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(KKT) optimality condition1 is both necessary and sufficient for a point to be a
minimizer, under the Slater condition2. Further, let us notice that if C has a convex
representation then the dual method for the problem (1.1) of type

sup
λ∈Rm

{
inf
x
f(x)−

m∑
i=1

λigi(x)
}
,

are well defined, because x 7→ f(x)−
∑m

i=1 λigi(x) is convex function. In particular,
the Lagrangian x 7→ f(x) − f∗ −

∑m
i=1 λigi(x), where f∗ = inf{f(x) : x ∈ C},

defined from an arbitary KKT point (x∗, λ) ∈ C × Rm
+ , is convex and nonnegative

on Rn, with x∗ being a global minimizer and λ = (λ1, λ2, ..., λm) ∈ Rm
+ . However,

if the gi’s are not concave this is not true in general see( [7]).
In the case that each representation of C always has one or more gi’s which are

not concave functions, we will call the problem of type (1.1) as a convex optimization
without convex representation. In this situation, it is naturally interesting to ask
that whether under the Slater condition, the KKT condition still continue to be
both necessary and sufficient. Motivated by this point, Lasserre [7] showed that if f
and gi’s are differentiable functions and under an additional suitable condition, so-
called the non-degeneracy condition, that is, for all i = 1, ..,m,∇gi(x) ̸= 0, ∀x ∈ C
with gi(x) = 0, then the KKT condition is both necessary and sufficient.

Later on, Lasserre [8] considered the optimality conditions for convex optimiza-
tion problem without convex representation and focussed on the algorithmic issues
of such type problem, when f and gi’s are continuously differentiable functions, by
using the following so-called a barrier (or a log-barrier) function: for each µ > 0, a
barrier function φµ : C → R ∪ {+∞} is defined by

φµ(x) =

{
f(x)− µ

∑m
i=1 ln(gi(x)) if x ∈ S,

+∞ otherwise,
(1.2)

where S :=
∩m

i=1{x : gi(x) > 0}. Using this function, in that paper, he showed that
even though the considered constraint set C does not have a convex representation,
the barrier method can be used for finding a solution of the problem (1.1), if the
data of the considered problem is smooth and satisfied the Slater condition and
non-degeneracy condition.

Recently, in [5], Dutta continuously focussed on the algorithmic issues of convex
optimization problem without convex representation, by removing the continuously
differentiability of the objective function and presented the following theorem.

Theorem 1.1. Consider the problem (1.1), where the constraint set C satisfies the
Slater condition and non-degeneracy condition, but may not have a convex represen-
tation. If C is a compact set and each gi is continuously differentiable then for each

1A point x ∈ C is a KKT point if there exist λi ≥ 0 for all i = 1, ...,m such that

λigi(x) = 0 and ∇f(x) +

m∑
i=1

λi∇gi(x) = 0,

where ∇f(x) and ∇gi(x) are denoted for the gradient vectors of the function f and gi at x,
respectively.

2The Slater condition holds for C if there exists x ∈ C such that gi(x) > 0 for all i = 1, ..,m.
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Figure 1. Illustration of example 1.2.

µ > 0 there exists a global minimizer xµ of the φµ in the interior of C. Moreover,
every accumulation point x∗ of {xµ} with µ → 0 is a global minimizer of f .

Recall that a function g : Rn → R is called a locally Lipschitz at a point x ∈ Rn

if there exist a real number Lx > 0 and ϵx > 0 such that

|g(y)− g(z)| ≤ Lx∥y − z∥ for all y, z ∈ B(x, ϵx),

where B(x, ϵx) = {w ∈ Rn : ∥x−w∥ < εx}. It is well known that each continuously
differentiable function is a locally Lipschitz function. Inspried by this relation, we
are convinced to improve the Theorem 1.1, by replacing the continuously differen-
tiability of the representative functions by the locally Lipschitz assumption.

Example 1.2. Let C be a convex subset of R2, which is represented by

C = {(x, y) ∈ R2 : g1(x, y) ≥ 0, g2(x, y) ≥ 0},

where

g1(x, y) =

{
x2 sin(1/x)− y2 if x ̸= 0

−y2 if x = 0,

and

g2(x, y) = y −
∣∣∣∣x− 1

π

∣∣∣∣− (
x− 1

π

)3

,

for all (x, y) ∈ R2. Ones can see that g1 and g2 are locally Lipschitz functions
and we notice that a convex set C may be represented by different choices of the
representative functions (not necessary convex or smooth). So this attractive feature
is not specific to representations of C with smooth functions. See figure 1.

Next, we will recall some important concepts that will be used in this work.
Let f : Rn → R be a function. A directional derivative of f at x in the feasible

direction h, denoted by f ′(x, h), is defined by

f ′(x, h) = lim
t↓0

f(x+ th)− f(x)

t
.
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We say that the directional derivative of f in the direction h at x exists if the above
limit exists. It is well known that if f is a convex function, then the directional
derivative f ′(x, h) exists in every direction h ∈ Rn.

Now, let us focus on the class of locally Lipschitz functions, which is the main
target of this paper. We start by recalling the concepts of generalized directional
derivative and generalized subdifferential of a locally Lipschitz function in the sense
of Clarke [3].

If g : Rn → R is a locally Lipschitz function at x ∈ Rn, then the generalized
directional derivative or Clarke derivative of g at x in the direction h ∈ Rn is
defined by

g◦(x, h) = lim sup
y→x
t↓0

g(y + th)− g(y)

t
.

Remind that under the locally Lipschitz assumption of g, the Clarke derivative al-
ways exists. For a locally Lipschitz function g and x ∈ Rn, the Clarke subdifferential
of g at x, denoted by ∂◦g(x), is defined by

∂◦g(x) = {v ∈ Rn : g◦(x, h) ≥ ⟨v, h⟩,∀h ∈ Rn}.

It is well known that, the Clarke subdifferential ∂◦g(x) is a nonempty, convex and
compact set. Furthermore, for each h ∈ Rn, we know that g◦(x, h) = max{⟨v, h⟩ :
v ∈ ∂◦g(x)}. For more information on these concepts, the readers may consult
[1–3,9].

According to the definition of Clarke derivative, for each x ∈ Rn, it is worth
noting that g◦(x, h) ≥ g′(x, h), for all h ∈ Rn, and under locally Lipschitz setting
we also know that g◦(x, h) is a positively homogeneous, subadditive and upper
semicontinuous, with respect to h. Further, if g is a locally Lipschitz function
which is also directionally differentiable at x ∈ Rn and g′(x, h) = g◦(x, h) for all
h ∈ Rn, then g is said to be regular in the sense of Clarke at x ∈ Rn. Note that if g
is a convex function, then g is a locally Lipschitz function and regular in the sense
of Clarke.

Under the framework of locally Lipschitz constraint functions, Dutta and Lalitha
[4] considered the optimality conditions for the convex optimization problem (1.1),
by assuming that each constraint function is regular in the sense of Clarke. They
also introduced the following nonsmooth degeneracy type condition:

Condition NDC: Let C be a constraint set of problem (1.1). We say that the
non-degeneracy condition holds if for all i = 1, ..,m,

0 /∈ ∂◦gi(x), whenever x ∈ C and gi(x) = 0.

In that work, Dutta and Lalitha [4] showed that if both the Slater condition
and NDC-condition hold then the KKT condition is both necessary and sufficient.
Further, the authors gave a noticeable question that whether the assumption of
regularity of the constraint functions can be removed.

Remark 1.3. From the Example 1.2, we can check that the function g1 is a lo-
cally Lipschitz function which is directionally differentiable but not regular in the
sense of Clarke. Indeed, one can see that (−1, 0) ∈ ∂◦g1((0, 0)) and this gives
g◦((0, 0), (h1, h2)) ≥ ⟨(−1, 0), (h1, h2)⟩ = −h1, for all direction (h1, h2) ∈ R2. This
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implies that there is a direction such that the Clarke derivative of g1 at (0, 0) is
a positive real number. However, since g1 is differentiable at (0, 0) and its deriva-
tive is (0, 0), so we have g′1((0, 0), (h1, h2)) = ⟨(0, 0), (h1, h2)⟩ = 0, for all direction
(h1, h2) ∈ R2. This shows that g1 is not a regular in the sense of Clarke at (0, 0).

Motivated by above literature, in this paper, we will give an affirmative answer
to the question which was asked in [4], by removing the regularity assumption of
the constraint functions. Meanwhile, our obtained result shows that Dutta’s frame-
work [5] still works when the convex constraint set is described by locally Lipschitz
functions which is directionally differentiable, but not necessarily continuously dif-
ferentiable functions. To do this, in order to considering the case that function is
not regular, we need the following important tool which can be found in [6].

Lemma 1.4 ([6]). Let g : Rn → R be a locally Lipschitz function which is direc-
tionally differentiable over the open set U ⊂ Rn. Then at each point x ∈ U and in
each direction v ∈ Rn we have

g◦(x, v) = lim sup
y→x

g′(y, v).

2. Main result

From now on, we will always assume that the constraint set C in the problem
(1.1) is represented by a set of locally Lipschitz functions which are directionally
differentiable. We begin by providing an optimality condition for the problem (1.1).

Lemma 2.1. Let C be defined as in Problem (1.1) and x∗ ∈ C. Assume that there
exist scalars λi ≥ 0 such that for all x ∈ C we have

(a) f ′(x∗, x− x∗) ≥
∑m

i=1 λig
◦
i (x

∗, x− x∗);
(b) λigi(x

∗) = 0, for all i ∈ {1, 2, ...,m}.
Then x∗ is a global minimizer of the problem (1.1).

Proof. Firstly, by the convexity of C, we observe that

x∗ + α(x− x∗) = αx+ (1− α)x∗ ∈ C,

for all x ∈ C and α ∈ (0, 1). Thus,

gi(x
∗ + α(x− x∗)) = gi(αx+ (1− α)x∗) ≥ 0,

for each i ∈ {1, ...,m}. Consequently, by the assumption (b), we can deduce that

λi

[
gi(x

∗ + α(x− x∗))− gi(x
∗)

α

]
≥ 0,

for each i ∈ {1, ...,m}. Letting α → 0, in view of a relationship between directional
derivative and Clarke derivative of gi at x

∗ in direction x− x∗, we obtain

λig
◦
i (x

∗, x− x∗) ≥ 0,

for each i ∈ {1, ...,m}. Subsequently, by the assumption (a), we have

f ′(x∗, x− x∗) ≥
m∑
i=1

λig
◦
i (x

∗, x− x∗) ≥ 0.
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Hence, since f is a convex function, we can conclude that x∗ is a global minimizer
of f over C. This completes the proof.

�

The next result presents an implication of NDC-condition.

Lemma 2.2. Let C be defined as in Problem (1.1). If NDC-condition is satisfied
then for each x ∈ C \ S and y ∈ intC, we have

g◦i (x, y − x) > 0, ∀i ∈ I(x),

where I(x) = {i ∈ {1, ..,m} : gi(x) = 0}, and intC is denoted for the set of all
interior points of C.

Proof. Suppose, on the contrary, that there exists i ∈ I(x) such that g◦i (x, y−x) ≤ 0.
Note that, since y ∈ intC, we can find a δ > 0 such that y + u ∈ C for all

u ∈ B(0, δ). Let us set w := y + u. Subsequently, by convexity of C, we have

x+ α(w − x) = αw + (1− α)x ∈ C,

for all α ∈ (0, 1). This gives,

gi(x+ α(w − x))− gi(x)

α
≥ 0,

for all α ∈ (0, 1). So, by a relation between the directional derivative and Clarke
derivative, we have

g◦i (x,w − x) ≥ 0.

Then, by the subadditivity property of g◦i (x, ·), we get

0 ≤ g◦i (x, y + u− x) ≤ g◦i (x, y − x) + g◦i (x, u) ≤ g◦i (x, u),

for all u ∈ B(0, δ). Using this one together with the positive homogeneity of u 7→
gi(x, u), we would have 0 ∈ ∂◦gi(x). This contradicts to the NDC-condition, and
the proof is completed. �

The following result relates to a property of the barrier function φµ, which was
defined by (1.2). Note that, in fact, the following result was presented in [8], when
each gi is a continuously differentiable function. While, here, we are pointing that
the continuity condition of each gi is sufficient.

Lemma 2.3. Let C be defined as in Problem (1.1). Assume that C is a compact
set and the Slater condition holds. Then, for every µ > 0 the barrier function φµ

has a minimizer, which is an element of intC.

Proof. Let µ > 0 be given and φµ be the corresponding barrier function, which was
defined in (1.2). Firstly, let us notice that by the Slater condition, we can guarantee
that the function φµ is a proper function, that is Dom(φµ) ̸= ∅. Next, we will show
that φµ is a continuous extended real valued function on C. That is we have to
prove that for each sequence {xk} in S such that xk → x for some x ∈ C \ S, it
holds φµ(xk) → ∞.
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Note that, since x ∈ C \ S and each gi is a continuous function, there is an index
j ∈ {1, 2, ...,m} such that gj(xk) → 0 as k → ∞. Focusing on this such index j, we
now consider

φµ(xk) =f(xk)− µ
m∑
i=1

ln(gi(xk))(2.1)

≥f∗ − µ(m− 1) lnK − µ ln(gj(xk)),

where f∗ is the minimum of f on C, and all the gi’s are bounded above on C by K.
Subsequently, the inequality (2.1) implies that φµ(xk) → ∞ as k → ∞. This
asserts that φµ is a continuous extended real valued function on C. Then, since
C is a compact set, we know that φµ must has a minimizer on S. Finally, since
S ⊆ intC, the minimizer must be an element of intC. �

According to the Lemma 2.3, under the Slater condition, we can construct a
sequence {xµ} ⊂ intC by

(2.2) xµ = arg
x∈C

minφµ(x),

for each positive real number µ. In our next theorem, which is our main result, under
the additional condition as NDC-condition, we show that every accumulation point
of {xµ} as µ → 0 is a global minimizer of the problem (1.1).

Theorem 2.4. Let C in the Problem (1.1) be a compact set and {xµ} defined as
in (2.2). If the Slater condition and NDC-condition hold, then every accumulation
point of {xµ} as µ → 0 is a global minimizer of the problem (1.1).

Proof. Notice that, by carefully reading the proof of Lemma 2.3, one can see that
{xµ} is a sequence in S. Moreover, let us observe that φµ is directionally differ-
entiable at each x ∈ S. Thus, from the basic necessary optimality conditions, we
must have

φ′
µ(xµ, v) ≥ 0,

for all v ∈ Rn. Subsequently, by applying the chain rule for the directionally
differentiable function, we have

f ′(xµ, v) ≥
m∑
i=1

µ

gi(xµ)
g′i(xµ, v),(2.3)

for all v ∈ Rn.
Now, let x∗ be an accumulation point of {xµ} as µ → 0. It follows that there

is a null sequence {µk} ⊂ (0, 1) such that xµk
→ x∗ as k → ∞. To complete the

proof, we shall show that x∗ is a global minimizer of f . We will now consider the
following two possible cases.

Case(I) gi(x
∗) > 0 for each i ∈ {1, ...m}.

Case(II) gi(x
∗) = 0 for some i ∈ {1, ...m}.
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Let us discuss Case(I). Since xµk
→ x∗ as k → ∞, by the continuity of each gi,

for i ∈ {1, 2, ...,m}, we have gi(xµk
) → gi(x

∗) > 0. Then, for each i ∈ {1, 2, ...,m},
we have

lim
k→∞

µk

gi(xµk
)
= 0,

since µk → 0 as k → ∞.Moreover, by Lemma 1.4, we know that {g′i(xµk
, x−x∗)}∞k=1

is a bounded sequence, for each i ∈ {1, 2, ...,m}, and these imply that

(2.4) lim
k→∞

m∑
i=1

µk

gi(xµk
)
g′i(xµk

, x− x∗) = 0.

Again, by using Lemma 1.4, we also have

(2.5) lim sup
k→∞

f ′(xµk
, v) = f◦(x∗, v) = f ′(x∗, v),

since f is a convex function. Thus, by considering v = x− x∗ in (2.3), we see that
(2.4) and (2.5) give

f ′(x∗, x− x∗) ≥ 0,

for all x ∈ C. This means that x∗ is a global minimizer of the problem (1.1).

Next we consider Case(II). Let us pick an element x0 ∈ intC. By Lemma 2.2, we
know that

(2.6) g◦i (x
∗, x0 − x∗) > 0,

for all i ∈ I(x∗). Subsequently, since g◦i (x
∗, x0 − x∗) is the superior limit of

{g′i(xµk
, x0−x∗)}∞k=1, we may assume without loss of generality (passing to a subse-

quence if necessary) that g′i(xµk
, x0−x∗) → g◦i (x

∗, x0−x∗) and g′i(xµk
, x0−x∗) > 0,

for all k ∈ N and i ∈ I(x∗).
Now, by considering v = x0 − x∗, we rewritten (2.3) as

(2.7)

f ′(xµk
, x0 − x∗) ≥

∑
i/∈I(x∗)

µk

gi(xµk
)
g′i(xµk

, x0 − x∗)

+
∑

i∈I(x∗)

µk

gi(xµk
)
g′i(xµk

, x0 − x∗),

for each k ∈ N. For the sake of simplicity, for each k ∈ N, let us put

Bk :=
∑

i/∈I(x∗)

µk

gi(xµk
)
g′i(xµk

, x0 − x∗).

Notice that, by following the lines as proving the Case(I), we know that Bk → 0 as
k → ∞. Subsequently, in view of (2.7), we can choose a positive real number B and
its corresponding natural number k0 ∈ N such that

f ′(xµk
, x0 − x∗) +B ≥

∑
i∈I(x∗)

µk

gi(xµk
)
g′i(xµk

, x0 − x∗),(2.8)
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for all k ≥ k0. Thus, by using Lemma 1.4, we have

f ′(x∗, x0 − x∗) +B ≥ lim sup
k→∞

∑
i∈I(x∗)

µk

gi(xµk
)
g′i(xµk

, x0 − x∗)

≥ lim sup
k→∞

µk

gi(xµk
)
g′i(xµk

, x0 − x∗),

for all i ∈ I(x∗). This implies that the sequence
{

µk
gi(xµk

)

}∞

k=1
is a bounded se-

quence, for each i ∈ I(x∗). Invoking this fact, it allows us to define a function
λ : {1, 2, ...,m} → [0,∞) by

λi =

{
lim
k→∞

µk
gi(xµk

) , if i ∈ I(x∗);

0, otherwise.

Then it immediately follows that λigi(x
∗) = 0, for all i ∈ {1, 2, ...,m}.

Next, let x ∈ C be arbitrarity given. In view of (2.3), with v = x − x∗, and by
using Lemma 1.4 we obtain

f ′(x∗, x− x∗) ≥ lim sup
k→∞

m∑
i=1

µk

gi(xµk
)
g′i(xµk

, x− x∗)(2.9)

=

m∑
i=1

λig
◦
i (x

∗, x− x∗)(2.10)

Hence, by using Lemma 2.1, we can conclude that x∗ is a global minimizer of the
problem (1.1). This completes the proof.

�

Remark 2.5. (a) Theorem 2.4 improves a presented result in [4], by removing
the regularity assumption from the considered constraint functions.

(b) Since Clarke subdifferential of a smooth function will consists only the gra-
dient vector, so in this situation the NDC-condition is coincided with the
non-degeneracy condition in the sense of Lasserre [7]. Further, since every
continuously differentiable function is a locally Lipschitz and regular func-
tion, we can deduce that Theorem 2.4 contains Theorem 1.1 as a special
case.

3. Conclusion

In this work, we consider the convex optimization problem when the objective
function may not be smooth and the constraint functions are just locally Lipschitz
and directionally differentiable, and need not be continuously differentiable or reg-
ular. It is worth to pointing that, we are giving an affirmative answer to a problem
that was proposed in [4]. Moreover, after carefully considering, one may observe
that the Slater condition is used only for guaranteeing that the barrier function φµ

is a proper function and its minimizer is an element of interior of the constraint
set, see Lemma 2.3. This may rise an interesting following question: can we define
a barrier function by using a condition that weaker than the Slater condition such
that it is still a proper function and its minimizer belongs to the set of all interior
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points of the constraint set? In order to develop this research area, this question
should be considered in the future works.
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