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ON THE INVERSE OF CONVOLUTION INTEGRAL
OPERATORS

HSIANG LIU, SY-MING GUU*, AND CHIN-TZONG PANG

ABSTRACT. For an integrable function a of which the Fourier transform never
vanishes, the integral operator Cou := a * u is injective and has dense range so
that its inverse, denoted by D,, exists as a densely defined closed operator. In
this paper, we study the conditions for D, to generate Co-semigroups. By using
a theorem of Paley and Weiner, we find the spectra of K, and D,. We establish
conditions on the spectrum of D, which is sufficient for D, to be the generator of
a strongly continuous semigroup on the space of almost periodic functions. As an
application, we show that for each n € N, either (I +D)" or —(I +D)" generates
a Cp-semigroup, where D is the operator of differentiation.

1. INTRODUCTION

Let E be a Banach space and C,,(R, E) be the set of all bounded and uniformly
continuous E-valued functions on R. Let a be an integrable scalar-valued function
on R such that its Fourier transform never vanishes. It is known that the integral
operator K, defined in Cp(R,E) by K,f := a * f is injective and hence has an
inverse D,, where a * f is the convolution integral:

o0
(ax f)(t) = / a(t — s)f(s)ds.
—0o0

It turns out that under fairly reasonable conditions D, generates a strongly contin-
uous semigroups of bounded linear operators on AP(E), the space of all E-valued
almost periodic functions on R.

The problem of finding sufficient conditions for the inverse of the generator of
a Cp-semigroup to be a generator was first posed by DeLaubenfels [5], where the
author proved that if A generates a bounded analytic semigroup and A~! exists
as a closed operator, then A™! also generates a bounded analytic semigroup. In
the same paper, the author proposed open questions: Suppose A is one-to-one with
dense range and generates a bounded Cy-semigroup. Does A~! generate a bounded
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Co-semigroup? Does A~! generate a Cy-semigroup? It was pointed out by Gomilko,
Zwart and Tomilov [11] that, in 1966, Komatsu [14] gave a bounded operator

O:—I+S, S{glvg%-"}:{07517527"‘}7

generating a contraction Cp-semigroup {etc} +>o 10 the Banach space ¢y with the

standard sup-norm. While C~!, which exists as a closed operator in ¢y, does not
generate a Cyp-semigroup. This provides a negative answer for the DeLaubenfels’
question. In [11], the authors also presented counterexamples for the Delaubenfels’
question in P spaces for p € (1,2)U(2, 00) and in Hilbert spaces. However, in case A
is the generator of a bounded Cy-semigroup and A is one-to-one with dense range,
Gomilko [10] has found sufficient conditions on the resolvent of A for the inverse
A~ to generate a bounded Cy-semigroup.

In the present article, we first use the vector-valued version of a theorem from
Payley and Weiner to find the spectra of I, and D,. Then based on a generalized
version of Trotter-Kato approximation theorem, we propose a sufficient condition on
the spectrum of D, to generate Cp-semigroups on the space of all E-valued almost
periodic functions on R.

In the year of 1989, Delaubenfels proved a result concerning conditions for poly-
nomials of generators of strongly continuous groups to generate semigroups, which
are stated as follows:

Theorem 1.1. ( [6], Theorem 11) Suppose A generates a strongly continuous group,
and p(t) = t2" + q(t), where q is a polynomial of degree less than 2n . Then —p(A)
generates a Cy holomorphic semigroup of angle 7/2 .

Note that this theorem involves only polynomials with even degrees. In the cur-
rent paper, we apply our main theorem (Theorem 3.9) to show that for each n € N
either (I+D)" or —(I+D)" generate a Cp-semigroup, which extends DeLaubenfels’
result for the translation group in AP(E).

This paper is organized as follows. We give an introduction to the problem
studied in this paper in Section 1 and collect some known notions and results which
will be used throughout the paper in Section 2. The main results are presented in
Section 3, where we study the spectra of the convolution operator I, := a* f and its
inverse D,. We also establish spectral conditions for D, to generate Cp-semigroups
and bounded analytic semigroups. As an application, it is proved that for each
n € N either (I + D)™ or —(I + D)™ generate a Cy-semigroup in AP(E).

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, E is used to denote a complex Banach space. For a linear
operator T on E, D(T') and R(T) stand for its domain and range, respectively, and
as usual, o(T"), p(T), and R(\,T) denote the spectrum, resolvent set and resolvent
operator of T, respectively. B(E) is the space of all bounded linear operators on
E. The notation Cy;(R, E) will stand for the space of all bounded and uniformly
continuous E-valued functions on R. The translation group on Cy(R, E) will be
denoted by {S(t)}i>0, i-e., S(t)f(s) := f(t+s), for all t,s € R and f € Cyp(R, E).
The infinitesimal generator D := d/dt of {S(t)}+>0 is defined on D(D) := C}, (R, E).
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By BV (R, B(E)) and BV (R, B(C,(R, E))), we denote the spaces of B(E)-valued
and B(C(R, E))-valued functions of bounded variation on R, respectively.

L'(R) is the space of integrable scalar-valued functions on R, and |a|; is the
L'-norm of a whenever a € L'(R). In this paper, we will always let a € L'(R).
L>*(R,E) is the space of essentially bounded E-valued functions on R and |f| is
the L*>-norm of f whenever f € L>*(R). If ¢ € BV (R), the space of functions
of bounded variation on R, then dg will stand for the Lebesgue-Stieltjes measure
associated with g. In particular, we use &g to denote the Lebesgue-Stieltjes measure
associated with the Heaviside function:

0, t<0
H(t) .—{ 1 t>o0
which is usually called the Dirac measure at 0. R
If f e Cwp(R,E), then the Fourier-Carleman transform f of f is defined by

/ e Mf(t)dt,  Rel >0,
F) =47 w0
— e Mf(t)dt, Re) < 0.
Obviously, f()) is holomorphic in C \ iR. p € R is called a regular point of f if f
can be analytically extended to some neighborhood B(ip) of ip. The complement
in R of the set of regular points of f is called the Carleman spectrum of f and is
denoted by sp(f). It coincides with the set (Beurling spectrum)

{6 € R:Ve > 03g e L*(R) such that suppj C (6 —€,&+¢€), f*g # 0}

where

3(p) == / ety (t)dr.

—0o0
Moreover, the Carleman spectrum sp(f) of a uniformly continuous and bounded
function f coincides with its Arveson spectrum, the set (Arveson spectrum) o(DMr),
where My C Cy(R, E) is the closure of the subspace spanned by all translations
of f. The readers are referred to [1] for a concise introduction of these notions of
spectrum.
For a subset A of R, we define

AE) :={f € Cu(R,E) : sp(f) C A},
and in particular, for each n € N, we let
An(E) := {f € Cw(R,E) : sp(f) C [-n,n]}.
Moreover, for a subspace M of Cy(R, E), we define
A(M) :={f € M:sp(f) C A},
and for each n € N,
Ap(M) :={f € M :sp(f) C [-n,n]}.

Note that A(E) and A(M) are examples of translation invariant subspaces of
Cuwp(R, E) which satisfy condition (H). We collect some properties we shall need
in this paper:
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Proposition 2.1 ([18], p.143; [19], Proposition 0.5, p.23; [15], Theorem 2.1.). Let
fig € L*(R,E), n € N such that g, — f in the L*°-norm as n — oco. Then
(i) sp(f) is closed;
(i) sp(S(t)f) = sp(f), V¢ € R;
(iii) If « € C\ {0}, then sp(af) =sp(f);
(v) sp(f) = 6 = f = 0;
(v) sp(f) is compact <= f admits extension to an entire function of exponential
growth;
(vi) @ * f = f for each ¢ € L*(R) such that $ = 1 on a neighborhood of sp(f);
(vii) sp(dc* f) C sp(f) for each c € BV (R, B(E));
(viii) sp(¢ * f) C sp(f) Nsuppy, Voo € L(R);
(ix) If sp(gn) C A,Vn € N, then sp(f) C A.

The following results, which adopted from [21] (p. 36-37), are the keys of our
main theorem.

Proposﬂslon 2.2. If h and f are functzons in LY(R) such that h has compact
support and f( ) # 0 for each & € supph, then the convolution equation

fxu=nh
has a solution u € L'(R) which depends continuously on f and h, and i = iL/.]E

Proposition 2.3. Let f € L®(R,E) and b € L*(R) such that

/ b(s)f(t—s)ds=0 VteR.

Suppose that the Fourier transformation b never vanishes on an open interval J.
Then the Carleman transform f has analytic continuation throughout J, i.e., sp(f)N

J = ¢.
The following definition is adapted from [13].

Definition 2.4. A subset S C R is said to be relatively dense if there exists a
number [ > 0 (inclusion length) such that every interval [a,a + [] contains at least
one point of S. Let f be a continuous function on R taking values in a Banach space
E. f is said to be almost periodic if to every e > 0 there corresponds a relatively
dense set T'(¢, f) (of e-translations, or e-periods) such that

sup [[f(t +7) — f(B)]] < &,V € T(e, f).
teR

The space of all almost periodic E-valued functions is denoted by AP(E). It is
known that all trigonometric polynomials

n
= Zakei)‘kt, (ak eE N\ € R)
k=1

are almost periodic, and that
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Theorem 2.5 ([13]). Let f be an almost periodic function. Then for every e > 0
there exists a trigonometric polynomial P(t) such that

sup [[f(t) = P(t)]| <€
teR

Now, we recall the Trotter-Kato approximation theorem which will be used to
prove our main result. The following definition comes from [3].

Definition 2.6. Let (E,,||,), » = 0,1,2,... be a sequence of Banach spaces
and let P, : Eg — E,, n € N, be continuous linear maps such that [|z|, =
limy, 0 || Pnz||,, for each x in Eqg. For each n € N, let A, be a linear operator
with domain and range in E,. The limit graph G ((A,)) of the sequence {4,} is
defined by
G ((An)) :=={(x,y) € Eg x Eq : there is a sequence (z,) with =, € D(A,)
such that lim, o ||2n — Paz|l,, = 0 and lim, o ||Anzn — Poyll,, = 0}.

Theorem 2.7 (see [3]). Let (Ey,|-||,), {Pn} and {A,} be defined as in Definition
2.6. Let M > 1 and w € R and suppose that each A, generates a Cy-semigroup
{T,, (t)} on E,, such that

1T (&) zall,, < Me*! |za]l,,
forallt >0, neN, and x, € E,. Then the following are equivalent.

(i) There ezists a Co-semigroup {T'(t)},~o on Ey such that
lim sup [|T5, (s) Prx — P,T(s)z|,, =0
n—oo 0<s<t

for each x € Eg and t > 0.
(ii) There exists a densely defined linear operator A in Eg such that G(A) C
G((An)) and R(A — A) is dense in Ey for some A > w.

Moreover, if (i) is valid and Ag is the generator of {T'(t)}, then G (Ap) = G((An))
and there is a Ao with ReXy > w such that

lim (Ao — An) " Pax — Pa(Xo — Ag) 'z|| =0

n—o0
for all x € Ey.

3. MAIN RESULTS AND AN APPLICATION

We state and prove, in this section, our main results and the content will be
divided into several subsections.

3.1. The convolution operator K,. In this subsection we discuss the spectrum
of the convolution operator ;. To this end, we first cite the following result.

Proposition 3.1 ([19], Proposition 11.1(iii), p.285.). Let F' € BV (R, B(E)).
Then the mapping Kf := dF x f is a bounded linear operator on Cu,(R,E) with
H’CHB(Cub(R,E)) < VarF|®, and Kf = ffooo dF(T)S(=7)f for all f € Cyp(R,E).

—00

Proposition 3.1 shows that any integrable function F' : R — B(E) induces via
Kf = F x f an operator £ € B(Cy(R,E)). In particular, we have the following
corollary which follows immediately from Proposition 3.1.
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Corollary 3.2. For each a € L'(R), let K, be the operator defined on Cy,(R, E) by
(3.1) Kof =axf.
Then Ky € B(Cup(R,E)) and can be expressed as

Kof = /_ T S(r)fda(r),  feCu(RE),

where a(t) = a(0) + fg a(r)dr for allt € R.

If a € L'(R), then the operator K, defined by (3.1) will be called the convolu-
tion operator induced by a. We introduce some properties of I, in the following
proposition, the proof of which will be omitted.

Proposition 3.3. Let a € LY(R), K, given by (3.1), and Z € B(Cyw(R,E), E).
(i) ax f € M for all f € M, i.e., M is invariant under IC,.
(i) S)Kaf = KoS(t)f for allt € R and f € Cyp(R,E), i.e., K4 commutes
with the translation group. In particular, S(t)Kqf = KgS(t)f for allt € R
and f € M.

Consider the set
My =K M:={axg:g9e M}
which is included by Proposition 3.3(i), in M. We shall show that M, is dense in
M. To this end, recall that for each m € N|

D(D™) = {f € D(D"1) : D" f € D(D)},
1 llp@m) = Y ID* flloos
k=0
and
D>(D):= (] D(D™).
m>1
Of interest is the space A(D) of entire vectors with respect to the translation
group, i.e.,
A(D) = {f € D(D): Tim || D" f[1L" < oo}.
This is precisely the space of all functions f € Cyp(R, E) such that S(t)f extends
to an entire function on C of exponential growth. Since {S(¢)}ier is a bounded
Co-group on Cyp(R, E), it is well-known that A(D) is dense in Cy,(R, E) ( [7], p.81,
Excercise 3.12; see also [4], p.134). Set

A(M) == MNA(D)
and
C(M) :={f € M :sp(f) is compact}.
Then we see that A(M) is dense in M and A(M) C C(M), by Proposition 2.5(v).
It follows that C(M) is dense in M.

Proposition 3.4. If a € L'(R) satisfies that a(p) # 0 for all p € R, then the
following assertions hold.
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(i) My is dense in M. In particular, the operator I, has a dense range for all
a € L'(R).
(ii) If A is a compact subset of R, then K, maps A(M) onto itself.
(iii) My is translation-invariant.

Proof. (i) Let f € C(M) C M be arbitrary and choose ¢y € L'(R) so that @g €
CP(R), po = 1 on an e-neighborhood of sp(f), ¢o = 0 outside 2e-neighborhood of
sp(f), and 0 < @9 < 1 (see [9], p.236, Exercise 8(b) for an example of such ¢y).
Then by Proposition 2.2, there is ¢ € L!(R) such that

a* Cc = Qg

Put g = ¢* f. Then g € M by Proposition 3.3(i) and sp(g) C sp(f) is compact by
Proposition 2.5(viii); hence g € C(M). Thus by Proposition 2.5(vi), we have

f=poxf=(axc)xf=axgeM,.
This shows that
C(M)c M,

which implies the density of M, in M.

Replace C(M) by A(M) in the proof of (i) and one sees that (ii) immediately
follows. Moreover, since M, = K M, (iii) follows immediately from Proposition
3.3(i). O

To investigate the spectrum of the convolution operators, we need the following
result which is the vector-valued version of a theorem from Paley and Weiner.
Theorem 3.5 ([16], Proposition 0.3 and Corollary 0.4 of [19], see also [12]). Let
k€ LY (R) . Then for every f € Cup(R, E), the convolution equation on the line

u(t) = f(t) + /OO k(s)u(t — s)ds, teR

— o0

has a unique solution u € Cy(R,E) if and only if 1 — k(p) # 0 for all p € R.

Since A € p(Ky)\{0} if and only if for every f € Cyup(R, E), the equation
AM—axu=f or u—%*u:f

has a unique solution u € Cu(R,E), then it follows by Theorem 3.5 that A\ €
p(Ko)\{0} if and only if A — a(p) # 0 for all p € R. This proves the following
theorem.

Theorem 3.6. 0(K,) = {a(p) : p € R}

Note that Lemma 3.6 implies that 0 € o(K,) by the Riemann-Lebesgue lemma.
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3.2. The inverse of the convolution operator K,. Let W(R) be the Wiener
class, i.e.,
W(R) = {a € L'(R) : a(p) # 0 for all p € R} U {do},
where dg is the Dirac measure at the origin. From now on, we will always assume

that a € W(R) unless stated otherwise. If a € W(R) and f € L*(R,E), then by
Proposition 2.1(iv) and Proposition 2.3, we see that

ax* f =0 implies f =0,

Thus the convolution operator K, has an inverse D, , which is obviously a closed
operator with domain

D(Dy) = R(K,) = {a* f: f € Cup(R,E)}.

It is easy to see that if f € D(D,) "M and D,f € M if and only if f € M and
f = ax g for some g € M. This shows that D{l\/‘, the part of D, in M, has domain
D (Dé\/‘) = M, which is dense in M.
Proposition 3.7. Let a € W(R). Then
(i) R(DM) = M, i.e., DM is surjective;
(ii) Dalamy = D™
(iii) If Ay C Ay are compact sets in R, then o (Dﬁl(M)) Co (Déb(M)); in

particular, o (DQ(M)> Co (Dé\/t) for all compact A C R.

s a bounded bijection for all compact A C R;

Proof. (i) This follows since for each f € M, ax f € M, = D(DM) and D,(a* f) =
f.

(ii) This follows immediately from Proposition 3.4(ii) and the closed range theo-
rem ( [20], Theorem IV.5.8, p.216).

(i) If A € p (DQQ(M)) and g € Aj(M) C Az(M), then there is an f € Ag(M)
such that ()\ — Dé\ Q(M)) f = g. By taking Fourier-Carleman transform we have
. -1
f=(A=pp) g,

and it follows that every regular point of g is also a regular point of f. Thus,
sp(f) Csp(g) and f € Aj(M) which shows that p (DQ\Q(M)) Cp (Df}l(M)). O

The following result is a trivial consequence of Theorem 3.6 and the general
spectral operator theory.

Theorem 3.8. ¢(D,) = {d(lp) ipE R}.
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3.3. Spectral conditions for K, and D, to generate semigroups. Let = %
0cE, peRand¢,,(t) = ez for all t € R. Then

o0

(3.2) (Ka€pa)(t) = / eP=9)q(s)xds = ea(p)x = ap)ep(t)

— o0
In view of (3.2), it is clear that

eRae, , = et“(’))epx

)

Thus, for a trigonometric polynomial p(t) = > p_, ape? !, where ar € E, and

A € R, we have
n
(3.3) eFap(t) = etalr) Z ape Mt
k=1

Now, we are in the position to prove our main result.

Theorem 3.9. If there is an w € R such that ﬂ%(a(lp)) < w for all p € R, then the

operator D, generates a Cy-semigroup on AP(E).

Proof. Put M = AP(E). By Proposition 3.7(ii), we see that the operator
Dala, vy = DI is hounded on A, (M) and hence each pirM) generates
mgnw)}tzo on A,(M). Since the growth
bound and the spectral bound of {e }>0 coincide, U(DQ"(M)) C o(D,) =

{1/a(p) : p € R} and R(1/a(p)) < w for all p € R, it follows that for each n € N
there is an M, > 0

a uniformly continuous semigroup {e
¢pAn (M)

An (M)
o <

However, to apply Trotter-Kato approximation theorem, one shall show that these

M,, can be taken uniformly; i.e., there is an M > 0 such that
An (M)

(3.4) Hew“ H < Me*t for all n € N.

To see this, it suffices to show that the collection of semigroups

[e.e]
{e'Dél\n(M) }
n=1

is uniformly bounded on the interval [0,1]. In fact, it follows by (3.3) that for all
trigonometric polynomial p, we have

thn(M) _w
(3.5) e p|| = €e“|lp|| for alln € N and ¢ € [0, 1],
which in turn implies by theorem 2.5, that
¢pAn (M) w
(3.6) e <e¥ forallneNandtel0,1]

This proves (3.4).
Now, choose a rapidly decreasing function ¢ > 0 such that [p ¢ (t)dt = 1 and
supp, the support of v, is contained in [—1,1]. For each n € N, let ¥, (t) = nyp(nt).
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Then 1, is a sequence of functions in L'(R) such that [ 1 (t)dt = 1 and supp
ty, C [-n,n]. For each n € N, let P, : M — A,,(M) be defined by
Pof =inxf,  feM.

Note that P,f € A,(M) by Proposition 2.1(viii) and that the P, are uniformly
bounded by 1 by Proposition 3.1.

Now, let (f,g) € G(D,) be arbitrary. Then f € D(D,) and g = D,f. Since for
each n € N,

Dé\”(M)Pnf = Dé\”(M)T/}n * f = 'Dé\"(M)wn * /Cag = 'Dé\n(E)Kawn * g = Png,
then by Definition 2.6 and the closedness of DM
G(DM) =G ((DQ"(M)» .

On the other hand, choose A € C with ReA > w. Hence A € p(Dfl\"(M)) for all
n € N. Let g € M be arbitrary and let g, := P,g € A,(M) for all n € N. Then,
for each n € N, there is an f,, € A, (M) such that

Mfn =DM f = gn.
Since g, — ¢ in sup norm, as n — oo (see [8], p.53, Proposition 2.42), then
(A = D) A>(M) = M,

where A (M) := |, ey An(M). Therefore, R(A—D:1) is dense in M and it follows
by Theorem 2.7 that DM generates a Co-semigroup {7, (¢)}s>0 on M such that

lim sup ’ Ta (S)A"(M) P.f— P,ﬂ;(s)fH =0
n—oo OSSSt n
for each f € M and ¢t > 0. This completes the proof of the theorem. O

Finally, we give an application of our main result Theorem 3.9. For this we first
recall a well-known formula as follows: Let —A be the generator of a Cy-semigroup
{T'(t)}+>0 with negative growth bound on a Banach space. Then

(3.7) Ao L /O Tl yar,

where the integral converges in the uniform operator topology for every a > 0
(See [17], p.70). Since the operator —(I + D) generates a uniformly exponentially
bounded semigroup {e */*P)},54 in Cyy(R, E), where
TP =7 f(-— 1), f€Cu(RE),
then we see by (3.7) that
1 [ee]
(D) ") = o [ 5l (= 9)ds =bax f0), teR
I'(n) Jo
where b, (t) := H(t)e %"~!/T'(n) and H is the Heaviside function. In our termi-
nologies,
Ky, = (I +D) " and Dy, = (I +D)".
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Note that for o > 0

~ L'(n)
bo(p) = for all p € R,
(0) =y 70 forallpe

In view of binomial expansion, we have

. ) :
_ 1)k 2k
o 0 (g )
k=0
where [-] denotes the greatest integer function. Hence the set

1
Re | = peR
bn(p)
is bounded above whenever n = 1, 4m + 2 or 4m + 3, for m € N U {0} and is
bounded below whenever n = 4m or 4m + 1 for m € N. Therefore, the following
result follows immediately from Theorem 3.9.

Theorem 3.10. In AP(E), the operators (I + D)™ generate Cy-semigroups, when-
ever n = 1, 4m + 2 or 4m + 3, for some m € NU{0}. Moreover, if n = 4m or
dm + 1 for some m € N, then —(I +D)" generates a Co-semigroup in AP(E).

A related but more general proposition about Theorem 3.10 can be found in
the book [2] (see Proposition 8.1.3). However, this proposition is proved in the
spaces LP(R)(1 < p < o) and Cp(R), the space of continuous functions vanishing
at infinity, while Theorem 3.10 concerns the space of almost periodic functions, a
subspace of L>(R), and the result seems to be new, to the best knowledge of the
authors.
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