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the algorithmic work of Behling et al. is explained in Section 9. In the final Sec-
tion 10, we return to more classical roots of the circumcenter and discuss formulae
involving cross products when H = R3.

The notation employed is standard and largely follows [2].

2. Auxiliary results

In this section, we provide various results that will be useful in the sequel.

2.1. Affine sets. Recall that a nonempty subset S of H is an affine subspace of H
if (∀ρ ∈ R) ρS + (1− ρ)S = S; moreover, the smallest affine subspace containing S
is the affine hull of S, denoted aff S.

Fact 2.1. [11, page 4] Let S ⊆ H be an affine subspace and let a ∈ H. Then the
translate of S by a, which is defined by

S + a = {x+ a | x ∈ S},
is another affine subspace.

Definition 2.2. An affine subspace S is said to be parallel to an affine subspace
M if S = M + a for some a ∈ H.

Fact 2.3. [11, Theorem 1.2] Every affine subspace S is parallel to a unique linear
subspace L, which is given by

(∀y ∈ S) L = S − y = S − S.

Definition 2.4. [11, page 4] The dimension of an affine subspace is defined to be
the dimension of the linear subspace parallel to it.

Fact 2.5. [11, page 7] Let x1, . . . , xm ∈ H. Then

aff{x1, . . . , xm} =
{
λ1x1 + · · ·+ λmxm

∣∣∣ λ1, . . . , λm ∈ R and

m∑
i=1

λi = 1
}
.

Some algebraic calculations and Fact 2.5 yield the next result.

Lemma 2.6. Let x1, . . . , xm ∈ H. Then for every i0 ∈ {2, . . . ,m}, we have

aff{x1, . . . , xm} = x1 + span{x2 − x1, . . . , xm − x1}
= xi0 + span{x1 − xi0 , . . . , xi0−1 − xi0 , xi0+1 − xi0 , . . . , xm − xi0}.

Definition 2.7. [11, page 6] Let x0, x1, . . . , xm ∈ H. The m + 1 vectors
x0, x1, . . . , xm are said to be affinely independent if aff{x0, x1, . . . , xm} is
m-dimensional.

Fact 2.8. [11, page 7] Let x1, x2, . . . , xm ∈ H. Then x1, x2, . . . , xm are affinely
independent if and only if x2 − x1, . . . , xm − x1 are linearly independent.

Lemma 2.9. Let x1, . . . , xm be affinely independent vectors in H. Let p ∈
aff{x1, . . . , xm}. Then there exists a unique vector

(
α1 · · · αm

)⊺ ∈ Rm with∑m
i=1 αi = 1 such that

p = α1x1 + · · ·+ αmxm.
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The following lemma will be useful later.

Lemma 2.10. Let

O =
{
(x1, . . . , xm−1, xm) ∈ Hm

∣∣∣ x1, . . . , xm−1, xm are affinely independent
}
.

Then O is open.

Proof. Assume to the contrary that there exist (x1, . . . , xm−1, xm) ∈ O such that

for every k ∈ N∖ {0}, there exist (x
(k)
1 , . . . , x

(k)
m−1, x

(k)
m ) ∈ B

(
(x1, . . . , xm−1, xm); 1k

)
such that x

(k)
1 , . . . , x

(k)
m−1, x

(k)
m are affinely dependent. By Fact 2.8, for every k, there

exists b(k) = (β
(k)
1 , β

(k)
2 , . . . , β

(k)
m−1) ∈ Rm−1 ∖ {0} such that

β
(k)
1 (x

(k)
2 − x

(k)
1 ) + · · ·+ β

(k)
m−1(x

(k)
m − x

(k)
1 ) = 0.(2.1)

Without loss of generality we assume

(∀k ∈ N∖ {0}) ∥b(k)∥2 =
m−1∑
i=1

(β
(k)
i )2 = 1,(2.2)

and there exists b̄ = (β1, . . . , βm−1) ∈ Rm−1 such that

lim
k→∞

(β
(k)
1 , . . . , β

(k)
m−1) = lim

k→∞
b(k) = b̄ = (β1, . . . , βm−1).

Let k go to infinity in (2.2), we get

∥b̄∥2 = β2
1 + · · ·+ β2

m−1 = 1,

which yields that (β1, . . . , βm−1) ̸= 0.
Let k go to infinity in (2.1), we obtain

β1(x2 − x1) + · · ·+ βm−1(xm − x1) = 0,

which means that x2 − x1, . . . , xm − x1 are linearly dependent. By Fact 2.8, it
contradicts with the assumption that x1, . . . , xm−1, xm are affinely independent.
Hence O is indeed an open set. □

Fact 2.11. [7, Theorem 9.26] Let V be an affine subset of H, say V = M+v, where
M is a linear subspace of H and v ∈ V . Let x ∈ H and y0 ∈ H. Then the following
statements are equivalent:

(i) y0 = PV (x).
(ii) x− y0 ∈ M⊥.
(iii) ⟨x− y0, y − v⟩ = 0 for all y ∈ V .

Moreover,

PV (x+ e) = PV (x) for all x ∈ X, e ∈ M⊥.
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2.2. The Gram matrix.

Definition 2.12. Let a1, . . . , am ∈ H. Then

G(a1, . . . , am) =


∥a1∥2 ⟨a1, a2⟩ · · · ⟨a1, am⟩
⟨a2, a1⟩ ∥a2∥2 · · · ⟨a2, am⟩

...
...

...
⟨am, a1⟩ ⟨am, a2⟩ · · · ∥am∥2


is called the Gram matrix of a1, . . . , am.

Fact 2.13. [8, Theorem 6.5-1] Let a1, . . . , am ∈ H. Then the GrammatrixG(a1, . . . , am)
is invertible if and only if the vectors a1, . . . , am are linearly independent.

Remark 2.14. Let x, y, z be affinely independent vectors in R3. Set a = y−x and
b = z − x. Then, by Fact 2.8 and Fact 2.13, ∥a∥2∥b∥2 − ⟨a, b⟩2 ̸= 0 and ∥a∥ ̸= 0,
∥b∥ ̸= 0.

Proposition 2.15. Let x1, . . . , xm ∈ H. Then for every k ∈ {2, . . . ,m}, we have

det
(
G(x2 − x1, . . . , xm − x1)

)
= det

(
G(x1 − xk, . . . , xk−1 − xk, xk+1 − xk, . . . , xm − xk)

)
.

Proof. By Definition 2.12, G(x1 − xk, . . . , xk−1 − xk, xk+1 − xk, . . . , xm − xk) is

(2.3)

In (2.3), we perform the following elementary row and column operations: For every
i ∈ {2, 3, . . . ,m − 1}, subtract the 1st row from the ith row, and then subtract the
1st column from the ith column. Then multiply 1st row and 1st column by −1,
respectively. It follows that the determinant of (2.3) equals the determinant of

(2.4)

In (2.4), we interchange ith row and (i + 1)th successively for i = 1, . . . , k − 2.
In addition, we interchange jth column and (j + 1)th column successively for j =
1, . . . , k − 2. Then the resulting matrix is just G(x2 − x1, . . . , xm − x1). Because



ON CIRCUMCENTERS OF FINITE SETS IN HILBERT SPACES 275

the number of interchange we performed is even, the determinant is unchanged.
Therefore, we obtain

det
(
G(x1 − xk, . . . , xk−1 − xk, xk+1 − xk, . . . , xm − xk)

)
= det

(
G(x2 − x1, . . . , xm − x1)

)
as claimed. □
Fact 2.16. [12, page 16] Let S = {A ∈ Rn×n | A is invertible }. Then the mapping
S → S : A 7→ A−1 is continuous.

Fact 2.17 (Cramer’s rule). [10, page 476] If A ∈ Rn×n is invertible and Ax = b,
then for every i ∈ {1, . . . , n}, we have

xi =
det(Ai)

det(A)
,

where Ai = [A∗,1| · · · |A∗,i−1|b|A∗,i+1| · · · |A∗,n]. That is, Ai is identical to A except
that column A∗,i has been replaced by b.

Corollary 2.18. Let {x1, . . . , xm} ⊆ H with x1, . . . , xm being affinely independent.

Let
(
(x

(k)
1 , . . . , x

(k)
m )

)
k∈N ⊆ Hm such that

lim
k→∞

(x
(k)
1 , . . . , x(k)m ) = (x1, . . . , xm).

Then

G(x2 − x1, . . . , xm − x1)
−1 = lim

k→∞
G(x

(k)
2 − x

(k)
1 , . . . , x(k)m − x

(k)
1 )−1.

Proof. By Lemma 2.10, we know there exists K ∈ N such that

(∀k ≥ K) x
(k)
1 , . . . , x(k)m are affinely independent.

Using Fact 2.8, we know

x2 − x1, . . . , xm − x1 are linearly independent,

and

(∀k ≥ K) x
(k)
2 − x

(k)
1 , . . . , x(k)m − x

(k)
1 are linearly independent.

Hence Fact 2.13 tells us that G(x2 − x1, . . . , xm − x1)
−1 and (∀k ≥ K) G(x

(k)
2 −

x
(k)
1 , . . . , x

(k)
m − x

(k)
1 )−1 exist. Therefore, the required result follows directly from

Fact 2.16. □

3. The circumcenter

Before we are able to define the main actor in this paper, the circumcenter oper-
ator, we shall require a few more results.

Proposition 3.1. Let p, x, y ∈ H, and set U = aff{x, y}. Then the following are
equivalent:

(i) ∥p− x∥ = ∥p− y∥.
(ii) ⟨p− x, y − x⟩ = 1

2∥y − x∥2.
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(iii) PU (p) =
x+y
2 .

(iv) p ∈ x+y
2 + (U − U)⊥.

Proof. It is clear that

∥p− x∥ = ∥p− y∥ ⇐⇒ ∥p− x∥2 = ∥(p− x) + (x− y)∥2

⇐⇒ ∥p− x∥2 = ∥p− x∥2 + 2⟨p− x, x− y⟩+ ∥x− y∥2

⇐⇒ ⟨p− x, y − x⟩ = 1

2
∥y − x∥2.

Hence we get (i) ⇔ (ii).
Notice x+y

2 ∈ U . Now

x+ y

2
= PU (p) ⇐⇒(∀u ∈ U) ⟨p− x+ y

2
, u− x⟩ = 0

(by (i) ⇔ (iii) in Fact 2.11)

⇐⇒(∀α ∈ R) ⟨p− x+ y

2
, (x+ α(y − x))− x⟩ = 0

(by U = x+ span{y − x})

⇐⇒⟨p− x+ y

2
, y − x⟩ = 0

⇐⇒⟨p− (x− x− y

2
), y − x⟩ = 0

⇐⇒⟨p− x, y − x⟩+ ⟨x− y

2
, y − x⟩ = 0

⇐⇒⟨p− x, y − x⟩ = 1

2
∥y − x∥2,

which imply that (iii) ⇔ (ii).
On the other hand, by (i) ⇔ (ii) in Fact 2.11 and by Fact 2.3,

x+ y

2
= PU (p) ⇐⇒p− x+ y

2
∈ (U − U)⊥

⇐⇒p ∈ x+ y

2
+ (U − U)⊥,

which yield that (iii) ⇔ (iv).
In conclusion, we obtain (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). □

Corollary 3.2. Let x1, . . . , xm be in H. Let p ∈ H. Then

∥p− x1∥ = · · · = ∥p− xm−1∥

= ∥p− xm∥ ⇐⇒


⟨p− x1, x2 − x1⟩ = 1

2∥x2 − x1∥2
...

⟨p− x1, xm−1 − x1⟩ = 1
2∥xm−1 − x1∥2

⟨p− x1, xm − x1⟩ = 1
2∥xm − x1∥2.

Proof. Set I = {2, . . . ,m − 1,m}, and let i ∈ I. In Proposition 3.1, substitute
x = x1 and y = xi and use (i) ⇔ (ii). Then we get ∥p − x1∥ = ∥p − xi∥ ⇐⇒
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⟨p− x1, xi − x1⟩ = 1
2∥xi − x1∥2. Hence

(∀i ∈ I) ∥p− x1∥ = ∥p− xi∥ ⇐⇒ ⟨p− x1, xi − x1⟩ =
1

2
∥xi − x1∥2.

Therefore, the proof is complete. □

The next result plays an essential role in the definition of the circumcenter oper-
ator.

Proposition 3.3. Set S = {x1, x2, . . . , xm}, where m ∈ N∖ {0} and x1, x2, . . . , xm
are in H. Then there is at most one point p ∈ H satisfying the following two
conditions:

(i) p ∈ aff(S), and
(ii) {∥p− s∥ | s ∈ S} is a singleton: ∥p− x1∥ = ∥p− x2∥ = · · · = ∥p− xm∥.

Proof. Assume both of p, q satisfy conditions (i) and (ii).
By assumption and Lemma 2.6, p, q ∈ aff(S) = aff{x1, . . . , xm} = x1+span{x2−

x1, . . . , xm − x1}. Thus p − q ∈ span{x2 − x1, . . . , xm − x1}, and so there exist

α1, . . . , αm−1 ∈ R such that p − q =
∑m−1

i=1 αi(xi+1 − x1). Using the Corollary 3.2
above and using the condition (ii) satisfied by both of p and q, we observe that for
every i ∈ I = {2, . . . ,m}, we have

⟨p− x1, xi − x1⟩ =
1

2
∥xi − x1∥2 and

⟨q − x1, xi − x1⟩ =
1

2
∥xi − x1∥2.

Subtracting the above equalities, we get

(∀i ∈ I) ⟨p− q, xi − x1⟩ = 0.

Multiplying αi on both sides of the corresponding ith equality and then summing
up the m− 1 equalities, we get

0 =
⟨
p− q,

m−1∑
i=1

αi(xi+1 − x1)
⟩
= ⟨p− q, p− q⟩ = ∥p− q∥2.

Hence p = q, which implies that if such point satisfying conditions (i) and (ii) exists,
then it must be unique. □

We are now in a position to define the circumcenter operator.

Definition 3.4 (circumcenter). The circumcenter operator is

CC : P(H) → H∪{∅} : S 7→

{
p, if p ∈ aff(S) and {∥p− s∥ | s ∈ S} is a singleton;

∅, otherwise.

The circumradius operator is

CR : P(H) → R : S 7→

{
∥CC(S)− s∥, if CC(S) ∈ H and s ∈ S;

+∞, if CC(S) = ∅.
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In particular, when CC(S) ∈ H, that is, CC(S) ̸= ∅, we say that the circumcenter
of S exists and we call CC(S) the circumcenter of S and CR(S) the circumradius
of S.

Note that in the Proposition 3.3 above, we have already proved that for every
S ∈ P(H), there is at most one point p ∈ aff(S) such that {∥p − s∥ | s ∈ S} is a
singleton, so the notions are well defined. Hence we obtain the following alternative
expression of the circumcenter operator:

Remark 3.5. Let S ∈ P(H). Then the CC(S) is either ∅ or the unique point
p ∈ H such that

(i) p ∈ aff(S) and,
(ii) {∥p− s∥ | s ∈ S} is a singleton.

Example 3.6. Let x1, x2 be in H. Then

CC
(
{x1, x2}

)
=

x1 + x2
2

.

4. Explicit formulae for the circumcenter

We continue to assume that

m ∈ N∖ {0}, x1, . . . , xm are vectors in H, and S = {x1, . . . , xm}.

If S is a singleton, say S = {x1}, then, by Definition 3.4, we clearly have CC(S) =
x1. So in this section, to deduce the formula of CC(S), we always assume that

m ≥ 2.

We are ready for an explicit formula for the circumcenter.

Theorem 4.1. Suppose that x1, . . . , xm are affinely independent. Then CC(S) ∈
H, which means that CC(S) is the unique point satisfying the following two condi-
tions:

(i) CC(S) ∈ aff(S), and
(ii) {∥CC(S)− s∥ | s ∈ S} is a singleton.

Moreover,

CC(S) = x1 +
1

2
(x2 − x1, . . . , xm − x1)G(x2 − x1, . . . , xm − x1)

−1

∥x2 − x1∥2
...

∥xm − x1∥2

 ,

where G(x2 − x1, . . . , xm−1 − x1, xm − x1) is the Gram matrix defined in Definition
2.12:

G(x2 − x1, . . . , xm−1 − x1, xm − x1)

=


∥x2 − x1∥2 ⟨x2 − x1, x3 − x1⟩ · · · ⟨x2 − x1, xm − x1⟩

...
...

...
⟨xm−1 − x1, x2 − x1⟩ ⟨xm−1 − x1, x3 − x1⟩ · · · ⟨xm−1 − x1, xm − x1⟩
⟨xm − x1, x2 − x1⟩ ⟨xm − x1, x3 − x1⟩ · · · ∥xm − x1∥2

 .
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Proof. By assumption and Fact 2.8, we get that x2 − x1, . . . , xm − x1 are linearly
independent. Then by Fact 2.13, the Gram matrix G(x2−x1, x3−x1, . . . , xm−x1)
is invertible. Set

α1

α2
...

αm−1

 =
1

2
G(x2 − x1, x3 − x1, . . . , xm − x1)

−1


∥x2 − x1∥2
∥x3 − x1∥2

...
∥xm − x1∥2

 ,

and

p = x1 + α1(x2 − x1) + α2(x3 − x1) + · · ·+ αm−1(xm − x1).

By the definition of G(x2 − x1, x3 − x1, . . . , xm − x1) and by the definitions of(
α1 α2 · · · αm−1

)⊺
and p, we obtain the equivalences

G(x2 − x1, x3 − x1, . . . , xm − x1)


α1

α2
...

αm−1

 =
1

2


∥x2 − x1∥2
∥x3 − x1∥2

...
∥xm − x1∥2



⇐⇒


⟨α1(x2 − x1) + · · ·+ αm−1(xm − x1), x2 − x1⟩ = 1

2∥x2 − x1∥2
...

⟨α1(x2 − x1) + · · ·+ αm−1(xm − x1), xm − x1⟩ = 1
2∥xm − x1∥2

⇐⇒


⟨p− x1, x2 − x1⟩ = 1

2∥x2 − x1∥2
...

⟨p− x1, xm − x1⟩ = 1
2∥xm − x1∥2.

Hence by Corollary 3.2, we know that p satisfy condition (ii). In addition, it is clear
that p = x1 + α1(x2 − x1) + α2(x3 − x1) + · · ·+ αm−1(xm − x1) ∈ x1 + span{x2 −
x1, . . . , xm−x1} = aff(S), which is just the condition (i). Hence the point satisfying
conditions (i) and (ii) exists.

Moreover, by Proposition 3.3, if the point exists, then it must be unique. □
Lemma 4.2. Suppose that CC(S) ∈ H, and let K ⊆ S such that aff(K) = aff(S).
Then

CC(S) = CC(K).

Proof. By assumption, CC(S) ∈ H, that is:

(i) CC(S) ∈ aff(S), and
(ii) {∥CC(S)− s∥ | s ∈ S} is a singleton.

Because K ⊆ S, we get {∥CC(S) − s∥ | s ∈ K} is a singleton, by (ii). Since
aff(K) = aff(S), by (i), the point CC(S) satisfy

(I) CC(S) ∈ aff(K), and
(II) {∥CC(S)− u∥ | u ∈ K} is a singleton.

Replacing S in Proposition 3.3 by K and combining with Definition 3.4, we know
CC(K) = CC(S). □
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Corollary 4.3. Suppose that CC(S) ∈ H. Let xi1 , . . . , xit be elements of S such
that x1, xi1 , . . . , xit are affinely independent, and set K = {x1, xi1 , . . . , xit}. Fur-
thermore, assume that aff(K) = aff(S). Then

CC(S) = CC(K)

= x1 +
1

2
(xi1 − x1, . . . , xit − x1)G(xi1 − x1, . . . , xit − x1)

−1

∥xi1 − x1∥2
...

∥xit − x1∥2

 .

Proof. By Theorem 4.1, x1, xi1 , . . . , xit are affinely independent implies that CC(K) ̸=
∅, and

CC(K) = x1 +
1

2
(xi1 − x1, . . . , xit − x1)G(xi1 − x1, . . . , xit − x1)

−1

∥xi1 − x1∥2
...

∥xit − x1∥2

 .

Then the desired result follows from Lemma 4.2. □

Lemma 4.4. Let xi1 , . . . , xit be elements of S, and set K = {x1, xi1 , . . . , xit}. Then

aff(K) = aff(S) and x1, xi1 , . . . , xit are affinely independent.

⇐⇒ xi1 − x1, . . . , xit − x1 is a basis of span{x2 − x1, . . . , xm − x1}.

Proof. Indeed,

xi1 − x1, . . . , xit − x1 is a basis of span{x2 − x1, . . . , xm − x1}

⇐⇒

{
xi1 − x1, . . . , xit − x1 are linearly independent, and

span{xi1 − x1, . . . , xit − x1} = span{x2 − x1, . . . , xm − x1}

Fact 2.8⇐⇒

{
x1, xi1 , . . . , xit are affinely independent, and

x1 + span{xi1 − x1, . . . , xit − x1} = x1 + span{x2 − x1, . . . , xm − x1}

⇐⇒

{
x1, xi1 , . . . , xit are affinely independent, and

aff(K) = aff(S),

which completes the proof. □

5. Additional formulae for the circumcenter

Upholding the assumptions of Section 4, we assume additionally that

x1, . . . , xm are affinely independent.

By Theorem 4.1, CC(S) ∈ H. Let

k ∈ {2, 3, . . . ,m} be arbitrary but fixed.

By Theorem 4.1 again, we know that

CC(S) = x1 + α1(x2 − x1) + α2(x3 − x1) + · · ·+ αm−1(xm − x1)(5.1a)

=
(
1−

∑m−1
i=1 αi

)
x1 + α1x2 + · · ·+ αm−1xm,(5.1b)
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where 
α1

α2
...

αm−1

 =
1

2
G(x2 − x1, x3 − x1, . . . , xm − x1)

−1


∥x2 − x1∥2
∥x3 − x1∥2

...
∥xm − x1∥2

 .(5.2)

By the symmetry of the positions of the points x1, . . . , xk, . . . , xm in S in Definition
3.4 and by Proposition 3.3, we also get

CC(S) = xk + β1(x1 − xk) + · · ·+ βk−1(xk−1 − xk)

+ βk(xk+1 − xk) + · · ·+ βm−1(xm − xk)(5.3a)

= β1x1 + · · ·+ βk−1xk−1 + (1−
m−1∑
i=1

βi)xk + βkxk+1 + · · ·+ βm−1xm,(5.3b)

where


β1
β2
...

βm−1

 =
1

2
G(x1 − xk, . . . , xk−1 − xk, xk+1 − xk, . . . , xm − xk)

−1



∥x1 − xk∥2
...

∥xk−1 − xk∥2
∥xk+1 − xk∥2

...
∥xm − xk∥2


.

(5.4)

Proposition 5.1. The following equalities hold:

(
1−

∑m−1
i=1 αi

)
= β1, (coefficient of x1)

(5.5)

αk−1 =
(
1−

∑m−1
i=1 βi

)
, (coefficient of xk)

(5.6)

(∀i ∈ {2, . . . , k − 1}) αi−1 = βi and (∀j ∈ {k, k + 1, . . . ,m− 1}) αj = βj .
(5.7)

Proof. Recall that at the beginning of this section we assumed x1, . . . , xm are affinely
independent. Combining the equations (5.1b) & (5.3b) and Lemma 2.9, we get the
required results. □

To simplify the statements, we use the following abbreviations.

A = G(x2 − x1, . . . , xk − x1, . . . , xm − x1),

B = G(x1 − xk, . . . , xk−1 − xk, xk+1 − xk, . . . , xm − xk),

and the determinant of matrix A (by Proposition 2.15, it is also the determinant of
matrix B) is denoted by:

δ = det(A).
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We denote the two column vectors a, b respectively by:

a =
(
∥x2 − x1∥2 · · · ∥xk − x1∥2 · · · ∥xm − x1∥2

)⊺
,

b =
(
∥x1 − xk∥2 · · · ∥xk−1 − xk∥2 ∥xk+1 − xk∥2 · · · ∥xm − xk∥2

)⊺
.

For every M ∈ Rn×n, and for every j ∈ {1, 2, . . . , n},
we denote the jth column of the matrix M as M∗,j .

In turn, for every i ∈ {1, . . . ,m− 1},
Ai = [A∗,1| · · · |A∗,i−1|a|A∗,i+1| · · · |A∗,m−1],

and

Bi = [B∗,1| · · · |B∗,i−1|b|B∗,i+1| · · · |B∗,m−1].

That is, Ai is identical to A except that column A∗,i has been replaced by a and Bi

is identical to B except that column B∗,i has been replaced by b.

Lemma 5.2. The following statements hold:

(i)
(
α1 · · ·αm−1

)⊺
defined in (5.2) is the unique solution of the nonsingular

system Ay = 1
2a where y is the unknown variable. In consequence, for every

i ∈ {1, . . . ,m− 1},

αi =
det(Ai)

2δ
.

(ii)
(
β1 · · ·βm−1

)⊺
defined in (5.4) is the unique solution of the nonsingular sys-

tem By = 1
2b where y is the unknown variable. In consequence, for every

i ∈ {1, . . . ,m− 1},

βi =
det(Bi)

2δ
.

Proof. By assumption, x1, . . . , xm are affinely independent, and by Proposition 2.15,
we know det(B) = det(A) = δ ̸= 0.

(i): By definition of
(
α1 · · ·αm−1

)⊺
,(

α1 · · ·αm−1

)⊺
=

1

2
A−1a.

Clearly we know it is the unique solution of the nonsingular system Ay = 1
2a. Hence

the desired result follows directly from the Fact 2.17, the Cramer Rule.
(ii): Using the same method of proof of (i), we can prove (ii) . □
Using Theorem 4.1, Lemma 5.2 and the equalities (5.5), (5.6) and (5.7), we readily

obtain the following result.

Corollary 5.3. Suppose that x1, . . . , xm are affinely independent. Then

CC(S) =
(
1−

∑m−1
i=1 αi

)
x1 + α1x2 + · · ·+ αm−1xm,

where (∀i ∈ {1, . . . ,m− 1}) αi =
1
2δ det(Ai). Moreover,

1−
m−1∑
i=1

αi =
1

2δ
det(B1), αk−1 = 1−

m−1∑
i=1

1

2δ
det(Bi),
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(∀i ∈ {2, . . . , k − 1}) αi−1 =
1

2δ
det(Bi)

and (∀j ∈ {k, k + 1, . . . ,m− 1}) αj =
1

2δ
det(Bj).

6. Basic properties of the circumcenter

In this section we collect some fundamental properties of the circumcenter oper-
ator. Recall that

m ∈ N∖ {0}, x1, . . . , xm are vectors in H, and S = {x1, . . . , xm}.
Proposition 6.1 (scalar multiples). Let λ ∈ R∖ {0}. Then CC(λS) = λCC(S).

Proof. Let p ∈ H. By Definition 3.4,

p = CC(S) ⇐⇒

{
p ∈ aff(S)

{∥p− s∥ | s ∈ S} is a singleton

⇐⇒

{
λp ∈ aff(λS)

{∥λp− λs∥ | λs ∈ λS} is a singleton

⇐⇒ λp = CC(λS),

and the result follows. □
The next example below illustrates that we had to exclude the case λ = 0 in

Proposition 6.1.

Example 6.2. Suppose that H = R and that S = {0,−1, 1}. Then
CC(0 · S) = {0} ̸= ∅ = 0 · CC(S).

Proposition 6.3 (translations). Let y ∈ H. Then CC(S + y) = CC(S) + y.

Proof. Let p ∈ H. By Lemma 2.6,

p ∈ aff{x1, . . . , xm} ⇐⇒ (∃ λ1, . . . , λm ∈ R with
m∑
i=1

λi = 1) p =
m∑
i=1

λixi

⇐⇒ (∃ λ1, . . . , λm ∈ R with
m∑
i=1

λi = 1) p+ y =
m∑
i=1

λi(xi + y)

⇐⇒ p+ y ∈ aff{x1 + y, . . . , xm + y},
that is

p ∈ aff(S) ⇐⇒ p+ y ∈ aff(S + y).(6.1)

By (6.1) and Remark 3.5, we have

p = CC(S) ∈ H ⇐⇒

{
p ∈ aff(S)

{∥p− s∥ | s ∈ S} is a singleton

⇐⇒

{
p+ y ∈ aff(S + y)

{∥(p+ y)− (s+ y)∥ | s+ y ∈ S + y} is a singleton

⇐⇒ p+ y = CC(S + y) ∈ H.
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Moreover, because ∅ = ∅+ y, the proof is complete. □

7. Circumcenters of sequences of sets

We uphold the assumptions that

m ∈ N∖ {0}, x1, . . . , xm are vectors in H, and S = {x1, . . . , xm}.

In this section, we explore the convergence of the circumcenter operator over a
sequence of sets.

Theorem 7.1. Suppose that CC(S) ∈ H. Then the following hold:

(i) Set t = dim
(
span{x2−x1, . . . , xm−x1}

)
, and let S̃ = {x1, xi1 , . . . , xit} ⊆ S

be such that xi1−x1, . . . , xit−x1 is a basis of span{x2−x1, . . . , xm−x1}. Fur-
thermore, let

(
(x

(k)
1 , x

(k)
i1

, . . . , x
(k)
it

)
)
k≥1

⊆ Ht+1 with lim
k→∞

(x
(k)
1 , x

(k)
i1

, . . . , x
(k)
it

)

= (x1, xi1 , . . . , xit), and set (∀k ≥ 1) S̃(k) = {x(k)1 , x
(k)
i1

, . . . , x
(k)
it

}. Then

there exist N ∈ N such that for every k ≥ N , CC(S̃(k)) ∈ H and

lim
k→∞

CC(S̃(k)) = CC(S̃) = CC(S).

(ii) Suppose that x1, . . . , xm−1, xm are affinely independent, and let(
(x

(k)
1 , . . . , x

(k)
m−1, x

(k)
m )

)
k≥1

⊆ Hm satisfy limk→∞(x
(k)
1 , . . . , x

(k)
m−1, x

(k)
m ) =

(x1, . . . , xm−1, xm). Set (∀k ≥ 1) S(k) = {x(k)1 , . . . , x
(k)
m−1, x

(k)
m }. Then

lim
k→∞

CC(S(k)) = CC(S).

Proof. (i): Let l be the cardinality of the set S. Assume first that l = 1. Then

t = 0, and S̃ = {x1}. Let (x
(k)
1 )k≥1 ⊆ H satisfy limk→∞ x

(k)
1 = x1. By Definition

3.4, we know CC({x(k)1 }) = x
(k)
1 and CC({x1}) = x1. Hence

lim
k→∞

CC(S̃(k)) = lim
k→∞

x
(k)
1 = x1 = CC(S).

Now assume that l ≥ 2. By Corollary 4.3 and Lemma 4.4, we obtain

(7.1) CC(S) = CC(S̃)

= x1 +
1

2
(xi1 − x1, . . . , xit − x1)G(xi1 − x1, . . . , xit − x1)

−1

∥xi1 − x1∥2
...

∥xit − x1∥2

 .

Using the assumptions and the Lemma 2.10, we know that there exists N ∈ N such
that

(∀k ≥ N) x
(k)
1 , x

(k)
i1

, . . . , x
(k)
it

are affinely independent.
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By Theorem 4.1, we know (k ≥ N) CC(S̃(k)) ∈ H. Moreover, for every k ≥ N ,

CC(S̃(k)) = x
(k)
1

(7.2)

+
1

2
(x

(k)
i1

− x
(k)
1 , . . . , x

(k)
it

− x
(k)
1 )G(x

(k)
i1

− x
(k)
1 , . . . , x

(k)
it

− x
(k)
1 )−1


∥x(k)i1

− x
(k)
1 ∥2

...

∥x(k)it
− x

(k)
1 ∥2

 .

Comparing (7.1) with (7.2) and using Corollary 2.18, we obtain

lim
k→∞

CC(S̃(k)) = CC(S̃) = CC(S).

(ii): Let x1, . . . , xm−1, xm ∈ H be affinely independent. Then t = m − 1 and

S̃ = S. Substitute the S̃ and S̃(k) in part (i) by our S and S(k) respectively. Then
we obtain

lim
k→∞

CC(S(k)) = CC(S)

and the proof is complete. □
Corollary 7.2. The mapping

Ψ: Hm → H∪ {∅} : (x1, . . . , xm) 7→ CC({x1, . . . , xm})
is continuous at every point (x1, . . . , xm) ∈ Hm where x1, . . . , xm are affinely inde-
pendent.

Proof. This follows directly from Theorem 7.1(ii). □
Let us record the doubleton case explicitly.

Proposition 7.3. Suppose that m = 2. Let
(
(x

(k)
1 , x

(k)
2 )

)
k≥1

⊆ H2 satisfy

limk→∞(x
(k)
1 , x

(k)
2 ) = (x1, x2). Then

lim
k→∞

CC({x(k)1 , x
(k)
2 }) = CC({x1, x2}).

Proof. Indeed, we deduce from Example 3.6 that

lim
k→∞

CC({x(k)1 , x
(k)
2 }) = lim

k→∞

x
(k)
1 + x

(k)
2

2
=

x1 + x2
2

= CC({x1, x2})

and the result follows. □
The following example illustrates that the assumption that “m = 2” in Proposi-

tion 7.3 cannot be replaced by “the cardinality of S is 2”.

Example 7.4. Suppose that H = R2, that m = 3, and that S = {x1, x2, x3} with

x1 = (−1, 0), x2 = x3 = (1, 0). Then there exists ((x
(k)
1 , x

(k)
2 , x

(k)
3 ))k≥1 ⊆ H3 such

that limk→∞(x
(k)
1 , x

(k)
2 , x

(k)
3 ) = (x1, x2, x3) and

lim
k→∞

CC({x(k)1 , x
(k)
2 , x

(k)
3 }) ̸= CC(S).
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Proof. For every k ≥ 1, let (x
(k)
1 , x

(k)
2 , x

(k)
3 ) =

(
(−1, 0), (1, 0), (1+ 1

k , 0)
)
∈ H3. Then

limk→∞(x
(k)
1 , x

(k)
2 , x

(k)
3 ) = (x1, x2, x3). Moreover, by Definition 3.4, we know that

(∀k ≥ 1), CC(S(k)) = ∅, since there is no point in R2 which has equal distance to all
of the three points. On the other hand, by Definition 3.4 again, we know CC(S) =

(0, 0) ∈ H. Hence limk→∞CC({x(k)1 , x
(k)
2 , x

(k)
3 }) = ∅ ̸= (0, 0) = CC(S). □

The following question now naturally arises:

Question 7.1. Suppose that CC({x1, x2, x3}) ∈ H, and let
(
(x

(k)
1 , x

(k)
2 , x

(k)
3 )

)
k≥1

⊆
H3 be such that limk→∞(x

(k)
1 , x

(k)
2 , x

(k)
3 ) = (x1, x2, x3). Is it true that the implication

(∀k ≥ 1) CC({x(k)1 , x
(k)
2 , x

(k)
3 }) ∈ H

=⇒ lim
k→∞

CC({x(k)1 , x
(k)
2 , x

(k)
3 }) = CC({x1, x2, x3})

holds?

When x1, x2, x3 are affinely independent, then Theorem 7.1(ii) gives us an affir-
mative answer. However, the answer is negative if x1, x2, x3 are not assumed to be
affinely independent.

Example 7.5. Suppose that H = R2 and S = {x1, x2, x3} with x1 = (−2, 0),

x2 = x3 = (2, 0). Then there exists a sequence
(
(x

(k)
1 , x

(k)
2 , x

(k)
3 )

)
k≥1

⊆ H3 such that

(i) limk→∞(x
(k)
1 , x

(k)
2 , x

(k)
3 ) = (x1, x2, x3),

(ii) (∀k ≥ 1) CC({x(k)1 , x
(k)
2 , x

(k)
3 }) ∈ R2, and

(iii) limk→∞CC({x(k)1 , x
(k)
2 , x

(k)
3 }) ̸= CC(S).

Proof. By Definition 3.4, we know that CC(S) = (0, 0) ∈ H. Set

(∀k ≥ 1) S(k) = {x(k)1 , x
(k)
2 , x

(k)
3 } =

{
(−2, 0), (2, 0),

(
2− 1

k ,
1
4k

)}
.

(i): In this case,

lim
k→∞

(x
(k)
1 , x

(k)
2 , x

(k)
3 ) = lim

k→∞

(
(−2, 0), (2, 0),

(
2− 1

k ,
1
4k

))
=
(
(−2, 0), (2, 0), (2, 0)

)
=(x1, x2, x3).

(ii): It is clear that for every k ≥ 1, the vectors (−2, 0), (2, 0), (2 − 1
k ,

1
4k ) are not

colinear, that is, (−2, 0), (2, 0), (2 − 1
k ,

1
4k ) are affinely independent. By Theorem

4.1, we see that

(∀k ≥ 1) CC({x(k)1 , x
(k)
2 , x

(k)
3 }) ∈ R2.

(iii): Let k ≥ 1. By definition of CC(S(k)) and (ii), we deduce that CC(S(k)) =

(p
(k)
1 , p

(k)
2 ) ∈ R2 and that

∥CC(S(k))− x
(k)
1 ∥ = ∥CC(S(k))− x

(k)
2 ∥ = ∥CC(S(k))− x

(k)
3 ∥.
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Because CC(S(k)) must be in the intersection of the perpendicular bisector of x
(k)
1 =

(−2, 0), x
(k)
2 = (2, 0) and the perpendicular bisector of x

(k)
2 = (2, 0), x

(k)
3 = (2 −

1
k ,

1
4k ), we obtain

p
(k)
1 = 0 and p

(k)
2 = 4

(
p
(k)
1 −

2 + 2− 1
k

2

)
+ 1

8k ;

thus,

CC(S(k)) = (p
(k)
1 , p

(k)
2 ) =

(
0,−8 + 2

k + 1
8k

)
.(7.3)

(Alternatively, we can use the formula in Theorem 4.1 to get (7.3)). Therefore,

lim
k→∞

CC(S(k)) = lim
k→∞

(
0,−8 + 2

k + 1
8k

)
= (0,−8) ̸= (0, 0) = CC(S),

and the proof is complete.

As the picture below shows, (∀k ≥ 1) x
(k)
3 = (2− 1

k ,
1
4k ) converges to x3 = (2, 0)

along the purple line L = {(x, y) ∈ R2 | y = −1
4(x−2)}. In fact, CC(S(k)) is just the

intersection point between the two lines M1 and M2, where M1 is the perpendicular
bisector between the points x1 and x2, and M2 is the perpendicular bisector between

the points x
(k)
3 and x2. □

Figure 1. Continuity of circumcenter operator may fail even when
(∀k ≥ 1) CC(S(k)) ∈ H.

8. The circumcenter of three points

In this section, we study the circumcenter of a set containing three points. We
will give a characterization of the existence of circumcenter of three pairwise distinct
points. In addition, we shall provide asymmetric and symmetric formulae.

Theorem 8.1. Suppose that S = {x, y, z} ∈ P(H) and that l = 3 is the cardinality
of S. Then x, y, z are affinely independent if and only if CC(S) ∈ H.

Proof. If S is affinely independent, then CC(S) ∈ H by Theorem 4.1.
To prove the converse implication, suppose that CC(S) ∈ H, i.e.,

(i) CC(S) ∈ aff{x, y, z} , and
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(ii) ∥CC(S)− x∥ = ∥CC(S)− y∥ = ∥CC(S)− z∥.
We argue by contradiction and thus assume that the elements of S are affinely
dependent:

dim(span{S − x}) = dim(span{y − x, z − x}) ≤ 1.

Note that y − x ̸= 0 and z − x ̸= 0. Set

U = x+ span{y − x, z − x} = x+ span{y − x} = x+ span{z − x}.
Combining with Lemma 2.6, we get

U = aff{x, y, z} = aff{x, y} = aff{x, z}.(8.1)

By definition of CC(S), we have

CC(S) ∈ aff{x, y} (8.1)
= U and ∥CC(S)− x∥ = ∥CC(S)− y∥,(8.2)

and

CC(S) ∈ aff{x, z} (8.1)
= U and ∥CC(S)− x∥ = ∥CC(S)− z∥.(8.3)

Now using (i) ⇔ (iii) in Proposition 3.1 and using (8.2), we get

CC(S) = PU

(
CC(S)

)
=

x+ y

2
.

Similarly, using (i) ⇔ (iii) in Proposition 3.1 and using (8.3), we can also get

CC(S) = PU

(
CC(S)

)
=

x+ z

2
.

Therefore,

x+ y

2
= CC(S) =

x+ z

2
=⇒ y = z,

which contradicts the assumption that l = 3. The proof is complete. □
In contrast, when the cardinality of S is 4, then

CC(S) ∈ H ̸⇒ elements of S are affinely independent

as the following example demonstrates. Thus the characterization of the existence
of circumcenter in Theorem 8.1 is generally not true when we consider l ≥ 3 pairwise
distinct points.

Example 8.2. Suppose that H = R2, that m = 4, and S = {x1, x2, x3, x4},
where x1 = (0, 0), x2 = (4, 0), x3 = (0, 4), and x4 = (4, 4) (see Figure 2). Then
x1, x2, x3, x4 are pairwise distinct and affinely dependent, yet CC(S) = (2, 2).

In Theorem 4.1 above, where we presented the formula for CC(S), we gave special
importance to the first point x1 in S. We now provide some longer yet symmetric
formulae for CC(S).

Remark 8.3. Suppose that S = {x, y, z} and that l = 3 is the cardinality of
S. Assume furthermore that CC(S) ∈ H, i.e., there is an unique point CC(S)
satisfying

(i) CC(S) ∈ aff{x, y, z} and
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Figure 2. Circumcenter of the four affinely dependent points from
Example 8.2.

(ii) ∥CC(S)− x∥ = ∥CC(S)− y∥ = ∥CC(S)− z∥.
By Theorem 8.1, the vectors x, y, z must be affinely independent. From Theorem
4.1 we obtain

CC(S) = x+
1

2
(y − x, z − x)

(
∥y − x∥2 ⟨y − x, z − x⟩

⟨z − x, y − x⟩ ∥z − x∥2
)−1(∥y − x∥2

∥z − x∥2
)

= x+
(∥y − x∥2∥z − x∥2 − ∥z − x∥2⟨y − x, z − x⟩)(y − x)

2(∥y − x∥2∥z − x∥2 − ⟨y − x, z − x⟩2)

+
(∥y − x∥2∥z − x∥2 − ∥y − x∥2⟨y − x, z − x⟩)(z − x)

2(∥y − x∥2∥z − x∥2 − ⟨y − x, z − x⟩2)

=
1

K1

(
∥y − z∥2⟨x− z, x− y⟩x+ ∥x− z∥2⟨y − z, y − x⟩y + ∥x− y∥2⟨z − x, z − y⟩z

)
,

where K1 = 2(∥y − x∥2∥z − x∥2 − ⟨y − x, z − x⟩2).
Similarly,

CC(S)

=
1

K2

(
∥y − z∥2⟨x− z, x− y⟩x+ ∥x− z∥2⟨y − z, y − x⟩y + ∥x− y∥2⟨z − x, z − y⟩z

)
,

where K2 = 2(∥x− y∥2∥z − y∥2 − ⟨x− y, z − y⟩2) and

CC(S)

=
1

K3

(
∥y − z∥2⟨x− z, x− y⟩x+ ∥x− z∥2⟨y − z, y − x⟩y + ∥x− y∥2⟨z − x, z − y⟩z

)
,

where K3 = 2(∥x− z∥2∥y − z∥2 − ⟨x− z, y − z⟩2).
In view of Proposition 3.3 (the uniqueness of the circumcenter), we now average

the three formulae from above to obtain the following symmetric formula for p:

CC(S)

=
1

K

(
∥y − z∥2⟨x− z, x− y⟩x+ ∥x− z∥2⟨y − z, y − x⟩y + ∥x− y∥2⟨z − x, z − y⟩z

)
,
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where

K =
1

6

( 1

∥y − x∥2∥z − x∥2 − ⟨y − x, z − x⟩2

+
1

∥x− y∥2∥z − y∥2 − ⟨x− y, z − y⟩2

+
1

∥x− z∥2∥y − z∥2 − ⟨x− z, y − z⟩2
)
.

In fact, Proposition 2.15 yields K1 = K2 = K3.

We now summarize the above discussion so far in the following two pleasing main
results.

Theorem 8.4 (nonsymmetric formula for the circumcenter). Suppose that S =
{x, y, z} and denote the cardinality of S by l. Then exactly one of the following
cases occurs:

(i) l = 1 and CC(S) = x.
(ii) l = 2, say S = {u, v}, where u, v ∈ S and u ≠ v, and CC(S) = u+v

2 .
(iii) l = 3 and exactly one of the following two cases occurs:

(a) x, y, z are affinely independent; equivalently, ∥y − x∥∥z − x∥ > ⟨y −
x, z − x⟩, and

CC(S)=
∥y − z∥2⟨x− z, x− y⟩x+∥x− z∥2⟨y − z, y − x⟩y +∥x− y∥2⟨z − x, z − y⟩z

2(∥y − x∥2∥z − x∥2 − ⟨y − x, z − x⟩2)
.

(b) x, y, z are affinely dependent; equivalently, ∥y−x∥∥z−x∥ = ⟨y−x, z−x⟩,
and CC(S) = ∅.

Theorem 8.5 (symmetric formula of the circumcenter). Suppose that S = {x, y, z}
and denote the cardinality of S by l. Then exactly one of the following cases occurs:

(i) l = 1 and CC(S) = x = y = z = x+y+z
3 .

(ii) l = 2 and CC(S) = ∥x−y∥z+∥x−z∥y+∥y−z∥x
∥x−y∥+∥x−z∥+∥y−z∥ .

(iii) l = 3, consider K = 1
6

(
1

∥y−x∥2∥z−x∥2−⟨y−x,z−x⟩2 + 1
∥x−y∥2∥z−y∥2−⟨x−y,z−y⟩2 +

1
∥x−z∥2∥y−z∥2−⟨x−z,y−z⟩2

)
, and exactly one of the following two cases occurs:

(a) K ∈ ]0,+∞[ and

CC(S)=
∥y − z∥2⟨x− z, x− y⟩x+ ∥x− z∥2⟨y − z, y − x⟩y + ∥x− y∥2⟨z − x, z − y⟩z

K
.

(b) K is not defined (because of a zero denominator) and CC(S) = ∅.

9. Applications of the circumcenter

In this section, we discuss applications of the circumcenter in optimization.
Let z ∈ H, and let U1, . . . , Um be closed subspaces of H. The corresponding best

approximation problem is to

(9.1) Find ū ∈ ∩m
i=1Ui such that ∥z − ū∥ = min

u∈∩m
i=1Ui

∥z − u∥.

Clearly, the solution of (9.1) is just P∩m
i=1Uiz.
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Now assume that H = Rn, and let U and V be linear subspaces of H, i.e., we
focus on m = 2 subspaces. Set

S : Rn → P(Rn) : x 7→ {x,RUx,RV RUx}.

Behling, Bello Cruz, and Santos introduced and studied in [4] an algorithm to ac-
celerate the Douglas–Rachford algorithm they termed the Circumcentered-Douglas-
Rachford method (C-DRM). Given a current point x ∈ Rn, the next iterate of the
C-DRM is the circumcenter of the triangle with vertices x, RUx and RV RUx. Hence,
given the initial point x ∈ Rn, the C-DRM generates the sequence (x(k))k∈N via

x(0) = x, and (∀k ∈ N) x(k+1) = CC(S(x(k))).(9.2)

Behling et al.’s [4, Lemma 2] guarantees that for every x ∈ Rn, the circumcen-
ter CC(S(x)) is the projection of any point w ∈ U ∩ V onto the affine subspace
aff{x,RUx,RV RUx}. Here, the existence of the circumcenter of S(x) turns out
to be a necessary condition for the nonemptiness of U ∩ V . In fact, CC(S(x)) =
Paff(S(x))(PU∩V x), which means that CC(S(x)) is the closest point to the PU∩V x
among the points in the affine subspace aff(S(x)). In [4, Theorem 1], the authors
proved that if x in (9.2) is replaced by PUz, PV z or PU+V z, where z ∈ Rn, then
the C-DRM sequence defined in (9.2) converges linearly to PU∩V z. Moreover, their
rate of convergence is at least the cosine of the Friedrichs angle between U and
V , cF ∈ [0, 1[, which happens to be the sharp rate for the original DRM; see [3,
Theorem 4.1] for details.

In [4, Section 3.1], the authors elaborate on how to compute the circumcenter of
S(x) in Rn. They used the fact that the projection of CC(S(x)) onto each vector
RUx−x and RV RUx−x has its endpoint at the midpoint of the line segment from
x to RUx and x to RV RUx. They exhibited a 2 × 2 linear system of equations to
calculate the CC(S(x)) and an expression of the CC(S(x)) with parameters. Their
expression of the CC(S(x)) can be deduced from our Remark 8.3. Actually, for
every x ∈ Rn, using Theorem 8.4(iii)(a), we can easily obtain a closed formula for
CC(S(x)) allowing us to efficiently calculate the C-DRM sequence.

In [4, Corollary 3], Behling et al. proved that their linear convergence results are
applicable to affine subspaces with nonempty intersection using the Friedrichs angle
of suitable linear subspaces parallel to the original affine subspaces. Returning to
(9.1), we now set

Ŝ : Rn → P(Rn) : x 7→
{
x,RU1x,RU2RU1x, . . . , RUm · · ·RU2RU1x

}
.

In order to minimize the inherent zig-zag behaviour of sequences generated by var-
ious reflection and projection methods, Behling et al. generalized the C-DRM in
[5] to the so-called Circumcentered-Reflection Method (CRM). Using our notation,
it turns out that the underlying CRM operator C : Rn → Rn is nothing but the

composition CC ◦ Ŝ. Hence Behling et al.’s CRM sequence is just

x(0) = x, and (∀k ∈ N) x(k+1) = CC(Ŝ(x(k))).(9.3)

In [5, Lemma 3.1], they show C is well defined. Moreover, they also obtain

(∀w ∈ ∩m
i=1Ui) CC(Ŝ(x)) = P

aff(Ŝ(x))(w).
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In particular, CC(Ŝ(x)) = P
aff(Ŝ(x))(P∩m

i=1Uix), which means that the circumcenter

of the set Ŝ(x) is the point in aff(Ŝ(x)) that is closest to P∩m
i=1Uix. Behling et al.’s

central convergence result (see [5, Theorem 3.3]) states that the CRM sequence
(9.3) converges linearly to P∩m

i=1Uix.

For the actual computation of the circumcenter of the set Ŝ(x), both [4] and [5]
only contain passing references to that the computation “requires the resolution of
a suitable m×m linear system of equations.” Concluding this section, let us point
out that the explicit formula presented in Corollary 4.3 may be used; after finding

a maximally linearly independent subset of Ŝ(x) − x (using Matlab, say) one can
directly use the formula in Corollary 4.3 to calculate the circumcenter.

10. The circumcenter in R3 and the crossproduct

We conclude this paper by expressing the circumcenter and circumradius in R3

by using the cross product. We start by reviewing some properties of the cross
product.

Definition 10.1 (cross product). [1, page 483] Let x = (x1, x2, x3) and y =
(y1, y2, y3) be two vectors in R3. The cross product x× y (in that order) is

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Fact 10.2. [1, Theorem 13.12] and [6, Theorem 17.12] Let x, y, z be in R3. Then
the following hold:

(i) The cross product defined in Definition 10.1 is a bilinear function, that is,
for every α, β ∈ R,

(αx+ βy)× z = α(x× z) + β(y × z) and x× (αy + βz) = α(x× y) + β(x× z).

(ii) x× y ∈ (span{x, y})⊥, that is

(∀α ∈ R) (∀β ∈ R) ⟨x× y, αx+ βy⟩ = 0.

(iii) We have

(x× y)× z = ⟨x, z⟩y − ⟨y, z⟩x and x× (y × z) = ⟨x, z⟩y − ⟨x, y⟩z.

(iv) (Lagrange’s identity) ∥x× y∥2 = ∥x∥2∥y∥2 − ⟨x, y⟩2.

Definition 10.3. [1, page 458] Let x and y be two nonzero vectors in Rn, where
n ≥ 1. Then the angle θ between x and y is defined by

θ = arccos
⟨x, y⟩
∥x∥∥y∥

,

where arccos : [−1, 1] → [0, π].

Remark 10.4. If x and y are two nonzero vectors in Rn, where n ≥ 1, then

⟨x, y⟩ = ∥x∥∥y∥ cos θ,

where θ is the angle between x and y.



ON CIRCUMCENTERS OF FINITE SETS IN HILBERT SPACES 293

Fact 10.5. [1, page 485] Let x and y be two nonzero vectors in R3, and let θ be
the angle between x and y. Then

∥x× y∥ = ∥x∥∥y∥ sin θ = the area of the parallelogram determined by x and y.

Now we are ready for the expression of the circumcenter and circumradius by
cross product.

Theorem 10.6. Suppose that H = R3, that x, y, z are affinely independent, and
that S = {x, y, z}. Set a = y − x, and b = z − x and let the angle between a and b,
defined in Definition 10.3, be θ. Then

(i) CC(S) = x+ (∥a∥2b−∥b∥2a)×(a×b)
2∥a×b∥2 .

(ii) [6, 1.54] CR(S) = ∥a∥∥b∥∥a−b∥
2∥a×b∥ = ∥a−b∥

2 sin θ .

Proof. (i): Using the formula of circumcenter in Theorem 4.1, we have

CC(S) = x+
1

2

(
y − x z − x

)( ∥y − x∥2 ⟨y − x, z − x⟩
⟨z − x, y − x⟩ ∥z − x∥2

)−1(∥y − x∥2
∥z − x∥2

)
= x+

1

2

(
a b

)(∥a∥2 ⟨a, b⟩
⟨b, a⟩ ∥b∥2

)−1(∥a∥2
∥b∥2

)
= x+

1

2(∥a∥2∥b∥2 − ⟨a, b⟩2)
(
a b

)( ∥b∥2 −⟨a, b⟩
−⟨b, a⟩ ∥a∥2

)(
∥a∥2
∥b∥2

)
= x+

1

2(∥a∥2∥b∥2 − ⟨a, b⟩2)
(
a b

)(∥a∥2∥b∥2 − ∥b∥2⟨a, b⟩
∥a∥2∥b∥2 − ∥a∥2⟨a, b⟩

)
= x+

(∥a∥2∥b∥2 − ∥b∥2⟨a, b⟩)a+ (∥a∥2∥b∥2 − ∥a∥2⟨a, b⟩)b
2(∥a∥2∥b∥2 − ⟨a, b⟩2)

= x+
⟨∥a∥2b− ∥b∥2a, b⟩a− ⟨∥a∥2b− ∥b∥2a, a⟩b

2(∥a∥2∥b∥2 − ⟨a, b⟩2)
.

Using the Fact 10.2(iii) and (iv), we get

CC(S) = x+
(∥a∥2b− ∥b∥2a)× (a× b)

2∥a× b∥2
.

(ii): By Definition 3.4, we have

CR(S) = ∥CC(S)− x∥ =
∥∥∥(∥a∥2b− ∥b∥2a)× (a× b)

2∥a× b∥2
∥∥∥.(10.1)

Using Fact 10.2(iv) and Fact 10.2(ii), we obtain∥∥∥(∥a∥2b− ∥b∥2a)× (a× b)
∥∥∥

=
(∥∥∥∥a∥2b− ∥b∥2a

∥∥∥2∥a× b∥2 − ⟨∥a∥2b− ∥b∥2a, a× b⟩2
) 1

2

=
∥∥∥∥a∥2b− ∥b∥2a

∥∥∥∥a× b∥.(10.2)
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In addition, by Remarrk 2.14, since ∥a∥ ̸= 0, ∥b∥ ̸= 0, thus∥∥∥∥a∥2b− ∥b∥2a
∥∥∥ = ∥a∥∥b∥

∥∥∥∥∥a∥∥b∥
b− ∥b∥

∥a∥
a

∥∥∥∥.(10.3)

Now ∥∥∥∥∥a∥∥b∥
b− ∥b∥

∥a∥
a

∥∥∥∥2 = ∥∥∥∥∥a∥∥b∥
b

∥∥∥∥2 − 2

⟨
∥a∥
∥b∥

b,
∥b∥
∥a∥

a

⟩
+

∥∥∥∥ ∥b∥∥a∥
a

∥∥∥∥2
= ∥a∥2 − 2⟨b, a⟩+ ∥b∥2

= ∥a− b∥2.(10.4)

Upon combining (10.2), (10.3) and (10.4), we obtain∥∥∥(∥a∥2b− ∥b∥2a)× (a× b)
∥∥∥ = ∥a∥∥b∥∥a− b∥∥a× b∥.

Hence (10.1) yields

CR(S) =
1

2∥a× b∥2
∥∥∥(∥a∥2b− ∥b∥2a)× (a× b)

∥∥∥
=

1

2∥a× b∥2
∥a∥∥b∥∥a− b∥∥a× b∥

=
∥a∥∥b∥∥a− b∥

2∥a× b∥
.

By Fact 10.5, we know ∥a× b∥ = ∥a∥∥b∥ sin θ. Thus, we obtain

CR(S) =
∥a∥∥b∥∥a− b∥

2∥a× b∥
=

∥a− b∥
2 sin θ

and the proof is complete. □

Fact 10.7. [9, Theorem I] Suppose that n ≥ 3, and a cross product is defined which
assigns to any two vectors v, w ∈ Rn a vector v × w ∈ Rn such that the following
three properties hold:

(i) v × w is a bilinear function of v and w.
(ii) The vector v × w is perpendicular to both v and w.
(iii) ∥v × w∥2 = ∥v∥2∥w∥2 − ⟨v, w⟩2.

Then n = 3 or 7.

Remark 10.8. In view of Fact 10.7 and our proof of Theorem 10.6, we cannot
generalize the latter result to a general Hilbert space H — unless the dimension of
H is either 3 or 7.
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