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A SHRINKING PROJECTION ALGORITHM FOR VARIATIONAL
INEQUALITIES AND FIXED POINT PROBLEMS

YONGHONG YAO

ABSTRACT. A shrinking projection algorithm is presented for solving the vari-
ational inequality and fixed point problem of the pseudocontractive operator.
Strong convergence analysis of the suggested algorithm is given.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||.
Let C' be a nonempty closed convex subset of H. Let A : C' — H be a nonlinear
operator. By definition, the variational inequality problem is to find u € C such
that

(1.1) (Au,v —u) >0, Vv € C.

The set of solutions of the variational inequality (1.1) is denoted by VI(A, C).

Variational inequality theory has emerged as an important tool in studying a
wide class of obstacle, unilateral and equilibrium problems, which arise in several
branches of pure and applied sciences in a unified and general framework. Several
numerical methods have been developed for solving variational inequalities and
related optimization problems, see [1,4-8,10,11,14-16,19,21] and the references
therein.

Recall that a mapping T : C' — (' is said to be pseudocontractive if

(1.2) (Tu—Tu' u—ul) < |lu—auf|?

for all u,u! € C.

The interest of pseudocontractions lies in their connection with monotone opera-
tors; namely, T is a pseudocontraction if and only if the complement I —T' is a mono-
tone operator. There are a large number references associated with algorithmic ap-
proaches to the fixed points of pseudocontractive operators, see, e.g., [2,3,17,18,22].

The main purpose of this paper is to study the variational inequality problem
(1.1) and the fixed point problem of the pseudocontractive operator. We suggest
an iterative algorithm by using the shrinking projection method in Hilbert spaces.
We demonstrate the strong convergence of the presented the shrinking projection
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algorithm for finding the common element of the variational inequality problem
(1.1) and the fixed point problem of the pseudocontractive operator.

2. PRELIMINARIES

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let T :
C — C be a nonlinear mapping. Denote the set of fixed points of T by Fix(T),
that is, Fiz(T) := {z € Clz = Tx}.

A mapping T : C' — C is said to be L-Lipschitzian if

|Tu — Tuf|| < Liju - o]

for all u,u! € C, where L > 0 is a constant. If L = 1, T is said to be nonexpansive.
A mapping A : C — H is said to be inverse strongly monotone if there exists
¢ > 0 such that
(u — v, Au — Av) > (|| Au — Av|?
for all u,v € C.
Note that (1.2) is equivalent to the following:

(2.1) |1Tu = Tul|* < flu— | + (I = T)u — (I = T)ul|?

for all u,u! € C.

The metric (or nearest point) projection from H onto C' is the mapping projc :
H — C which assigns to each point x € C' the unique point projocx € C satisfying
the property

|z — projez|| = inf ||z —yl|.
yeC

It is clear that the metric projection proj is a typical firmly nonexpansive mapping.
The characteristic inequality of the projection is

(u — projcu, ul — projcu) <0
for all w € H and uf € C.
A mapping T is said to be demiclosed if, for any sequence {z,,} which weakly

converges to I, if the sequence {T'(z,)} strongly converges to zf, then T'(#) = zt.
It is well-known that in a real Hilbert space H, the following equality holds:

(2.2) 16w+ (1 = )ut||? = &llul® + (1 = [l = £(1 = &) [Ju — uT|?
for all u,u’ € H and ¢ € [0,1].
We need the following lemmas for our main results:

Lemma 2.1 ([22]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be a continuous pseudocontractive mapping. Then

(i) Fiz(T) is a closed convex subset of C.
(ii) (I —T) is demiclosed at zero.

Lemma 2.2 ([18]). Let C be a nonempty closed convex subset of a real Hilbert space

H. LetT : C — C be an L-Lipschitz pseudocontractive operator. Then, the operator
(;h— I+ ET((1 —n)I + nT) is quasi-nonexpansive when 0 < £ < n < ﬁ
at 18,

(1 = &)z + ET((1L = n)a + Tz) — || < [l — T,



SHRINKING PROJECTION ALGORITHM 65

for all z € C and u' € Fiz(T).

For the convenience, in the sequel we use the following expressions:

e 2, — z! denotes the weak convergence of z, to z;
e 1z, — z' denotes the strong convergence of z, to z.

Let {C},} be a sequence of nonempty closed convex subsets of a Hilbert space H.
We define s — Li,,C,, and w — Ls,C,, as follows.

(i) z € s — Li,,C), if and only if there exists {z,,} C C,, such that z,, — x.
(ii) = € w — Ls,Cy, if and only if there exist a subsequence {C),,} of {C,,} and
a sequence {y;} in C,,, such that y; — y.

If Cy satisfies the following:
Co=s— Li,C, = w — Ls,Cy,

then we say that {C),} converges to Cj in the sense of Mosco [10] and we write
Co =M —lim,,_,o C,. It is easy to show that, if {C,,} is nonincreasing with respect
to inclusion, then {C,} converges to (),~, Cy in the sense of Mosco.

Tsukada [13] proved the following theorem for the metric projection:

Lemma 2.3 ([13]). Let {C,} be a sequence of nonempty closed convex subsets of
a Hilbert space H. If Co = M — lim,,_, o, C), exists and is nonempty, then, for each
x € H, {projc, (z)} converges strongly to projc,(z), where projc, and projc, are
the metric projections of H onto Cy, and Cy, respectively.

Let (X,d) be a complete metric space. A mapping f : X — X is called a
Meir-Keeler contraction ( [9]) if, for any € > 0, there exists § > 0 such that

dz,y) <e+6 = d(f(x), f(y)) <e Vr,y e X.

It is well known that the Meir-Keeler contraction is a generalization of the contrac-
tion.

Lemma 2.4 ([9]). A Meir-Keeler contraction defined on a complete metric space
has a unique fized point.

Lemma 2.5 ([12]). Let f be a Meir-Keeler contraction on a convex subset C of a
Banach space E. Then, for any € > 0, there exists r € (0,1) such that

|z =yl =z e=If(x) = fFWI < rlle -yl
forall x,y € C.

Lemma 2.6 ([12]). Let C' be a convex subset of a Banach space E. Let T be a
nonexpansive mapping on C and [ be a Meir-Keeler contraction on C. Then the
following hold:

(i) Tf is a Meir-Keeler contraction on C.
(ii) For each ac € (0,1), (1 — )T + af is a Meir-Keeler contraction on C.
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3. MAIN RESULTS

First, we suggest a shrinking projection algorithm for finding the common element
of variational inequality problem and fixed point problem. Subsequently, we show
the strong convergence of the presented algorithm.

Algorithm 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f: C — C be a Meir-Keeler contractive operator and A : C — H be a d-inverse
strongly monotone operator. Let T : C — C be an L-Lipschitz pseudocontractive
operator with L > 1. For xy € Cy = C arbitrarily, define a sequence {x,} iteratively

by
zn, = projo(xn — AnAxy),
Yn = (1= an)zn + o T((1 = Bn)zn + BnTzn),
Cnp1={2€Cn: |lyn — 2l < [lzn — 2]},
Tnt+1 = Projc, . f(an), n =0,
where {\,} C [a,b] C (0,20), {an} C (0,1) and {Bn} C (0,1).
Set 2 := VI(A,C) N Fiz(T). Suppose © # (. Since f is a Meir-Keeler con-

traction of C', it follows that projof is a Meir-Keeler contraction of C' by Lemma
2.6. According to Lemma 2.4, there exists a unique fixed point 2! € C such that

= projgf(xf).
Conclusion 3.2. Q C C, for alln >0

(3.1)

Proof. In fact, @ C Cp is obvious. Suppose that Q C C} for some k € N. Set
vp = (1= Bpn)zn + BTz, for all n > 0. Then y, = (1 — )2z, + T, for all n > 0.
Let z* € Q C Ck. Then, we have

lon — 271l = Iprojo(en — AnAia) - projo(a” — Mnda™)|
(3.2) < |(zn — AnAzy) — (2% — Ny Az™)||
< [l — 27
By Lemma 2.2 and (3.2), we have
[y — 2| = [(1 = an)zn + T ((1 = Bn)zn + BnT2n) — 27|

(3.3) < lzn — 2™
< Jlon — 27|
and hence z* € Ci1. This indicates that 2 C C,, for all n > 0. Il

Conclusion 3.3. C), is closed and convex for all n > 0.

Proof. In fact, it is obvious from the assumption that Cy = C' is closed convex.
Suppose that Cj is closed and convex for some k € N. For any z € Cy, |y — z|| <
|xx — z|| is equivalent to

lys — @ ll* + 2(yn, — @, 25 — 2) <O.

So C+1 is closed and convex. By induction, we deduce that C), is closed and convex
for all n > 0. O
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Remark 3.4. By Conclusions 3.2 and 3.3, we deduce that {z,} is well-defined.
Since (2, Cy, is closed convex, we also have that projnx= ¢, is well-defined and
S0 projn=. ¢, f is a Meir-Keeler contraction on C. By Lemma 2.4, there exists
a unique fixed point v € (2, Cp of projnz=_, o, f. Since C), is a nonincreasing
sequence of nonempty closed convex subsets of H with respect to inclusion, it follow
that

D#QcC()Cn=M- lim C,.
n=1

Setting u,, := projc, f(u) and applying Lemma 2.3, we can conclude that

nlin;o un = projn=_ o, f(u) = u.

Conclusion 3.5. lim,_, ||z, —ul| =0
Proof. Assume that M = limsup,,_, ||zn—u|| > 0. Then, for any e with 0 < e < M,
we can choose §; > 0 such that

(3.4) limsup ||z, — u|| > €+ d;.

n—oo

Since f is a Meir-Keeler contraction, for the positive €, there exists another do > 0
such that

(3.5) lz =yl <e+dr=If(z) - f(y)ll <e

for all z,y € C.
In fact, we can choose a common ¢ > 0 such that (3.4) and (3.5) hold. If ; > dq,
then

limsup ||z, — ul| > €+ d1 > € + da.

n—oo

If 01 < 69, then, from (3.5), it follows that

[z —yll <e+dr = [If(x) = fFly)ll <e

for all x,y € C. Thus we have

(3.6) limsup ||z, —ul| > e+9
n—oo
and
(3.7) [z =yl <e+d=If(z) = fF(y)ll <e

for all x,y € C. Since u,, — u, there exists ng € N such that
(3.8) Jun — ul < 5

for all n > nyg.
Now, we now consider two possible cases:
Case 1. There exists ny > ng such that

|Xn, —ul <e+d.
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By (3.7) and (3.8), we get
[#n 41 — ull < |2n+1 = uny 1l + w41 — |
= ‘|p7°0jon1+1f($n1) _pTOan1+1f(u)H + ”Unl—i-l - u”
< (@ny) = F) + llung 41 —
< e+
By induction, we can obtain that
[, +m —ull < e+6
for all m > 1, which implies that
limsup ||z, — ul| < e+,
n—oo
which contradicts (3.6). Therefore, we conclude that ||z, — u|| — 0 as n — co.
Case 2. ||z, — u|| > e+ ¢ for all n > ny.

Now, we prove that Case 2 is impossible. Suppose that Case 2 is true. By Lemma
2.5, there exists r € (0,1) such that

1f (zn) = F(u)l] < 7vllzn — ull
for all n > ng. Thus we have
[Zn+1 = uns1ll = lproje, . f(@a) — proje, ., f(u)]
< |[f(@n) = f(w)]]
< rflen — uf
for all n > ng. It follows that
nlglolo |Zn41 — ul| = limsup [|zn41 — un41|]

n—oo

< rlimsup ||z, — ul|
n—oo

< limsup ||z, — u||,
n—oo

which gives a contradiction. Hence we obtain

lim ||z, —u| =0

n—0o0

O
Theorem 3.6. [f0<c<a, < f,<d< ﬁ, then the sequence {x,} defined
by (3.1) converges strongly to x.
Proof. By Conclusion 3.5, we get that {x,} is bounded. Observe that
[#n41 = @nll < llzn — ull + lu — unga || + lunsr — Tl

= llen — ull + [l = untal| + [lproje,  f (xn) — proje, . f (w|
< lzn = ull + lu = wnga [l + 1f (2n) = ()]

Therefore, we have

(3.9) Jim [|zy 1 — 2l = 0.
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Since z,11 € Cphy1, we have
[yn = sl < llon — zpgal-
This together with (3.9) implies that
(3.10) Jdim |y, — zppa || = lm [y, — zn] = 0.
Note that
lyn — 2> < ||z — 2|2
< |z — MpAzy) — (2% — Xy Az™)||?
(3.11) = ||lzn — 2*|)? + N2|| Az, — Az*¥|? — 2(Az,, — Az*, 1z, — )
= |lzn — %% + A( N — 20)|| Az, — Az™||?
< |lzn — z*||? + (b — 20)b|| Az, — Az*||%.
Then we have
20 — b)b|| Az, — Az* || < ||an — z*||? — —z*||?
A ] el S
< lzn = ynll(lzn — 27| + [lyn — 27[]).
By (3.10) and (3.12), we obtain
(3.13) Jim [| Az, — Az = 0.
Since projo is firmly-nonexpansive, we have
|20 — 2*||? = |lprojc(z, — AAx,) — projo(z* — A Az™)|?
< A(zn, — MAzxy) — (2 = NyAZ"), 25 — 2¥)
1 * * *
= 5l = Andzn) = (27 = An Az MZ + 120 — 2™
(3.14) — (@n = MAzy) — (2% — Ny Az™) + 2% — 2,]|%)

< S lzn =22 + lzn = "2 = [ (@n — 20) = An(Azq — Az")|?)

— N

= 5 (llzn = 2|2+ llzn = 2*1° = llwn — 2
+ 20 (X — 29, Az — Az™) — N2 || Az, — Az*|?).
It follows that
|z — 2*||? < ||Zn — 2*]|? + 2Mn(Tn — 2n, Az — Az*)
= [lzn = zal® = A2l Azn — Az*|%.

From (3.3) and (3.15), we get

(3.15)

Iyn — ¥ < ||2n — 2*|?
< ||zn — a:*H2 — ||z — anQ + 2\ (@ — 2, Az, — Ax™)
— )\TZlHAxn — Ax*H2

< |lzn — x*HQ — |lzp — Zn||2 + 2\ |lzn — 2ull|| Az — A2™||

69
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and so
20 = 2l < |l2n — 2*)* = [lyn — 2*]|* + 2Anl|2n — 2nl]|Azn — Az™|

< len = yall(lzn — 27| 4+ [lyn — 27[]) + 2Anllzn — 2nl[[[Azn — A2™]].

This together with (3.10) and (3.13) implies that
(3.16) 1iII010 [#n — zn[| = 0.

n—

Next, we prove that v € Fiz(T) N VI(A,C). Note that

l2n = Tznll < llzn = yull + [lyn — Tz
< lzn = ynll + (1 = an)llzn = Tzn|| + anl[Tvn — Tz
< lzn = ynll + (1 = an)llzn — Tzn|| + anLljvn — 20|
< lzn = ynll + (1 — an)llzn — Tzl + anBnLl|zn — T2

It follows that

(3.17) |lzn — Tzl <

v b
an(l - /BnL 1-— dL)

Since x,, — u, we have z, — u by (3.16). So, from (3.17) and Lemma 2.1, we
deduce that u € Fiz(T). By the same argument as that in the proof of [4, Theorem

3.1], we can show that u € VI(A,C). This implies that u € VI(A,C). Therefore,
we have u € Q. Since x,11 = projc,,, f(zn), we have

(f(xn) = Tpng1, Tng1 —y) =0

for all y € Ch41. Since Q C Ch41, we get

(f(zn) = Tng1, Zng1 —y) =0

for all y € Q. Noting that x, — u € 2, we deduce

(f(u) —uw,u—y) >0

for all y € Q. Thus u = projof(u) = . This completes the proof. O
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