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ON THE INVERSE OF CONVOLUTION INTEGRAL

OPERATORS

HSIANG LIU, SY-MING GUU∗, AND CHIN-TZONG PANG

Abstract. For an integrable function a of which the Fourier transform never
vanishes, the integral operator Kau := a ∗ u is injective and has dense range so
that its inverse, denoted by Da, exists as a densely defined closed operator. In
this paper, we study the conditions for Da to generate C0-semigroups. By using
a theorem of Paley and Weiner, we find the spectra of Ka and Da. We establish
conditions on the spectrum of Da which is sufficient for Da to be the generator of
a strongly continuous semigroup on the space of almost periodic functions. As an
application, we show that for each n ∈ N, either (I+D)n or −(I+D)n generates
a C0-semigroup, where D is the operator of differentiation.

1. Introduction

Let E be a Banach space and Cub(R,E) be the set of all bounded and uniformly
continuous E-valued functions on R. Let a be an integrable scalar-valued function
on R such that its Fourier transform never vanishes. It is known that the integral
operator Ka defined in Cub(R,E) by Kaf := a ∗ f is injective and hence has an
inverse Da, where a ∗ f is the convolution integral:

(a ∗ f)(t) =
∫ ∞

−∞
a(t− s)f(s)ds.

It turns out that under fairly reasonable conditions Da generates a strongly contin-
uous semigroups of bounded linear operators on AP (E), the space of all E-valued
almost periodic functions on R.

The problem of finding sufficient conditions for the inverse of the generator of
a C0-semigroup to be a generator was first posed by DeLaubenfels [5], where the
author proved that if A generates a bounded analytic semigroup and A−1 exists
as a closed operator, then A−1 also generates a bounded analytic semigroup. In
the same paper, the author proposed open questions: Suppose A is one-to-one with
dense range and generates a bounded C0-semigroup. Does A−1 generate a bounded
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C0-semigroup? Does A−1 generate a C0-semigroup? It was pointed out by Gomilko,
Zwart and Tomilov [11] that, in 1966, Komatsu [14] gave a bounded operator

C = −I + S, S{ξ1, ξ2, . . .} = {0, ξ1, ξ2, . . .},

generating a contraction C0-semigroup
{
etC
}
t≥0

in the Banach space c0 with the

standard sup-norm. While C−1, which exists as a closed operator in c0, does not
generate a C0-semigroup. This provides a negative answer for the DeLaubenfels’
question. In [11], the authors also presented counterexamples for the Delaubenfels’
question in lp spaces for p ∈ (1, 2)∪(2,∞) and in Hilbert spaces. However, in case A
is the generator of a bounded C0-semigroup and A is one-to-one with dense range,
Gomilko [10] has found sufficient conditions on the resolvent of A for the inverse
A−1 to generate a bounded C0-semigroup.

In the present article, we first use the vector-valued version of a theorem from
Payley and Weiner to find the spectra of Ka and Da. Then based on a generalized
version of Trotter-Kato approximation theorem, we propose a sufficient condition on
the spectrum of Da to generate C0-semigroups on the space of all E-valued almost
periodic functions on R.

In the year of 1989, Delaubenfels proved a result concerning conditions for poly-
nomials of generators of strongly continuous groups to generate semigroups, which
are stated as follows:

Theorem 1.1. ( [6], Theorem 11) Suppose A generates a strongly continuous group,
and p(t) = t2n + q(t), where q is a polynomial of degree less than 2n . Then −p(A)
generates a C0 holomorphic semigroup of angle π/2 .

Note that this theorem involves only polynomials with even degrees. In the cur-
rent paper, we apply our main theorem (Theorem 3.9) to show that for each n ∈ N
either (I+D)n or −(I+D)n generate a C0-semigroup, which extends DeLaubenfels’
result for the translation group in AP (E).

This paper is organized as follows. We give an introduction to the problem
studied in this paper in Section 1 and collect some known notions and results which
will be used throughout the paper in Section 2. The main results are presented in
Section 3, where we study the spectra of the convolution operator Ka := a∗f and its
inverse Da. We also establish spectral conditions for Da to generate C0-semigroups
and bounded analytic semigroups. As an application, it is proved that for each
n ∈ N either (I +D)n or −(I +D)n generate a C0-semigroup in AP (E).

2. Notations and preliminaries

Throughout this paper, E is used to denote a complex Banach space. For a linear
operator T on E, D(T ) and R(T ) stand for its domain and range, respectively, and
as usual, σ(T ), ρ(T ), and R(λ, T ) denote the spectrum, resolvent set and resolvent
operator of T , respectively. B(E) is the space of all bounded linear operators on
E. The notation Cub(R,E) will stand for the space of all bounded and uniformly
continuous E-valued functions on R. The translation group on Cub(R,E) will be
denoted by {S(t)}t≥0, i.e., S(t)f(s) := f(t+ s), for all t, s ∈ R and f ∈ Cub(R,E).
The infinitesimal generator D := d/dt of {S(t)}t≥0 is defined on D(D) := C1

ub(R,E).
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By BV (R, B(E)) and BV (R, B(Cub(R,E))), we denote the spaces of B(E)-valued
and B(Cub(R,E))-valued functions of bounded variation on R, respectively.
L1(R) is the space of integrable scalar-valued functions on R, and |a|1 is the

L1-norm of a whenever a ∈ L1(R). In this paper, we will always let a ∈ L1(R).
L∞(R,E) is the space of essentially bounded E-valued functions on R and |f |∞ is
the L∞-norm of f whenever f ∈ L∞(R). If g ∈ BV (R), the space of functions
of bounded variation on R, then dg will stand for the Lebesgue-Stieltjes measure
associated with g. In particular, we use δ0 to denote the Lebesgue-Stieltjes measure
associated with the Heaviside function:

H(t) :=

{
0, t < 0
1, t ≥ 0,

which is usually called the Dirac measure at 0.
If f ∈ Cub(R,E), then the Fourier-Carleman transform f̂ of f is defined by

f̂(λ) =


∫ ∞

0
e−λtf(t)dt, Reλ > 0,

−
∫ 0

−∞
e−λtf(t)dt, Reλ < 0.

Obviously, f̂(λ) is holomorphic in C \ iR. ρ ∈ R is called a regular point of f if f̂
can be analytically extended to some neighborhood B(iρ) of iρ. The complement
in R of the set of regular points of f is called the Carleman spectrum of f and is
denoted by sp(f). It coincides with the set (Beurling spectrum)

{ξ ∈ R : ∀ϵ > 0 ∃g ∈ L1(R) such that suppg̃ ⊂ (ξ − ϵ, ξ + ϵ), f ∗ g ̸= 0}
where

g̃(ρ) :=

∫ ∞

−∞
e−iρtg(t)dt.

Moreover, the Carleman spectrum sp(f) of a uniformly continuous and bounded
function f coincides with its Arveson spectrum, the set (Arveson spectrum) σ(DMf ),
where Mf ⊂ Cub(R,E) is the closure of the subspace spanned by all translations
of f . The readers are referred to [1] for a concise introduction of these notions of
spectrum.

For a subset Λ of R, we define

Λ(E) := {f ∈ Cub(R,E) : sp(f) ⊂ Λ},
and in particular, for each n ∈ N, we let

Λn(E) := {f ∈ Cub(R,E) : sp(f) ⊂ [−n, n]}.
Moreover, for a subspace M of Cub(R,E), we define

Λ(M) := {f ∈ M : sp(f) ⊂ Λ},
and for each n ∈ N,

Λn(M) := {f ∈ M : sp(f) ⊂ [−n, n]}.
Note that Λ(E) and Λ(M) are examples of translation invariant subspaces of
Cub(R,E) which satisfy condition (H). We collect some properties we shall need
in this paper:
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Proposition 2.1 ([18], p.143; [19], Proposition 0.5, p.23; [15], Theorem 2.1.). Let
f, g ∈ L∞(R,E), n ∈ N such that gn → f in the L∞-norm as n→ ∞. Then

(i) sp(f) is closed;
(ii) sp(S(t)f) = sp(f), ∀t ∈ R;
(iii) If α ∈ C \ {0}, then sp(αf) = sp(f);
(iv) sp(f) = ϕ⇐⇒ f ≡ 0;
(v) sp(f) is compact ⇐⇒ f admits extension to an entire function of exponential

growth;
(vi) φ ∗ f = f for each φ ∈ L1(R) such that φ̃ ≡ 1 on a neighborhood of sp(f);
(vii) sp(dc ∗ f) ⊂ sp(f) for each c ∈ BV (R, B(E));

(viii) sp(ψ ∗ f) ⊂ sp(f) ∩ suppψ̃, ∀ψ ∈ L1(R);
(ix) If sp(gn) ⊂ Λ, ∀n ∈ N, then sp(f) ⊂ Λ.

The following results, which adopted from [21] (p. 36-37), are the keys of our
main theorem.

Proposition 2.2. If h and f are functions in L1(R) such that h̃ has compact

support and f̃(ξ) ̸= 0 for each ξ ∈ supph̃, then the convolution equation

f ∗ u = h

has a solution u ∈ L1(R) which depends continuously on f and h, and ũ = h̃/f̃ .

Proposition 2.3. Let f ∈ L∞(R,E) and b ∈ L1(R) such that

(b ∗ f)(t) =
∫ ∞

−∞
b(s)f(t− s)ds = 0 ∀t ∈ R.

Suppose that the Fourier transformation b̃ never vanishes on an open interval J .
Then the Carleman transform f̂ has analytic continuation throughout J , i.e., sp(f)∩
J = ϕ.

The following definition is adapted from [13].

Definition 2.4. A subset S ⊂ R is said to be relatively dense if there exists a
number l > 0 (inclusion length) such that every interval [a, a + l] contains at least
one point of S. Let f be a continuous function on R taking values in a Banach space
E. f is said to be almost periodic if to every ϵ > 0 there corresponds a relatively
dense set T (ϵ, f) (of ϵ-translations, or ϵ-periods) such that

sup
t∈R

∥f(t+ τ)− f(t)∥ ≤ ϵ, ∀τ ∈ T (ϵ, f).

The space of all almost periodic E-valued functions is denoted by AP (E). It is
known that all trigonometric polynomials

P (t) =

n∑
k=1

ake
iλkt, (ak ∈ E, λk ∈ R)

are almost periodic, and that
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Theorem 2.5 ([13]). Let f be an almost periodic function. Then for every ϵ > 0
there exists a trigonometric polynomial P (t) such that

sup
t∈R

∥f(t)− P (t)∥ < ϵ

Now, we recall the Trotter-Kato approximation theorem which will be used to
prove our main result. The following definition comes from [3].

Definition 2.6. Let (En, ∥·∥n), n = 0, 1, 2, . . . be a sequence of Banach spaces
and let Pn : E0 → En, n ∈ N, be continuous linear maps such that ∥x∥0 =
limn→∞ ∥Pnx∥n for each x in E0. For each n ∈ N, let An be a linear operator
with domain and range in En. The limit graph G ((An)) of the sequence {An} is
defined by

G ((An)) := {(x, y) ∈ E0 ×E0 : there is a sequence (xn) with xn ∈ D(An)
such that limn→∞ ∥xn − Pnx∥n = 0 and limn→∞ ∥Anxn − Pny∥n = 0}.

Theorem 2.7 (see [3]). Let (En, ∥·∥n), {Pn} and {An} be defined as in Definition
2.6. Let M ≥ 1 and ω ∈ R and suppose that each An generates a C0-semigroup
{Tn (t)} on En such that

∥Tn (t)xn∥n ≤Meωt ∥xn∥n
for all t ≥ 0, n ∈ N, and xn ∈ En. Then the following are equivalent.

(i) There exists a C0-semigroup {T (t)}t≥0 on E0 such that

lim
n→∞

sup
0≤s≤t

∥Tn (s)Pnx− PnT (s)x∥n = 0

for each x ∈ E0 and t ≥ 0.
(ii) There exists a densely defined linear operator A in E0 such that G(A) ⊂

G((An)) and R(λ−A) is dense in E0 for some λ > ω.

Moreover, if (i) is valid and A0 is the generator of {T (t)}, then G(A0) = G((An))
and there is a λ0 with Reλ0 > ω such that

lim
n→∞

∥∥(λ0 −An)
−1Pnx− Pn(λ0 −A0)

−1x
∥∥ = 0

for all x ∈ E0.

3. Main results and an application

We state and prove, in this section, our main results and the content will be
divided into several subsections.

3.1. The convolution operator Ka. In this subsection we discuss the spectrum
of the convolution operator Ka. To this end, we first cite the following result.

Proposition 3.1 ( [19], Proposition 11.1(iii), p.285.). Let F ∈ BV (R, B(E)).
Then the mapping Kf := dF ∗ f is a bounded linear operator on Cub(R,E) with
∥K∥B(Cub(R,E)) ≤ VarF |∞−∞, and Kf =

∫∞
−∞ dF(τ)S(−τ)f for all f ∈ Cub(R,E).

Proposition 3.1 shows that any integrable function F : R → B(E) induces via
Kf := F ∗ f an operator K ∈ B(Cub(R,E)). In particular, we have the following
corollary which follows immediately from Proposition 3.1.
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Corollary 3.2. For each a ∈ L1(R), let Ka be the operator defined on Cub(R,E) by

(3.1) Kaf = a ∗ f.
Then Ka ∈ B(Cub(R,E)) and can be expressed as

Kaf =

∫ ∞

−∞
S(−τ)fdα(τ), f ∈ Cub(R,E),

where α(t) = a(0) +
∫ t
0 a(τ)dτ for all t ∈ R.

If a ∈ L1(R), then the operator Ka defined by (3.1) will be called the convolu-
tion operator induced by a. We introduce some properties of Ka in the following
proposition, the proof of which will be omitted.

Proposition 3.3. Let a ∈ L1(R), Ka given by (3.1), and Z ∈ B(Cub(R,E),E).

(i) a ∗ f ∈ M for all f ∈ M, i.e., M is invariant under Ka.
(ii) S(t)Kaf = KaS(t)f for all t ∈ R and f ∈ Cub(R,E), i.e., Ka commutes

with the translation group. In particular, S(t)Kaf = KaS(t)f for all t ∈ R
and f ∈ M.

Consider the set

Ma := KaM := {a ∗ g : g ∈ M}.
which is included by Proposition 3.3(i), in M. We shall show that Ma is dense in
M. To this end, recall that for each m ∈ N,

D(Dm) := {f ∈ D(Dm−1) : Dm−1f ∈ D(D)},

∥f∥D(Dm) :=

m∑
k=0

∥Dkf∥∞,

and

D∞(D) :=
∩
m≥1

D(Dm).

Of interest is the space A(D) of entire vectors with respect to the translation
group, i.e.,

A(D) :=
{
f ∈ D∞(D) : lim

n→∞
∥Dnf∥1/n∞ <∞

}
.

This is precisely the space of all functions f ∈ Cub(R,E) such that S(t)f extends
to an entire function on C of exponential growth. Since {S(t)}t∈R is a bounded
C0-group on Cub(R,E), it is well-known that A(D) is dense in Cub(R,E) ( [7], p.81,
Excercise 3.12; see also [4], p.134). Set

A(M) := M∩A(D)

and

C(M) := {f ∈ M : sp(f) is compact}.
Then we see that A(M) is dense in M and A(M) ⊂ C(M), by Proposition 2.5(v).
It follows that C(M) is dense in M.

Proposition 3.4. If a ∈ L1(R) satisfies that ã(ρ) ̸= 0 for all ρ ∈ R, then the
following assertions hold.
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(i) Ma is dense in M. In particular, the operator Ka has a dense range for all
a ∈ L1(R).

(ii) If Λ is a compact subset of R, then Ka maps Λ(M) onto itself.
(iii) Ma is translation-invariant.

Proof. (i) Let f ∈ C(M) ⊂ M be arbitrary and choose φ0 ∈ L1(R) so that φ̃0 ∈
C∞
0 (R), φ̃0 ≡ 1 on an ϵ-neighborhood of sp(f), φ̃0 ≡ 0 outside 2ϵ-neighborhood of

sp(f), and 0 ≤ φ̃0 ≤ 1 (see [9], p.236, Exercise 8(b) for an example of such φ0).
Then by Proposition 2.2, there is c ∈ L1(R) such that

a ∗ c = φ0

Put g = c ∗ f. Then g ∈ M by Proposition 3.3(i) and sp(g) ⊂ sp(f) is compact by
Proposition 2.5(viii); hence g ∈ C(M). Thus by Proposition 2.5(vi), we have

f = φ0 ∗ f = (a ∗ c) ∗ f = a ∗ g ∈ Ma.

This shows that

C(M) ⊂ Ma

which implies the density of Ma in M.
Replace C(M) by Λ(M) in the proof of (i) and one sees that (ii) immediately

follows. Moreover, since Ma = KaM, (iii) follows immediately from Proposition
3.3(ii). �

To investigate the spectrum of the convolution operators, we need the following
result which is the vector-valued version of a theorem from Paley and Weiner.

Theorem 3.5 ([16], Proposition 0.3 and Corollary 0.4 of [19], see also [12]). Let
k ∈ L1 (R) . Then for every f ∈ Cub(R,E), the convolution equation on the line

u(t) = f(t) +

∫ ∞

−∞
k(s)u(t− s)ds, t ∈ R

has a unique solution u ∈ Cub(R,E) if and only if 1− k̃(ρ) ̸= 0 for all ρ ∈ R.

Since λ ∈ ρ(Ka)\{0} if and only if for every f ∈ Cub(R,E), the equation

λu− a ∗ u = f or u− a

λ
∗ u = f

has a unique solution u ∈ Cub(R,E), then it follows by Theorem 3.5 that λ ∈
ρ(Ka)\{0} if and only if λ − ã(ρ) ̸= 0 for all ρ ∈ R. This proves the following
theorem.

Theorem 3.6. σ(Ka) = {ã(ρ) : ρ ∈ R}

Note that Lemma 3.6 implies that 0 ∈ σ(Ka) by the Riemann-Lebesgue lemma.
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3.2. The inverse of the convolution operator Ka. Let W(R) be the Wiener
class, i.e.,

W(R) = {a ∈ L1(R) : ã(ρ) ̸= 0 for all ρ ∈ R} ∪ {δ0},

where δ0 is the Dirac measure at the origin. From now on, we will always assume
that a ∈ W(R) unless stated otherwise. If a ∈ W(R) and f ∈ L∞(R,E), then by
Proposition 2.1(iv) and Proposition 2.3, we see that

a ∗ f ≡ 0 implies f ≡ 0,

Thus the convolution operator Ka has an inverse Da , which is obviously a closed
operator with domain

D(Da) = R(Ka) = {a ∗ f : f ∈ Cub(R,E)}.

It is easy to see that if f ∈ D(Da) ∩ M and Daf ∈ M if and only if f ∈ M and
f = a ∗ g for some g ∈ M. This shows that DM

a , the part of Da in M, has domain
D
(
DM

a

)
= Ma which is dense in M.

Proposition 3.7. Let a ∈ W(R). Then

(i) R
(
DM

a

)
= M, i.e., DM

a is surjective;

(ii) Da|Λ(M) = DΛ(M)
a is a bounded bijection for all compact Λ ⊂ R;

(iii) If Λ1 ⊂ Λ2 are compact sets in R, then σ
(
DΛ1(M)

a

)
⊂ σ

(
DΛ2(M)

a

)
; in

particular, σ
(
DΛ(M)

a

)
⊂ σ

(
DM

a

)
for all compact Λ ⊂ R.

Proof. (i) This follows since for each f ∈ M, a∗f ∈ Ma = D(DM
a ) and Da(a∗f) =

f .
(ii) This follows immediately from Proposition 3.4(ii) and the closed range theo-

rem ( [20], Theorem IV.5.8, p.216).

(iii) If λ ∈ ρ
(
DΛ2(M)

a

)
and g ∈ Λ1(M) ⊂ Λ2(M), then there is an f ∈ Λ2(M)

such that
(
λ−DΛ2(M)

a

)
f = g. By taking Fourier-Carleman transform we have

f̂ =
(
λ−DΛ2(M)

a

)−1
ĝ,

and it follows that every regular point of g is also a regular point of f . Thus,

sp(f) ⊂ sp(g) and f ∈ Λ1(M) which shows that ρ
(
DΛ2(M)

a

)
⊂ ρ

(
DΛ1(M)

a

)
. �

The following result is a trivial consequence of Theorem 3.6 and the general
spectral operator theory.

Theorem 3.8. σ(Da) =
{

1
ã(ρ) : ρ ∈ R

}
.
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3.3. Spectral conditions for Ka and Da to generate semigroups. Let x ̸=
0 ∈ E, ρ ∈ R and ϵρ,x(t) = eiρtx for all t ∈ R. Then

(3.2) (Kaϵρ,x)(t) =

∫ ∞

−∞
eiρ(t−s)a(s)xds = eiρtã(ρ)x = ã(ρ)ϵρ,x(t)

In view of (3.2), it is clear that

etKaϵρ,x = etã(ρ)ϵρ,x.

Thus, for a trigonometric polynomial p(t) =
∑n

k=1 ake
iλkt, where ak ∈ E, and

λk ∈ R, we have

(3.3) etKap(t) = etã(ρ)
n∑

k=1

ake
iλkt

Now, we are in the position to prove our main result.

Theorem 3.9. If there is an ω ∈ R such that ℜ
(

1
ã(ρ)

)
< ω for all ρ ∈ R, then the

operator Da generates a C0-semigroup on AP (E).

Proof. Put M = AP (E). By Proposition 3.7(ii), we see that the operator

Da|Λn(M) = DΛn(M)
a is bounded on Λn(M) and hence each DΛn(M)

a generates

a uniformly continuous semigroup {etD
Λn(M)
a }t≥0 on Λn(M). Since the growth

bound and the spectral bound of {etD
Λn(M)
a }t≥0 coincide, σ(DΛn(M)

a ) ⊂ σ(Da) =

{1/ã(ρ) : ρ ∈ R} and ℜ(1/ã(ρ)) < ω for all ρ ∈ R, it follows that for each n ∈ N
there is an Mn > 0 ∥∥∥etDΛn(M)

a

∥∥∥ ≤Mne
ωt.

However, to apply Trotter-Kato approximation theorem, one shall show that these
Mn can be taken uniformly; i.e., there is an M > 0 such that

(3.4)
∥∥∥etDΛn(M)

a

∥∥∥ ≤Meωt for all n ∈ N.

To see this, it suffices to show that the collection of semigroups{
e·D

Λn(M)
a

}∞

n=1

is uniformly bounded on the interval [0, 1]. In fact, it follows by (3.3) that for all
trigonometric polynomial p, we have

(3.5)
∥∥∥etDΛn(M)

a p
∥∥∥ = eω∥p∥ for all n ∈ N and t ∈ [0, 1],

which in turn implies by theorem 2.5, that

(3.6)
∥∥∥etDΛn(M)

a

∥∥∥ ≤ eω for all n ∈ N and t ∈ [0, 1],

This proves (3.4).
Now, choose a rapidly decreasing function ψ ≥ 0 such that

∫
R ψ(t)dt = 1 and

suppψ̃, the support of ψ̃, is contained in [−1, 1]. For each n ∈ N, let ψn(t) = nψ(nt).
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Then ψn is a sequence of functions in L1(R) such that
∫
R ψn(t)dt = 1 and supp

ψ̃n ⊂ [−n, n]. For each n ∈ N, let Pn : M → Λn(M) be defined by

Pnf = ψn ∗ f, f ∈ M.

Note that Pnf ∈ Λn(M) by Proposition 2.1(viii) and that the Pn are uniformly
bounded by 1 by Proposition 3.1.

Now, let (f, g) ∈ G(Da) be arbitrary. Then f ∈ D(Da) and g = Daf . Since for
each n ∈ N,

DΛn(M)
a Pnf = DΛn(M)

a ψn ∗ f = DΛn(M)
a ψn ∗ Kag = DΛn(E)

a Kaψn ∗ g = Png,

then by Definition 2.6 and the closedness of DM
a

G
(
DM

a

)
= G

((
DΛn(M)

a

))
.

On the other hand, choose λ ∈ C with Reλ > ω. Hence λ ∈ ρ(DΛn(M)
a ) for all

n ∈ N. Let g ∈ M be arbitrary and let gn := Png ∈ Λn(M) for all n ∈ N. Then,
for each n ∈ N, there is an fn ∈ Λn(M) such that

λfn −DΛn(M)
a fn = gn.

Since gn → g in sup norm, as n→ ∞ (see [8], p.53, Proposition 2.42), then

(λ−DM
a ) Λ∞(M) = M,

where Λ∞(M) :=
∪

n∈N Λn(M). Therefore, R(λ−DM
a ) is dense in M and it follows

by Theorem 2.7 that DM
a generates a C0-semigroup {Ta(t)}t≥0 on M such that

lim
n→∞

sup
0≤s≤t

∥∥∥Ta (s)Λn(M) Pnf − PnTa(s)f
∥∥∥
n
= 0

for each f ∈ M and t ≥ 0. This completes the proof of the theorem. �

Finally, we give an application of our main result Theorem 3.9. For this we first
recall a well-known formula as follows: Let −A be the generator of a C0-semigroup
{T (t)}t≥0 with negative growth bound on a Banach space. Then

(3.7) A−α =
1

Γ(α)

∫ ∞

0
tα−1T (t)dt,

where the integral converges in the uniform operator topology for every α > 0
(See [17], p.70). Since the operator −(I + D) generates a uniformly exponentially

bounded semigroup {e−t(I+D)}t≥0 in Cub(R,E), where

e−t(I+D)f = e−tf(· − t), f ∈ Cub(R,E),

then we see by (3.7) that

(I +D)−nf(t) =
1

Γ(n)

∫ ∞

0
sn−1e−sf(t− s)ds = bα ∗ f(t), t ∈ R

where bn(t) := H(t)e−ttn−1/Γ(n) and H is the Heaviside function. In our termi-
nologies,

Kbn = (I +D)−n and Dbn = (I +D)n.
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Note that for α > 0

b̃n(ρ) =
Γ(n)

(1 + iρ)n
̸= 0 for all ρ ∈ R,

In view of binomial expansion, we have

Re

(
1

b̃n(ρ)

)
= Re

(
(1 + iρ)n

Γ(n)

)
= Re

(
1

Γ(n)

n∑
k=0

(
n
k

)
(iρ)k

)

=
1

Γ(n)

[n2 ]∑
k=0

(−1)k
(

n
2k

)
ρ2k,

where [·] denotes the greatest integer function. Hence the set{
Re

(
1

b̃n(ρ)

)
: ρ ∈ R

}
is bounded above whenever n = 1, 4m + 2 or 4m + 3, for m ∈ N ∪ {0} and is
bounded below whenever n = 4m or 4m + 1 for m ∈ N. Therefore, the following
result follows immediately from Theorem 3.9.

Theorem 3.10. In AP (E), the operators (I +D)n generate C0-semigroups, when-
ever n = 1, 4m + 2 or 4m + 3, for some m ∈ N ∪ {0}. Moreover, if n = 4m or
4m+ 1 for some m ∈ N, then −(I +D)n generates a C0-semigroup in AP (E).

A related but more general proposition about Theorem 3.10 can be found in
the book [2] (see Proposition 8.1.3). However, this proposition is proved in the
spaces Lp(R)(1 ≤ p < ∞) and C0(R), the space of continuous functions vanishing
at infinity, while Theorem 3.10 concerns the space of almost periodic functions, a
subspace of L∞(R), and the result seems to be new, to the best knowledge of the
authors.
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