}V 1,{Y} ", C M,(C). Then (1), (2) hold.
N N
(1) Zi:l Zj:l X — Xj” + Zi:l Zj:l 1Y — YJH < 221':1 Zj:l X — YJH
N «N N N
(2) 21:1 Zj:l X5 & XjH2 + Zi:l Zj:l 1Y; & YJHQ
N N N N
=2 (TN S X P 2 X - 2 YR

Proof. (1) The result is an extension of Theorem 4.2. We omit the proof.
(2) Since || X||? = (X, X) g, it is easy to get the result. O

Corollary 4.1. Let {X;}V 1,{Y} —; C My(C), A,B € M, +(C) and f,g € 3y,
Then (1), (2) hold.

W) 2X, S I - X))+ S S 18 or - )

<oy N N 1Y ><X Y))
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E)DIAED DAY 5 A0 CE=D ¢) NI SAND DAY 4 Al 0 =5 1)
=2 (2521 Zjvzl Il(axg,g) (Xi £ YJ) + Iﬁf’,’é)(ziﬁl Xi — Z;V:I YJ))
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