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It is well known that stability and sensitivity analysis of solution mappings for
(generalized) Ky Fan inequalities is an important topic for (vector) optimization
theory and its applications. There have been a large number of contributions to
kinds of semicontinuity, continuity and Hölder continuity of solutions with respect
to parameters. Anh and Khanh [3] introduced some definitions related to semi-
continuity of multivalued mappings and discussed various kinds of semicontinuity.
They studied the sufficient conditions for the solution sets of parametric multival-
ued symmetric vector quasiequilibrium problems to have these properties. Huang
et al. [20] further considered a class of parametric implicit vector equilibrium prob-
lems in Hausdorff topological vector spaces. They established sufficient conditions
for the upper semicontinuity and lower semicontinuity of the solution set mapping.
Furthermore, the continuity (or Hausdorff continuity) of solution maps was studied
in [4,21]. Kimura and Yao [21] investigated the existence of solutions and continuity
of for the parametric vector quasi-equilibrium problem. Anh and Khanh [4] con-
sidered a parametric vector quasiequilibrium problem in topological vector spaces
and given some sufficient conditions for solution maps to be lower and Hausdorff
lower semicontinuous, upper semicontinuous and continuous. Using scalarization
approaches, Chen and Li [13] obtained new results on the lower semicontinuity and
upper semicontinuity properties of the Pareto solutions to a parametric vector vari-
ational inequality with a polyhedral constraint set. For related results on this field
one can also refer to [9–11,14,17,28].

However, this continuity was obtained under assumptions related to strong mono-
tonicity or strong pseudomonotonicity. Then the results have been extended to
quasiequilibrium problems. The case of non-unique solutions was dealt with re-
cently in Anh et al. [5], avoiding assumptions related to strong monotonicity, but
Hölder continuity was obtained only for approximate solutions which are as close as
we want to exact solutions. In [6], Anh et al. established the sufficient conditions
for Hölder continuity of solution mappings of Ky Fan inequalities without using
the strong monotonicity assumptions. The technique is based on strong convexity
and strong convex-likeness. In [?], Li and Li established the Hölder continuity of
a set-valued solution mapping to a parametric weak generalized Fan Ky inequality.
It is worth pointing that their method is based on a scalarization representation
of the solution mapping for a parametric Ky Fan inequality and the Hölder strong
monotonicity assumptions. To the best of our knowledge, there is no existing result
on Hölder continuity of primal and dual Ky Fan inequalities for the generalized Ky
Fan inequalities without the virtue of Hölder strong monotonicity assumptions.

In this paper, we will first present the new concepts of the strong convexity
and Hölder continuity for vector-valued mappings. Further, without the virtue of
strong monotonicity assumptions, we next establish also certain sufficient conditions
for Hölder continuity of both solution maps of parametric primal and dual weak
generalized Ky Fan inequalities, when the solution set may not be singleton. Our
technique is based on the strong convexity for vector-valued maps. Examples are
provided for cases where our results are applicable while existing ones under the
Hölder strong monotonicity assumptions are out of use.
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2. Preliminaries

In the sequel, ∥ · ∥ and d(·, ·) denote the norm and metric in any normed space
and metric space, respectively (by the context, no confusion occurs). B(0, δ) is the
closed ball with center 0 ∈ X and radius δ ≥ 0. We use intA, conv(A), and diamA :=
supx,z∈A d(x, z) for the interior, the convex hull, and the diameter, respectively, of a

subset A. For a set-valued map G : X → 2Y , grG := {(x, y) ∈ X × Y : y ∈ G(x)}
is the graph of G. Recall that X is called a metric linear space iff it is both a
metric space and a linear space and the metric d of X is translation invariant (i.e.,
d(x+ z, y+ z) = d(x, y),∀x, y, z ∈ X) and, for any convergent sequences {λm} in R
and {xm} in X, we have limm→∞(λmxm) = (limm→∞ λm)(limm→∞ xm).

Throughout this paper, if not otherwise specified, X will denote a metric linear
space, Λ andM two metric spaces, and Y a normed space. Let Y ∗ be the topological
dual space of Y . For any ξ ∈ Y ∗, the norm of ξ is defined by

∥ξ∥ := sup{⟨ξ, x⟩ : ∥x∥ = 1},
where ⟨ξ, x⟩ denotes the value of ξ at x. Let C ⊂ Y be a pointed, closed and convex
cone with intC ̸= ∅ and C∗ := {ξ ∈ Y ∗ : ⟨ξ, x⟩ ≥ 0,∀x ∈ C} be the dual cone of C.
Since intC ̸= ∅, the dual cone C∗ of C has a weak∗ compact base. For any given
point e ∈ intC, B∗

e := {ξ ∈ C∗ : ⟨ξ, e⟩ = 1} is a weak∗ compact base of C∗. We first
recall some notions needed in the sequel.

Definition 2.1. Let (E, d) be a metric space. For A,B ⊆ E, the Hausdorff distance
between A and B is defined by

H(A,B) = max{H∗(A,B),H∗(B,A)},
where H∗(A,B) = sup

a∈A
d(a,B) and d(x,A) = inf

y∈A
d(x, y).

Note that H(., .) may not be a metric in the space of the subsets of E, since it
can take the value ∞, and H is a metric in the space CB(E), the collection of all
nonempty, closed and bounded subsets of E.

Now we recall and introduce some concepts related to Hölder continuity for vector
valued mappings.

Definition 2.2 (Hölder continuity). Let X,Y,M and C be given as above, and l, α
be given positive numbers.

(i) (classical) A mapping g : X → Y , is called (l ·α)-Hölder continuous around
x̄ ∈ X iff there is a neighborhood U of x̄ such that, for all x1, x2 ∈ U,

d(g(x1), g(x2)) ≤ ldα(x1, x2).

(ii) (classical) A set-valued mapping G : X → 2Y is (l · α)−Hölder continuous
around x̄ iff there exists a neighborhood U of x̄ such that for any x1, x2 ∈ U ,

G(x1) ⊂ G(x2) + lB(0, dα(x1, x2)).

(iii) (see [?]) A vector-valued mapping g : X → Y is said to be (l · α)−Hölder
continuous with respect to e ∈ intC around x̄ iff, there exists a neighbor-
hood U of x̄ such that for any x1, x2 ∈ U ,

g(x1) ∈ g(x2) + ldα(x1, x2)[−e, e],
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where [−e, e] := (e− C) ∩ (−e+ C).
(iv) For θ ≥ 0, a given mapping f , f : X × X × M → R, is called (l · α)-

Hölder continuous with respect to e ∈ intC around µ̄ ∈ M , θ-uniformly in
A ⊆ X iff, there is a neighborhood N of µ̄ such that, for all µ1, µ2 ∈ N and
x, y ∈ A : x ̸= y,

f(x, y, µ1) ∈ f(x, y, µ2) + ldα(µ1, µ2)d
θ(x, y)[−e, e].

If the degree of Hölder continuity is equal to 1, then Hölder continuity is called
Lipschitz continuity. If a certain property is true at every point of B ⊆ X, we will
said that it is satisfied in B.

Definition 2.3 (Monotonicity for vector valued mapping). Let X, Y , C be as in
Definition 2.2, g : X × X → Y be a vector valued mapping, and h, β be positive
numbers

(i) ([2]) g is said to be (h · β)-Hölder strongly monotone on A ⊂ X iff for each
x, y ∈ A : x ̸= y,

g(x, y) + g(y, x) + hdβ(x, y)B(0, 1) ⊂ −C.

(ii) ( [?]) g is said to be (h · β)−Hölder strongly monotone with respect to
e ∈ intC on A ⊂ X iff for each x, y ∈ A : x ̸= y,

g(x, y) + g(y, x) + hdβ(x, y)e ∈ −C.

(iii) (classical) g is said to be monotone on A ⊆ X iff for each x, y ∈ A,

g(x, y) + g(y, x) ∈ −C.

Lemma 2.4 ([18, Lemma 3.21]). If Y is a real topological linear space and C is a
convex cone with int C ̸= ∅, then

intC =
{
y ∈ Y : ⟨ξ, y⟩ > 0,∀ξ ∈ C∗ \ {0}

}
.

Now, we give the topological version of the separation theorem which is also
known as Eidelheit’s separation theorem.

Lemma 2.5 ([19]). Let S and T be nonempty convex subsets of a real topological
linear space X with int S ̸= ∅. Then int S ∩ T ̸= ∅ if and only if there are a
continuous linear functional l ∈ X∗\{0X∗} and a real number α with

l(s) ≤ α ≤ l(t), for all s ∈ S and t ∈ T

and
l(s) < α, for all s ∈ int S.

Now, we introduce new definitions of the strong convexity and convexity-likeness
for the vector valued mappings which are need in this paper.

Definition 2.6 (Strong convexity). Let (X, d) be a metric linear space, Y a normed
space. Let A ⊂ X be a convex subset of X, C ⊂ Y a convex cone with intC ̸= ∅.
Let g : X → Y be a vector valued mapping. g is said to be C-strongly convex with
modulus h and β on A iff there exists two positive real number h and β and a point
e ∈ int C such that for all x, y ∈ A and t ∈ [0, 1],

(2.1) tg(x) + (1− t)g(y)− ht(1− t)dβ(x, y)e ∈ g(tx+ (1− t)y) + C.
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In this case g is said to be (h · β)-C-strongly convex with respect to e.

Remark 2.7. (i) A mapping g : X → Y is called C-convex if for all x, y ∈ A and
t ∈ [0, 1],

tg(x) + (1− t)g(y) ∈ g(tx+ (1− t)y) + C.

Clearly, every C-strongly convex function is C-convex. However, the converse is not
true. For example, if X = Y = R, C = R+ ∪ {0} and g is defined by g(x) = x4. It
is clear that g is C-convex but it is not C-strongly convex as there is no h > 0 that
satisfies (2.1).

(ii) If Y = R, C = R+∪{0} in the above definition, then g is called (h ·β)-strongly
convex on A (see Definition 2.2 [5] and Definition 2.1 [25]).

(iii) The examples of C-strongly convex vector valued functions can be found in
Example 3.5 and Example 3.7.

Definition 2.8 (Strong convex-likeness). Let (X, d) be a metric linear space,
Y a normed space. Let B ⊂ X be a nonempty subset of X, C ⊂ Y a convex cone
with intC ̸= ∅. Let g : X → Y be a vector valued mapping.

(i) g is said to be C-convex-like in B iff for all x1, x2 ∈ B, and t ∈ [0, 1], there
is z ∈ B

g(z) ∈ tg(x1) + (1− t)g(x2)− C.

(ii) g is said to be C-strongly convex-like with respect to e in B iff there are
two positive real numbers h and β and a point e ∈ int C such that for all
x1, x2 ∈ B and t ∈ [0, 1] there is z ∈ B,

g(z) + ht(1− t)dβ(x1, x2)e ∈ tg(x1) + (1− t)g(x2)− C.

As usual g is said to be (h · β)-C-strongly concave (C-concave-like, resp.) on A
if −g is (h · β)-C-strongly convex (C-convex-like, resp.) on A.

3. Hölder continuity of solution maps of parametric primal Ky Fan
inequalities

Let X,Y,Λ,M,C and e be as in Section 2, and let K : Λ → 2X be a set-valued
mapping with nonempty convex values and f : X ×X ×M → Y be a vector valued
mapping. For each λ ∈ Λ and µ ∈ M , we consider the following parametric weak
generalized Ky Fan inequality (for short, (GKF)) :

(3.1) (GKF)

{
Find x0 ∈ K(λ) such that
f(x0, y, µ) /∈ −intC, ∀y ∈ K(λ).

For each (λ, µ) ∈ Λ×M , we denote the solution set of by

S(λ, µ) := {x ∈ K(λ) : f(x, y, µ) /∈ −intC, ∀y ∈ K(λ)}.
For each ξ ∈ C∗\{0}, λ ∈ Λ and µ ∈ M , the ξ−solution set of the (GKF) is denoted
by

Sξ(λ, µ) := {x ∈ K(λ) : ⟨ξ, f(x, y, µ)⟩ ≥ 0,∀y ∈ K(λ)}.
In this section, we consider Hölder continuity of solution mappings of (GKF). Since
existence conditions of solutions have been studied much in the literature, we do
not include existence investigations and always assume that S(λ, µ) is nonempty
for the considered point (λ, µ). Firstly, by using the idea given in [15], we establish
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the relationships between the solution sets and the ξ−solution sets under new mild
conditions imposed on the vector valued mappings.

Lemma 3.1. If for each x ∈ K(Λ) and (λ, µ) ∈ Λ×M , f(x, ·, µ) is C-convex-like
in K(λ), then

S(λ, µ) =
∪

ξ∈C∗\{0}

Sξ(λ, µ) =
∪

ξ∈B∗
e

Sξ(λ, µ).

Proof. (a) We first prove that

S(λ, µ) =
∪

ξ∈C∗\{0}

Sξ(λ, µ).

Let x ∈
∪

ξ∈C∗\{0} Sξ(λ, µ) be arbitrary given. Then, there exists ξ̄ ∈ C∗ \ {0} such

that x ∈ Sξ̄(λ, µ). By the definition of Sξ̄(λ, µ), for each y ∈ K(λ),

⟨ξ̄, f(x, y, µ)⟩ ≥ 0.

Applying Lemma 2.4, we can see that, for all y ∈ K(λ), f(x, y, µ) /∈ −intC. This
shows that x ∈ S(λ, µ). Hence, we have that∪

ξ∈C∗\{0}

Sξ(λ, µ) ⊆ S(λ, µ).

Conversely, let x ∈ S(λ, µ) be arbitrary given. Then, we have that f(x, y, µ) /∈
−intC for all y ∈ K(λ). Obviously, we have

(3.2) f(x,K(λ), µ) ∩ (−intC) = ∅.
Next, we prove that

(f(x,K(λ), µ) + C) ∩ (−intC) = ∅.
Suppose on the contrary that, there exists w ∈ (f(x,K(λ), µ)+C)∩(−intC). Hence,
there exist z ∈ f(x,K(λ), µ) and c ∈ C such that w = z + c ∈ −intC. So, one has
z = −c − w ∈ −intC, which is a contradiction with (3.2). Now, we will show that
f(x,K(λ), µ)+C is a convex subset of Y . To this end, let z1, z2 ∈ f(x,K(λ), µ)+C
and t ∈ [0, 1] be arbitrary given. Then, there are y1, y2 ∈ K(λ) and c1, c2 ∈ C such
that

zi = f(x, yi, µ) + ci, for all i = 1, 2.

Then, the convex-likeness of the mapping f(x, ·, µ) in K(λ) implies that there exist
s ∈ K(λ) and c ∈ C such that

tf(x, y1, µ) + (1− t)f(x, y2, µ) = f(x, s, µ) + c.

Since C is a convex cone, we have

tz1 + (1− t)z2 = tf(x, y1, µ) + tc1 + (1− t)f(x, y2, µ) + (1− t)c2

= f(x, s, µ) + [c+ tc1 + (1− t)c2]

∈ f(x,K(λ), µ) + C

Hence, we have that f(x,K(λ), µ) +C is convex. Applying Lemma 2.5, there exist
a continuous linear functional ξ ∈ Y ∗ \ {0} and a number γ ∈ R such that

⟨ξ, c̄⟩ < γ < ⟨ξ, z + c⟩,∀c̄ ∈ −intC, ∀z ∈ f(x,K(λ), µ), ∀c ∈ C.
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Since C is a cone, we imply that, for all c̄ ∈ −intC and α > 0, αc̄ ∈ −intC. So,
⟨ξ, c̄⟩ ≤ 0 for all c̄ ∈ −intC. Moreover, ξ is a continuous linear function, one yields
⟨ξ, c⟩ ≥ 0 for all c ∈ C, i.e., ξ ∈ C∗ \ {0}. Since c̄ ∈ −intC can chosen arbitrarily
close to 0, we imply that γ ≥ 0. Similarly, since c ∈ C also can taken arbitrarily
close to 0 and ξ is a continuous linear function, we derive that ⟨ξ, z⟩ ≥ 0 for all
z ∈ f(x,K(λ), µ), i.e.,

⟨ξ, f(x, y, µ)⟩ ≥ 0,∀y ∈ K(λ),

and hence x ∈ Sξ(λ, µ). So, S(λ, µ) =
∪

ξ∈C∗\{0} Sξ(λ, µ).

(b) Next we show that ∪
ξ∈C∗\{0}

Sξ(λ, µ) =
∪

ξ∈B∗
e

Sξ(λ, µ).

Since B∗
e ⊂ (C∗ \ {0}), one has

∪
ξ∈C∗\{0} Sξ(λ, µ) ⊃

∪
ξ∈B∗

e
Sξ(λ, µ). Conversely,

for each ξ ∈ C∗ \ {0}, from Lemma 2.4 we have ⟨ξ, e⟩ > 0 as e ∈ intC. Putting
ξ̄ = 1

⟨ξ,e⟩ξ, then ξ̄ ∈ B∗
e and Sξ(λ, µ) = Sξ̄(λ, µ), for all (λ, µ) ∈ Λ ×M , and hence

Sξ ⊂ ∪ξ∈B∗
e
Sξ(λ, µ), for all ξ ∈ C∗\{0}. So, ∪ξ∈C∗\{0}Sξ(λ, µ) ⊂ ∪ξ∈B∗

e
Sξ(λ, µ). �

Remark 3.2. Compared with the results (Lemma 3.1) obtained in [15], C-convexity
of f(x, ·, µ) in K(λ) is weakened by C-convex-likeness of f(x, ·, µ) in K(λ).

Theorem 3.3. Suppose that for each ξ ∈ B∗
e , Sξ(λ, µ) is nonempty in a neighbor-

hood of the considered point (λ0, µ0). Furthermore, assume the following :

(i) K is (l · α)-Hölder continuous in a neighborhood N(λ0) of λ0;
(ii) there is a neighborhood N(µ0) of µ0 such that for all x ∈ K(N(λ0)) and

µ ∈ N(µ0), f(x, ·, µ) is (h · β)-C-strongly convex wiyh respect to e as well
as (m · 1)-Hölder continuous with respect to e in conv(K(N(λ0)));

(iii) for each µ ∈ N(µ0), f(·, ·, µ) is monotone in K(N(λ0))×K(N(λ0));
(iv) f is (n · γ)-Hölder continuous with respect to e around µ0, θ-uniformly in

K(N(λ0)) with θ < β.

Then, there exist neighborhoods of N ′(λ0) and N ′(µ0) such that S is single-valued
and satisfies the following Hölder condition:

(3.3) H(S(λ1, µ1), S(λ2, µ2)) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

for each (λ1, µ1), (λ2, µ2) ∈ N ′(λ0)×N ′(µ0).

Proof. (a) We first prove that, for each ξ̄ ∈ B∗
e there are neighborhoodsN(ξ̄), Nξ̄(λ0)

and Nξ̄(µ0) such that for each ξ ∈ N(ξ̄) and (λ1, µ1), (λ2, µ2) ∈ Nξ̄(λ0)×Nξ̄(µ0),

(3.4) ρ(Sξ(λ1, µ1), Sξ(λ2, µ2)) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β
d

γ
β−θ (µ1, µ2),

where ρ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B} for each A,B ⊂ Y .
The proof of (3.4) is separated into three steps:

Step I: For any given two points x11 ∈ Sξ(λ1, µ1) and x21 ∈ Sξ(λ2, µ1), we claim
that

d1 := d(x11, x21) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2).
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From the definition of Sξ, we have that, for all y ∈ K(λ1) and z ∈ K(λ2),

(3.5) min
{
⟨ξ, f(x11, y, µ1)⟩, ⟨ξ, f(x21, z, µ1)⟩

}
≥ 0.

It follows from the (l·α)-Hölder continuity of K imposed in (i), there are x1 ∈ K(λ1)
and x2 ∈ K(λ2) satisfying

(3.6) max
{
d(x11, x2), d(x21, x1)

}
≤ ldα(λ1, λ2).

Taking x̄ =
1

2
(x11 + x21), it is clear that x̄ ∈ conv (K(N(λ0))). Since f(x11, ·, µ1) is

(h · β)-C-strong convexity with respect to e, we have that

f(x11, x̄, µ1)−
1

2
f(x11, x11, µ1)−

1

2
f(x11, x21, µ1) +

h

4
dβ1e ∈ −C.

Then, it follows from the definition of B∗
e that

0 ≥
⟨
ξ, f(x11, x̄, µ1)−

1

2
f(x11, x11, µ1)−

1

2
f(x11, x21, µ1) +

h

4
dβ1e

⟩
= ⟨ξ, f(x11, x̄, µ1)⟩ −

⟨
ξ,

1

2
f(x11, x11, µ1)

⟩
−

−
⟨
ξ,

1

2
f(x11, x21, µ1)

⟩
+

⟨
ξ,

h

4
dβ1e

⟩
,

which arrives that

(3.7)
h

4
dβ1 ≤

⟨
ξ,

1

2
f(x11, x11, µ1)

⟩
+

⟨
ξ,

1

2
f(x11, x21, µ1)

⟩
− ⟨ξ, f(x11, x̄, µ1)⟩.

Since f(·, ·, µ1) is monotone and x11 ∈ Sξ(λ1, µ1), we have

(3.8)
⟨
ξ,

1

2
f(x11, x11, µ1)

⟩
= 0

and

(3.9)
⟨
ξ, f(x11, x21, µ1)

⟩
≤ −⟨ξ, f(x21, x11, µ1)⟩.

Using (3.7),(3.8) and (3.9), we imply that

(3.10)
h

4
dβ1 ≤ −

⟨
ξ,

1

2
f(x21, x11, µ1)

⟩
−

⟨
ξ, f

(
x11,

x11 + x21
2

, µ1

)⟩
.

Taking z = x2 and y =
1

2
(x11 + x1) in (3.5), we can get that

(3.11) min
{⟨

ξ, f
(
x11,

1

2
(x11 + x1), µ1

)⟩
, ⟨ξ, f(x21, x2, µ1)⟩

}
≥ 0.
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Hence, (3.10) and (3.11) together yield that

h

4
dβ1 ≤ −

⟨
ξ,

1

2
f(x21, x11, µ1)

⟩
−

⟨
ξ, f

(
x11,

x11 + x21
2

, µ1

)⟩
+
⟨
ξ, f

(
x11,

x11 + x1
2

, µ1

)⟩
+

⟨
ξ,

1

2
f(x21, x2, µ1)

⟩
≤

⟨
ξ, f

(
x11,

x11 + x1
2

, µ1

)⟩
−
⟨
ξ, f

(
x11,

x11 + x21
2

, µ1

)⟩
+
⟨
ξ,

1

2
f(x21, x2, µ1)

⟩
−
⟨
ξ,

1

2
f(x21, x11, µ1)

⟩
≤

∣∣∣⟨ξ, f(x11, x11 + x1
2

, µ1

)⟩
−

⟨
ξ, f

(
x11,

x11 + x21
2

, µ1

)⟩∣∣∣
+
∣∣∣⟨ξ, 1

2
f(x21, x2, µ1)

⟩
−

⟨
ξ,

1

2
f(x21, x11, µ1)

⟩∣∣∣.
Hence, using (3.6) and the (m ·1)-Hölder continuity with respect to e of f(x11, ·, µ1)
and f(x21, ·, µ1) given in (ii), we have

h

4
dβ1 ≤ 1

2
md(x11, x2) +

1

2
md(x21, x1)

≤ 1

2
mldα(λ1, λ2) +

1

2
mldα(λ1, λ2)

≤ mldα(λ1, λ2),

which gives that

d1 ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2).

Step II: We claim that for any given two points x21 ∈ Sξ(λ2, µ1) and x22 ∈
Sξ(λ2, µ2),

d2 := d(x21, x22) ≤
(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

By the definition of ξ-solutions, we have that, for all y, z ∈ K(λ2),

(3.12) min
{
⟨ξ, f(x21, y, µ1)⟩, ⟨ξ, f(x22, z, µ2)⟩

}
≥ 0.

Putting y =
1

2
(x21 + x22) in (3.12), it is clear that y ∈ K(λ2), and hence

⟨ξ, f(x21, y, µ1)⟩ ≥ 0.

By virtue of the (h ·β)-C-strong convexity with respect to e of f(x21, ·, µ1), one has

f

(
x21,

x21 + x22
2

, µ1

)
− 1

2
f(x21, x22, µ1)−

1

2
f(x21, x21, µ1) +

h

4
dβ2e ∈ −C.

Therefore,

0 ≥
⟨
ξ, f

(
x21,

x21 + x22
2

, µ1

)
− 1

2
f(x21, x22, µ1)−

1

2
f(x21, x21, µ1) +

h

4
dβ2e

⟩
≥

⟨
ξ,−1

2
f(x21, x22, µ1)−

1

2
f(x21, x21, µ1) +

h

4
dβ2e

⟩
.
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Since ξ ∈ B∗
e , one yields

(3.13) ⟨ξ, f(x21, x22, µ1)⟩+ ⟨ξ, f(x21, x21, µ1)⟩ −
h

2
dβ2 ≥ 0.

By the monotonicity of f(·, ·, µ1) and x21 ∈ Sξ(λ2, µ1), we obtain

(3.14) ξ(f(x21, x21, µ1)) = 0

and

(3.15) ⟨ξ, f(x21, x22, µ1)⟩ ≤ −⟨ξ, f(x22, x21, µ1)⟩.

From (3.13), (3.14) and (3.15), we imply that

(3.16)
h

2
dβ2 ≤ −⟨ξ, f(x22, x21, µ1)⟩.

Now, replacing z in (3.12) by
1

2
(x22 + x21), we have

(3.17)

⟨
ξ, f

(
x22,

x22 + x21
2

, µ2

)⟩
≥ 0.

By the (h · β)-C-strong convexity with respect to e of f(x22, ·, µ2), we obtain the
following inequality which is similar to (3.13), concretely

⟨ξ, f(x22, x21, µ2)⟩+ ⟨ξ, f(x22, x22, µ2)⟩ −
h

2
dβ2 ≥ 0.

As ξ(f(x22, x22, µ2)) = 0,

(3.18)
h

2
dβ2 ≤ ⟨ξ, f(x22, x21, µ2)⟩.

Summing (3.16) and (3.18) and combining with assumption (iv), we have

hdβ2 ≤ ⟨ξ, f(x22, x21, µ2)⟩ − ⟨ξ, f(x22, x21, µ1)⟩
≤ |⟨ξ, f(x22, x21, µ2)− f(x22, x21, µ1)⟩|
≤ ndγ(µ1, µ2)d

θ
2,

and thus,

d2 ≤
(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).

Step III: Finally, applying Step I and Step II, for each x11 ∈ Sξ(λ1, µ1) and x22 ∈
Sξ(λ2, µ2), we have

d(x11, x22) ≤ d1 + d2 ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).

Hence, we get

(3.19) ρ(Sξ(λ1, µ1), S
ξ(λ2, µ2)) ≤

(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).
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(b) Now we prove (3.3). We see that B∗
e is a weak∗ compact set and hence it can

be covered by finitely many open sets, i.e.,

(3.20) B∗
e ⊂

n∪
i=1

N(ξi),

where ξi ∈ B∗
e and N(ξi) is a neighborhood of ξi, defined in (a). For Nξi(λ0) and

Nξi(µ0) determined as in (a), letN ′(λ0) =
∩n

i=1Nξi(λ0) andN ′(µ0) =
∩n

i=1Nξi(µ0).
For each (λ, µ) ∈ N ′(λ0)×N ′(µ0) and ξ ∈ B∗

e , it follows from (3.20) that there exists
i0 ∈ {1, . . . , n} such that ξ ∈ N(ξi0) and obviously, (λ, µ) ∈ Nξi0

(λ0) × Nξi0
(µ0).

Combining the convexity of f(x, ., µ) assumed in (ii) with Lemma 3.2, we have

S(λ, µ) =
∪

ξ∈B∗
e

Sξ(λ, µ).

For each (λ1, µ1), (λ2, µ2) ∈ N ′(λ0)×N ′(µ0), we now show that

(3.21) H(S(λ1, µ1), S(λ2, µ2)) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

Indeed, for each x11 ∈ S(λ1, µ1) = ∪ξ∈B∗
e
Sξ(λ1, µ1), there is ξ̂ ∈ B∗

e such that
x11 ∈ Sξ̂(λ1, µ1). As Sξ̂(λ2, µ2) ⊆ S(λ2, µ2) and applying (a), one has

d(x1, S(λ2, µ2)) ≤ d(x1, Sξ̂(λ2, µ2))

≤ H∗(Sξ̂(λ1, µ1), Sξ̂(λ2, µ2))

≤ ρ(Sξ̂(λ1, µ1), Sξ̂(λ2, µ2)).

≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

Therefore,

(3.22) H∗(S(λ1, µ1), S(λ2, µ2)) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).

Similarly, we also have

(3.23) H∗(S(λ2, µ2), S(λ1, µ1)) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).

Combining (3.22) with (3.23), we obtain (3.3). Furthermore, setting λ1 = λ2 and
µ1 = µ2 in the inequality (3.3), we can see that the diameter of the solution set
S(λ1, µ1) is 0 (for arbitrary (λ1, µ2)), i.e., the solution map S of (GKF) is single-
valued in N ′(λ0)×N ′(µ0). The proof is complete. �

Remark 3.4. (i) Compared with the results obtained in [5], the real valued
function f is generalized to the vector valued function. Further, the strong
convexity for the real valued function is extended to C-strong convexity for
the vector valued function.



84 R. WANGKEEREE, L. Q. ANH, AND J. KERDKAEW

(ii) Comparing Theorem 3.3 and the results obtained in [1, 12, 23, 27], we can
see that the main difference is the assumption (ii), namely, we assume that
f(x, ·, µ) is (h · β)-C-strongly convex with respect to e in conv(K(N(λ0)))
in Theorem 3.3 but strong monotone in [23], or strong pseudomonotone
in [1, 12] or f is satisfied a condition related to strong monotonicity in
[27]. Hence, Theorem 3.3 can be applicable in the general case of non-
unique solutions while the aforecited results do not work as in the following
example.

Example 3.5. Let X = Y = R2,Λ ≡ M = [0, 1], C = R2
+, e = (1, 1), K(λ) =

[−1− λ, 1 + λ], λ̄ = 0, and

f(x, y, λ) = ((λ+ 1)(y21 − x21), (λ+ 1)(y22 − x22)),

where x = (x1, x2), y = (y1, y2) ∈ X. It is not hard to see that all assumptions of
Theorem 3.3 are satisfied and S(λ) ≡ {(0, 0)} is Hölder continuous. However, we
can see that

f((1, 1), (−1,−1), λ) = f((−1,−1), (1, 1), λ) = (0, 0), for all λ ∈ M.

Hence the assumptions on strong monotonicity in [23], strong pseudo-monotonicity
in [1,12] and some conditions related to strong monotonicity in [27] are not satisfied.
Thus, the main results given in [1, 12, 27] do not work while Theorem 3.3 can be
applicable.

To illustrate the essential of imposed assumptions which do not relate to Hölder
continuity in Theorem 3.3, we bring out some following examples.

Example 3.6 (the strong convexity is essential). Let X = Y = R2, Λ ≡ M = [0, 1],
C = R2

+, e = (1, 1), K(λ) = [λ, 1], λ̄ = 0, and f(x, y, λ) = (λ(x21 − y21), λ(x
2
2 − y22)),

where x = (x1, x2), y = (y1, y2) ∈ X. Then, all assumptions of Theorem 3.3 are
fulfilled, except for the strong convexity of f . By direct calculations, we have

S(λ) =

{
[0, 1]× [0, 1], if λ = 0,

{(1, 1)}, if λ ̸= 0,

which is not lower semicontinuous at λ̄ = 0.

Example 3.7 (the monotonicity is crucial). Let X = Y = R2, Λ ≡ M = [0, 1],
C = R2

+, e = (1, 1), K(λ) ≡ [0, 1], λ̄ = 0, and f(x, y, λ) = (y21 − λx1, y
2
2 − λx2),

where x = (x1, x2), y = (y1, y2) ∈ X. f(x, y, λ) = y2 − λx. Then, it is not hard to
see that the assumptions of Theorem 3.3 are satisfied, except the monotonicity of
f (f(x, y, 0) + f(y, x, 0) = (y21 + x21, y

2
2 + x22) > 0 assumed in the theorem, for many

x, y ∈ [0, 1]× [0, 1]). Direct computations give us the solution set

S(λ) =

{
[0, 1]× [0, 1], if λ = 0,

{(0, 0)}, if λ ̸= 0,

which is even not lower semicontinuous at λ̄ = 0.

In the special case where K(λ) ≡ K (K is a nonempty set), the strong convexity
in assumption (ii) of Theorem 3.3 can be reduced to the strong convex-likeness along
with several other relaxations, and we obtain the following result.
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Theorem 3.8. For (KF) with K(λ) ≡ K. Suppose that for each ξ ∈ B∗
e , Sξ(λ, µ) is

nonempty in a neighborhood of the considered point (λ0, µ0). Furthermore, assume
the following :

(i) there is a neighborhood N(µ0) of µ0 such that for all x ∈ K and µ ∈
N(µ0), f(x, ·, µ) is (h ·β)-C-strongly convex-like with respect to e as well as
(m · 1)-Hölder continuous with respect to e in convK;

(ii) for each µ ∈ N(µ0), f(·, ·, µ) is monotone in K ×K;
(iii) f is (n · γ)-Hölder continuous with respect to e around µ0, θ-uniformly in

K with θ < β.

Then, there exist neighborhoods of N ′(µ0) such that S satisfies the following Hölder
condition: For each µ1, µ2 ∈ N ′(µ0),

(3.24) H(S(µ1), S(µ2)) ≤
(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

Proof. (a) We first prove that, for each ξ̄ ∈ B∗
e there are neighborhoods N(ξ̄) and

Nξ̄(µ0) such that for each ξ ∈ N(ξ̄) and µ1, µ2 ∈ Nξ̄(µ0),

(3.25) ρ(Sξ(µ1), Sξ(µ2)) ≤ +
(n
h

) 1
β
d

γ
β−θ (µ1, µ2),

where ρ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B} for each A,B ⊂ Y .
Firstly, we claim that for any given two points x1 ∈ Sξ(µ1) and x2 ∈ Sξ(µ2),

d(x1, x2) ≤
(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

By the definition of ξ-solutions, we have that, for all y, z ∈ K,

(3.26) min
{
⟨ξ, f(x1, y, µ1)⟩, ⟨ξ, f(x2, z, µ2)⟩

}
≥ 0.

Putting y = x2 ∈ K in (3.26), we have that

⟨ξ, f(x1, y, µ1)⟩ ≥ 0.

By virtue of the (h · β)-C-strong convex-likeness with respect to e of f(x21, ·, µ1),
we have that there is v ∈ K such that

f(x1, v, µ1)−
1

2
f(x1, x2, µ1)−

1

2
f(x1, x1, µ1) +

h

4
dβ(x1, x2)e ∈ −C.

Therefore,

0 ≥
⟨
ξ, f(x1, v, µ1)−

1

2
f(x1, x2, µ1)−

1

2
f(x1, x1, µ1) +

h

4
dβ(x1, x2)e

⟩
≥

⟨
ξ,−1

2
f(x1, x2, µ1)−

1

2
f(x1, x2, µ1) +

h

4
dβ(x1, x2)e

⟩
.

Since ξ ∈ B∗
e , one yields

(3.27) ⟨ξ, f(x1, x2, µ1)⟩+ ⟨ξ, f(x1, x1, µ1)⟩ −
h

2
dβ(x1, x2) ≥ 0.

By the monotonicity of f(·, ·, µ1) and x1 ∈ Sξ(µ1), we obtain

(3.28) ξ(f(x1, x1, µ1)) = 0
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and

(3.29) ⟨ξ, f(x1, x2, µ1)⟩ ≤ −⟨ξ, f(x2, x1, µ1)⟩.

From (3.27), (3.28) and (3.29), we have that

(3.30)
h

2
dβ(x1, x2) ≤ −⟨ξ, f(x2, x1, µ1)⟩.

Now, replacing w in (3.26) by x1, we have

(3.31)
⟨
ξ, f

(
x2, z, µ2

)⟩
=

⟨
ξ, f

(
x2, w, µ2

)⟩
≥ 0.

By the (h · β)-C-strong convex-likeness with respect to e of f(x2, ·, µ2), we obtain
the following inequality which is similar to (3.27), concretely

⟨ξ, f(x2, x1, µ2)⟩+ ⟨ξ, f(x2, x2, µ2)⟩ −
h

2
dβ2 ≥ 0.

As ξ(f(x2, x2, µ2)) = 0,

(3.32)
h

2
dβ2 ≤ ⟨ξ, f(x2, x1, µ2)⟩.

Summing (3.30) and (3.32) and combining with assumption (iv), we have

hdβ2 ≤ ⟨ξ, f(x2, x1, µ2)⟩ − ⟨ξ, f(x2, x1, µ1)⟩
≤ |⟨ξ, f(x2, x1, µ2)− f(x2, x1, µ1)⟩|
≤ ndγ(µ1, µ2)d

θ
2,

and thus,

d(x1, x2) ≤
(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).

Hence, we get

(3.33) ρ(Sξ(µ1), Sξ(µ2)) ≤ +
(n
h

) 1
β−θ

d
γ

β−θ (µ1, µ2).

(b) Proving (3.24) is similar to the proof of (3.24) in Theorem 3.3 and hence we can
get our result.

�

4. Hölder continuity of solution maps of parametric dual Ky Fan
inequalities

Let X,Y,Λ,M,C, e,K, f be as in Section 3. For each (λ, µ) ∈ Λ×M , we consider
the following parametric dual weak generalized Ky Fan inequality:
(DKF) Find x0 ∈ K(λ), such that

(4.1) f(y, x0, µ) /∈ intC, ∀y ∈ K(λ).

As usual, for each (λ, µ) ∈ Λ×M , the solution set of (DKF) is denoted by

Sd(λ, µ) := {x ∈ K(λ) : f(y, x, µ) /∈ intC, ∀y ∈ K(λ)}.
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For each ξ ∈ C∗\{0}, λ ∈ N(λ0) and µ ∈ N(µ0), the ξ−solution set of (DKF) is
denoted by

Sd
ξ (ξ, λ, µ) := {x ∈ K(λ) : ⟨ξ, f(y, x, µ)⟩ ≤ 0,∀y ∈ K(λ)}.

Note that we can not compare the solution sets of primal problems (KF) with that
of the dual problems (DKF) in general (see, Example 2.1 in [6]). However, under
some suitable assumptions we can get certain relationships between both of them
(see [22]). In this section, we focuss on the Hölder continuity of solution mappings
of (DKF) and always assume that all kinds of solution sets of the problems are
nonempty in the neighborhood of the reference point. The following lemma plays
an important role in the proof of our main result.

Lemma 4.1. If for each x ∈ K(Λ) and (λ, µ) ∈ Λ×M , f(·, x, µ) is C-concave-like
in K(λ), then

Sd(λ, µ) =
∪

ξ∈C∗\{0}

Sd
ξ (λ, µ) =

∪
ξ∈B∗

e

Sd
ξ (λ, µ).

Proof. We first show that

Sd(λ, µ) =
∪

ξ∈C∗\{0}

Sd
ξ (λ, µ).

Let x ∈ ∪ξ∈C∗\{0}S
d
ξ (λ, µ), there is ξ̄ ∈ C∗ \ {0}, x ∈ Sd

ξ̄
(λ, µ). So,

⟨ξ̄, f(y, x, µ)⟩ ≤ 0,∀y ∈ K(λ).

Combining above affirmation with Lemma 2.4, we imply that f(y, x, µ) /∈ intC, for
all y ∈ K(λ). Hence x ∈ Sd(λ, µ). Conversely, let x ∈ Sd(λ, µ). By the definition
of (DKF), we have

f(K(λ), x, µ) ∩ (intC) = ∅,
and hence,

(f(K(λ), x, µ)− C) ∩ (intC) = ∅.
Let z1, z2 ∈ f(K(λ), x, µ) − C, there are y1, y2 ∈ K(λ) and c1, c2 ∈ C such that
zi = f(yi, x, µ)− ci, i = 1, 2. Since f(·, x, µ) is concave-like in K(λ), for all t ∈ [0, 1],
there are s ∈ K(λ) and c ∈ C such that

tf(y1, x, µ) + (1− t)f(y2, x, µ) = f(s, x, µ)− c,

i.e., tz1 + (1− t)z2 = f(s, x, µ)− tc1 − (1− t)c2 − c ∈ f(K(λ), x, µ)−C, and hence
f(K(λ), x, µ)− C is a convex subset of Y . By the virtue of Lemma 2.5, we obtain
a continuous linear functional ξ ∈ Y ∗ \ {0} and a number γ ∈ R such that

⟨ξ, z − c⟩ < γ < ⟨ξ, c̄⟩,∀z ∈ f(K(λ), x, µ), ∀c ∈ C, ∀c̄ ∈ intC.

Since C is a cone, we have ⟨ξ, c̄⟩ ≥ 0 for all c̄ ∈ intC, and hence we also have
⟨ξ, c⟩ ≥ 0 for all c ∈ C, i.e., ξ ∈ C∗ \ {0}. Since c̄ ∈ intC and c ∈ C can chosen
arbitrarily close to 0, we yield γ ≥ 0 and ⟨ξ, z⟩ ≤ 0 for all z ∈ f(K(λ), x, µ), and
hence x ∈ Sd

ξ (λ, µ). So, Sd(λ, µ) = ∪ξ∈C∗\{0}S
d
ξ (λ, µ). Using the given arguments

as in Lemma 3.1, we have ∪
ξ∈C∗\{0}

Sd
ξ (λ, µ) ⊂

∪
ξ∈B∗

e

Sd
ξ (λ, µ).
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�

Applying Lemma 4.1, we establish sufficient conditions for the solution mappings
of (DKF) to be Hölder continuous.

Theorem 4.2. Suppose that for each ξ ∈ B∗
e , the ξ−solution set Sd

ξ (λ, µ) exists

in a neighborhood of the considered point (λ0, µ0). Furthermore, assume that the
following assumptions are satisfied:

(i) K is (l · α)-Hölder continuous in a neighborhood N(λ0) of λ0;
(ii) there is a neighborhood N(µ0) of µ0 such that for all x ∈ K(N(λ0)) and

µ ∈ N(µ0), f(·, x, µ) is (h · β)-C-strongly concave with respect to e as well
as (m · 1)-Hölder continuous with respect to e in conv(K(N));

(iii) for each µ ∈ U(µ0),−f(·, ·, µ) is monotone on K(N(λ0))×K(N(λ0));
(iv) f is (n · γ)-Hölder continuous with respect to e around µ0, θ-uniformly in

K(N(λ0)) with θ < β.

Then, there exist neighborhoods of N ′(λ0) and N ′(µ0) such that Sd is single-valued
and satisfies the following Hölder condition: for each (λ1, µ1), (λ2, µ2) ∈ N ′(λ0) ×
N ′(µ0),

(4.2) H(Sd(λ1, µ1), S
d(λ2, µ2)) ≤

(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

Proof. We first show that, for each ξ̄ ∈ B∗
e there are neighborhoods N(ξ̄), Nξ̄(λ0)

and Nξ̄(µ0) such that for each ξ ∈ N(ξ̄) and (λ1, µ1), (λ2, µ2) ∈ Nξ̄(λ0)×Nξ̄(µ0)

(4.3) ρ(Sd
ξ (λ1, µ1), S

d
ξ (λ2, µ2)) ≤

(4ml

h

) 1
β
d

α
β (λ1, λ2) +

(n
h

) 1
β
d

γ
β−θ (µ1, µ2).

To this end, the proof of (4.3) is divided into three steps:
Step I: For any given two points x11 ∈ Sd

ξ (λ1, µ1) and x21 ∈ Sd
ξ (λ2, µ1), we claim

that

d1 := d(x11, x21) ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2).

By the construction of Sd
ξ , for all y ∈ K(λ1) and z ∈ K(λ2), we have

(4.4) max
{
⟨ξ, f(y, x11, µ1)⟩, ⟨ξ, f(z, x21, µ1)⟩

}
≤ 0.

Thanks to (i), there are x1 ∈ K(λ1) and x2 ∈ K(λ2) such that

(4.5) max
{
d(x11, x2), d(x21, x1)

}
≤ ldα(λ1, λ2).

Putting x̄ =
1

2
(x11 + x21), it follows from the (h · β)-C-strongly concavity with

respect to e of f(·, x11, µ1) that

−f(x̄, x11, µ1) +
1

2
f(x11, x11, µ1) +

1

2
f(x21, x11, µ1) +

h

4
dβ1e ∈ −C.
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So,

0 ≥
⟨
ξ,−f(x̄, x11, µ1) +

1

2
f(x11, x11, µ1) +

1

2
f(x21, x11, µ1) +

h

4
dβ1e

⟩
= ⟨ξ,−f(x̄, x11, µ1)⟩+

⟨
ξ,

1

2
f(x11, x11, µ1)

⟩
+

+
⟨
ξ,

1

2
f(x21, x11, µ1)

⟩
+

⟨
ξ,

h

4
dβ1e

⟩
,

which arrives that

(4.6)
h

4
dβ1 ≤ −⟨ξ,−f(x̄, x11, µ1)⟩ −

⟨
ξ,

1

2
f(x11, x11, µ1)

⟩
−

⟨
ξ,

1

2
f(x21, x11, µ1)

⟩
.

On the other hand, combining the monotonicity of f(·, ·, µ1) and x11 ∈ Sd
ξ (λ1, µ1),

one has

(4.7)
⟨
ξ, f(x11, x11, µ1)

⟩
= 0

and

(4.8) ⟨ξ, f(x11, x21, µ1)⟩ ≥ −⟨ξ, f(x21, x11, µ1)⟩.

Combining (4.6),(4.7) and (4.8), one gets

(4.9)
h

4
dβ1 ≤ −⟨ξ,−f(x̄, x11, µ1)⟩+

⟨
ξ,

1

2
f(x11, x21, µ1)

⟩
.

Now, setting z = x2 and y =
1

2
(x11 + x1) in (4.4), we have

(4.10) min
{
−

⟨
ξ, f

(1
2
(x11 + x1), x11, µ1

)⟩
,−⟨ξ, f(x2, x21, µ1)⟩

}
≥ 0.

Hence, from (4.9) and (4.10), we obtain that

h

4
dβ1 ≤

⟨
ξ, f(

1

2
(x11 + x21), x11, µ1)

⟩
+

⟨
ξ,

1

2
f(x11, x21, µ1)

⟩
−
⟨
ξ, f

(1
2
(x11 + x1), x11, µ1

)⟩
−

⟨
ξ,

1

2
f(x2, x21, µ1)

⟩
=

⟨
ξ, f

(1
2
(x11 + x21), x11, µ1

)⟩
−

⟨
ξ, f

(1
2
(x11 + x1), x11, µ1

)⟩
+
⟨
ξ,

1

2
f(x11, x21, µ1)

⟩
−

⟨
ξ,

1

2
f(x2, x21, µ1)

⟩
≤

∣∣∣⟨ξ, f(1
2
(x11 + x21), x11, µ1

)⟩
−

⟨
ξ, f

(1
2
(x11 + x1), x11, µ1

)⟩∣∣∣
+
∣∣∣⟨ξ, 1

2
f(x11, x21, µ1

)⟩
−

⟨
ξ,

1

2
f(x2, x21, µ1)

⟩∣∣∣.
By (ii), we have

h

4
dβ1 ≤ 1

2
md(x21, x1) +

1

2
md(x11, x2)

≤ 1

2
mdα(λ1, λ2) +

1

2
mdα(λ1, λ2)

= mldα(λ1, λ2),
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Hence, we conclude that

d1 ≤
(4ml

h

) 1
β
d

α
β (λ1, λ2).

Step II : Next we prove that for any given points x21 ∈ Sd
ξ (λ2, µ1) and x22 ∈

Sd
ξ (λ2, µ2),

d2 := d(x21, x22) ≤
(m
h

) 1
β
d

γ
β−θ (µ1, µ2).

By the definition of Sd
ξ , all y, z ∈ K(λ2), we get

(4.11) max
{
⟨ξ, f(y, x21, µ1)⟩, ⟨ξ, f(z, x22, µ2)⟩

}
≤ 0.

Substituting y =
1

2
(x21 + x22) in (4.11), we obtain⟨

ξ, f
(1
2
(x21 + x22), x21, µ1

)⟩
≤ 0,

which implies that

−
⟨
ξ, f

(1
2
(x21 + x22), x21, µ1

)⟩
≥ 0.

By virtue of the (h · β) -C-strong concavity with respect to e of f(·, x21, µ1), we get

−f
(1
2
(x21 + x22), x21, µ1

)
+

1

2
f(x21, x21, µ1) +

1

2
f(x22, x21, µ1) +

h

4
dβ2e ∈ −C.

By virtue of the linearity of ξ and above discussion, we imply that

(4.12)
⟨
ξ,−1

2
f(x21, x21, µ1)

⟩
+

⟨
ξ,−1

2
f(x22, x21, µ1)

⟩
− h

4
dβ2 ≥ 0.

From the monotonicity of −f(·, ·, µ1) and x21 ∈ Sd
ξ (λ2, µ1), we have

(4.13) ξ(f(x21, x21, µ1)) = 0

and

(4.14) ⟨ξ,−f(x22, x21, µ1)⟩ ≤ ⟨ξ, f(x21, x22, µ1)⟩.
Hence, combining (4.12), (4.13) and (4.14), one has

(4.15)
h

2
dβ2 ≤ ⟨ξ, f(x21, x22, µ1)⟩.

Similarly, by setting z =
1

2
(x22 + x21) in (4.11), and using the above discussion, we

also imply that

(4.16)
h

2
dβ2 ≤ ⟨ξ,−f(x21, x22, µ2)⟩ = −⟨ξ, f(x21, x22, µ2)⟩.

Summing (4.15) and (4.16) and combining with (iv), we establish

hdβ2 ≤ ⟨ξ, f(x21, x22, µ1)⟩ − ⟨ξ, f(x21, x22, µ2)⟩
≤ |⟨ξ, f(x21, x22, µ1)⟩ − ⟨ξ, f(x21, x22, µ2)⟩|
≤ ndγ(µ1, µ2)d

θ
2,
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i.e.,

d2 ≤
(n
h

) 1
β
d

γ
β−θ (µ1, µ2),

and thus, (4.3) is derived from the conclusions of Steps I and II. Finally, using the
given the same argument in the proof of Theorem 3.3, we can arrive the desired
conclusion. �

5. Conclusions

In this paper, by using the strong convexity and Hölder continuity for both the
vector valued mappings of the primal and dual parametric vector Ky Fan inequality
in metric linear spaces, without strong monotonicity assumption, we presented the
sufficient conditions for the mentioned solution mappings to be Hölder continuous
around the reference point, when the solution of these problems is not unique.
Finally, we provided many examples to illustrate that the imposed assumptions are
essential.
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[12] C. R. Chen and M. H. Li, Hölder continuity of solutions to parametric vector equilibrium
problems with nonlinear scalarization, Numer. Funct. Anal. Optim. 35 (2014), 685–707.

[13] C. R. Chen and S. J. Li, Semicontinuity results on parametric vector variational inequalities
with polyhedral constraint sets, J Optim. Theory Appl. 158 (2013), 97–108.

[14] C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalized
vector quasivariational inequality, Comp. Math. Appl. 60 (2010), 2417–2425.

[15] C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector
equilibrium problems, J Glob Optim 45 (2009), 309–318.



92 R. WANGKEEREE, L. Q. ANH, AND J. KERDKAEW

[16] K. Fan, A minimax inequality and applications, in: Inequality III, O. Shisha (ed), Academic
Press, New York, 1972, pp. 103–113.

[17] X. Fan, C. Cheng and H. Wang, Stability analysis for vector quasiequilibrium problems, Posi-
tivity 17 (2013), 365–379.

[18] J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang,
Frankfurt, 1986.

[19] J. Jahn, Vector Optimization Theory, Applications and Extensions, Springer, Berlin, 2004.
[20] N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium

problems, Math. Comput. Model. 43 (2006), 1267–1274.
[21] K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-

equilibrium problems, J. Glob. Optim. 41 (2008), 187–202.
[22] I. V. Konnov and S. Schaible, Duality for equilibrium problems under generalized monotonicity,

J. Optim. Theory Appl. 104 (2000), 395–408.
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