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algorithm for finding the common element of the variational inequality problem
(1.1) and the fixed point problem of the pseudocontractive operator.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T :
C → C be a nonlinear mapping. Denote the set of fixed points of T by Fix(T ),
that is, Fix(T ) := {x ∈ C|x = Tx}.

A mapping T : C → C is said to be L-Lipschitzian if

∥Tu− Tu†∥ ≤ L∥u− u†∥
for all u, u† ∈ C, where L > 0 is a constant. If L = 1, T is said to be nonexpansive.

A mapping A : C → H is said to be inverse strongly monotone if there exists
ζ > 0 such that

⟨u− v,Au−Av⟩ ≥ ζ∥Au−Av∥2

for all u, v ∈ C.
Note that (1.2) is equivalent to the following:

∥Tu− Tu†∥2 ≤ ∥u− u†∥2 + ∥(I − T )u− (I − T )u†∥2(2.1)

for all u, u† ∈ C.
The metric (or nearest point) projection from H onto C is the mapping projC :

H → C which assigns to each point x ∈ C the unique point projCx ∈ C satisfying
the property

∥x− projCx∥ = inf
y∈C

∥x− y∥.

It is clear that the metric projection proj is a typical firmly nonexpansive mapping.
The characteristic inequality of the projection is

⟨u− projCu, u
† − projCu⟩ ≤ 0

for all u ∈ H and u† ∈ C.
A mapping T is said to be demiclosed if, for any sequence {xn} which weakly

converges to x̃, if the sequence {T (xn)} strongly converges to x†, then T (x̃) = x†.
It is well-known that in a real Hilbert space H, the following equality holds:

(2.2) ∥ξu+ (1− ξ)u†∥2 = ξ∥u∥2 + (1− ξ)∥u†∥2 − ξ(1− ξ)∥u− u†∥2

for all u, u† ∈ H and ξ ∈ [0, 1].
We need the following lemmas for our main results:

Lemma 2.1 ([22]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a continuous pseudocontractive mapping. Then

(i) Fix(T ) is a closed convex subset of C.
(ii) (I − T ) is demiclosed at zero.

Lemma 2.2 ([18]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be an L-Lipschitz pseudocontractive operator. Then, the operator
(1 − ξ)I + ξT ((1 − η)I + ηT ) is quasi-nonexpansive when 0 < ξ < η < 1√

1+L2+1
.

That is,

∥(1− ξ)x+ ξT ((1− η)x+ ηTx)− u†∥ ≤ ∥x− u†∥,
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for all x ∈ C and u† ∈ Fix(T ).

For the convenience, in the sequel we use the following expressions:

• xn ⇀ x† denotes the weak convergence of xn to x†;
• xn → x† denotes the strong convergence of xn to x†.

Let {Cn} be a sequence of nonempty closed convex subsets of a Hilbert space H.
We define s− LinCn and w − LsnCn as follows.

(i) x ∈ s− LinCn if and only if there exists {xn} ⊂ Cn such that xn → x.

(ii) x ∈ w − LsnCn if and only if there exist a subsequence {Cni} of {Cn} and
a sequence {yi} in Cni such that yi ⇀ y.

If C0 satisfies the following:

C0 = s− LinCn = w − LsnCn,

then we say that {Cn} converges to C0 in the sense of Mosco [10] and we write
C0 = M− limn→∞Cn. It is easy to show that, if {Cn} is nonincreasing with respect
to inclusion, then {Cn} converges to

∩∞
n=1Cn in the sense of Mosco.

Tsukada [13] proved the following theorem for the metric projection:

Lemma 2.3 ([13]). Let {Cn} be a sequence of nonempty closed convex subsets of
a Hilbert space H. If C0 = M − limn→∞Cn exists and is nonempty, then, for each
x ∈ H, {projCn(x)} converges strongly to projC0(x), where projCn and projC0 are
the metric projections of H onto Cn and C0, respectively.

Let (X, d) be a complete metric space. A mapping f : X → X is called a
Meir-Keeler contraction ( [9]) if, for any ϵ > 0, there exists δ > 0 such that

d(x, y) < ϵ+ δ =⇒ d(f(x), f(y)) < ϵ, ∀x, y ∈ X.

It is well known that the Meir-Keeler contraction is a generalization of the contrac-
tion.

Lemma 2.4 ([9]). A Meir-Keeler contraction defined on a complete metric space
has a unique fixed point.

Lemma 2.5 ([12]). Let f be a Meir-Keeler contraction on a convex subset C of a
Banach space E. Then, for any ϵ > 0, there exists r ∈ (0, 1) such that

∥x− y∥ ≥ ϵ=⇒∥f(x)− f(y)∥ ≤ r∥x− y∥

for all x, y ∈ C.

Lemma 2.6 ([12]). Let C be a convex subset of a Banach space E. Let T be a
nonexpansive mapping on C and f be a Meir-Keeler contraction on C. Then the
following hold:

(i) Tf is a Meir-Keeler contraction on C.
(ii) For each α ∈ (0, 1), (1− α)T + αf is a Meir-Keeler contraction on C.
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3. Main results

First, we suggest a shrinking projection algorithm for finding the common element
of variational inequality problem and fixed point problem. Subsequently, we show
the strong convergence of the presented algorithm.

Algorithm 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C → C be a Meir-Keeler contractive operator and A : C → H be a δ-inverse
strongly monotone operator. Let T : C → C be an L-Lipschitz pseudocontractive
operator with L > 1. For x0 ∈ C0 = C arbitrarily, define a sequence {xn} iteratively
by 

zn = projC(xn − λnAxn),

yn = (1− αn)zn + αnT ((1− βn)zn + βnTzn),

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = projCn+1f(xn), n ≥ 0,

(3.1)

where {λn} ⊂ [a, b] ⊂ (0, 2δ), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1).

Set Ω := V I(A,C) ∩ Fix(T ). Suppose Ω ̸= ∅. Since f is a Meir-Keeler con-
traction of C, it follows that projΩf is a Meir-Keeler contraction of C by Lemma
2.6. According to Lemma 2.4, there exists a unique fixed point x† ∈ C such that
x† = projΩf(x

†).

Conclusion 3.2. Ω ⊂ Cn for all n ≥ 0

Proof. In fact, Ω ⊂ C0 is obvious. Suppose that Ω ⊂ Ck for some k ∈ N. Set
vn = (1−βn)zn+βnTzn for all n ≥ 0. Then yn = (1−αn)zn+αnTvn for all n ≥ 0.
Let x∗ ∈ Ω ⊂ Ck. Then, we have

∥zn − x∗∥ = ∥projC(xn − λnAxn)− projC(x
∗ − λnAx∗)∥

≤ ∥(xn − λnAxn)− (x∗ − λnAx∗)∥
≤ ∥xn − x∗∥.

(3.2)

By Lemma 2.2 and (3.2), we have

∥yn − x∗∥ = ∥(1− αn)zn + αnT ((1− βn)zn + βnTzn)− x∗∥
≤ ∥zn − x∗∥
≤ ∥xn − x∗∥

(3.3)

and hence x∗ ∈ Ck+1. This indicates that Ω ⊂ Cn for all n ≥ 0. �

Conclusion 3.3. Cn is closed and convex for all n ≥ 0.

Proof. In fact, it is obvious from the assumption that C0 = C is closed convex.
Suppose that Ck is closed and convex for some k ∈ N. For any z ∈ Ck, ∥yk − z∥ ≤
∥xk − z∥ is equivalent to

∥yk − xk∥2 + 2⟨yk − xk, xk − z⟩ ≤ 0.

So Ck+1 is closed and convex. By induction, we deduce that Cn is closed and convex
for all n ≥ 0. �
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Remark 3.4. By Conclusions 3.2 and 3.3, we deduce that {xn} is well-defined.
Since

∩∞
n=1Cn is closed convex, we also have that proj∩∞

n=1 Cn
is well-defined and

so proj∩∞
n=1 Cn

f is a Meir-Keeler contraction on C. By Lemma 2.4, there exists

a unique fixed point u ∈
∩∞

n=1Cn of proj∩∞
n=1 Cn

f . Since Cn is a nonincreasing
sequence of nonempty closed convex subsets of H with respect to inclusion, it follow
that

∅ ̸= Ω ⊂
∞∩
n=1

Cn = M − lim
n→∞

Cn.

Setting un := projCnf(u) and applying Lemma 2.3, we can conclude that

lim
n→∞

un = proj∩∞
n=1 Cn

f(u) = u.

Conclusion 3.5. limn→∞ ∥xn − u∥ = 0

Proof. Assume thatM = lim supn→∞ ∥xn−u∥ > 0. Then, for any ϵ with 0 < ϵ < M ,
we can choose δ1 > 0 such that

lim sup
n→∞

∥xn − u∥ > ϵ+ δ1.(3.4)

Since f is a Meir-Keeler contraction, for the positive ϵ, there exists another δ2 > 0
such that

∥x− y∥ < ϵ+ δ2=⇒∥f(x)− f(y)∥ < ϵ(3.5)

for all x, y ∈ C.
In fact, we can choose a common δ > 0 such that (3.4) and (3.5) hold. If δ1 > δ2,

then

lim sup
n→∞

∥xn − u∥ > ϵ+ δ1 > ϵ+ δ2.

If δ1 ≤ δ2, then, from (3.5), it follows that

∥x− y∥ < ϵ+ δ1 =⇒ ∥f(x)− f(y)∥ < ϵ

for all x, y ∈ C. Thus we have

lim sup
n→∞

∥xn − u∥ > ϵ+ δ(3.6)

and

∥x− y∥ < ϵ+ δ=⇒∥f(x)− f(y)∥ < ϵ(3.7)

for all x, y ∈ C. Since un → u, there exists n0 ∈ N such that

∥un − u∥ < δ(3.8)

for all n ≥ n0.
Now, we now consider two possible cases:
Case 1. There exists n1 ≥ n0 such that

∥xn1 − u∥ ≤ ϵ+ δ.
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By (3.7) and (3.8), we get

∥xn1+1 − u∥ ≤ ∥xn1+1 − un1+1∥+ ∥un1+1 − u∥
= ∥projCn1+1f(xn1)− projCn1+1f(u)∥+ ∥un1+1 − u∥
≤ ∥f(xn1)− f(u)∥+ ∥un1+1 − u∥
≤ ϵ+ δ.

By induction, we can obtain that

∥xn1+m − u∥ ≤ ϵ+ δ

for all m ≥ 1, which implies that

lim sup
n→∞

∥xn − u∥ ≤ ϵ+ δ,

which contradicts (3.6). Therefore, we conclude that ∥xn − u∥ → 0 as n → ∞.
Case 2. ∥xn − u∥ > ϵ+ δ for all n ≥ n0.
Now, we prove that Case 2 is impossible. Suppose that Case 2 is true. By Lemma

2.5, there exists r ∈ (0, 1) such that

∥f(xn)− f(u)∥ ≤ r∥xn − u∥

for all n ≥ n0. Thus we have

∥xn+1 − un+1∥ = ∥projCn+1f(xn)− projCn+1f(u)∥
≤ ∥f(xn)− f(u)∥
≤ r∥xn − u∥

for all n ≥ n0. It follows that

lim
n→∞

∥xn+1 − u∥ = lim sup
n→∞

∥xn+1 − un+1∥

≤ r lim sup
n→∞

∥xn − u∥

< lim sup
n→∞

∥xn − u∥,

which gives a contradiction. Hence we obtain

lim
n→∞

∥xn − u∥ = 0

�

Theorem 3.6. If 0 < c < αn ≤ βn < d < 1√
1+L2+1

, then the sequence {xn} defined

by (3.1) converges strongly to x†.

Proof. By Conclusion 3.5, we get that {xn} is bounded. Observe that

∥xn+1 − xn∥ ≤ ∥xn − u∥+ ∥u− un+1∥+ ∥un+1 − xn+1∥
= ∥xn − u∥+ ∥u− un+1∥+ ∥projCn+1f(xn)− projCn+1f(u)∥
≤ ∥xn − u∥+ ∥u− un+1∥+ ∥f(xn)− f(u)∥.

Therefore, we have

lim
n→∞

∥xn+1 − xn∥ = 0.(3.9)
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Since xn+1 ∈ Cn+1, we have

∥yn − xn+1∥ ≤ ∥xn − xn+1∥.

This together with (3.9) implies that

lim
n→∞

∥yn − xn+1∥ = lim
n→∞

∥yn − xn∥ = 0.(3.10)

Note that

∥yn − x∗∥2 ≤ ∥zn − x∗∥2

≤ ∥(xn − λnAxn)− (x∗ − λnAx∗)∥2

= ∥xn − x∗∥2 + λ2
n∥Axn −Ax∗∥2 − 2⟨Axn −Ax∗, xn − x∗⟩

= ∥xn − x∗∥2 + λn(λn − 2δ)∥Axn −Ax∗∥2

≤ ∥xn − x∗∥2 + (b− 2δ)b∥Axn −Ax∗∥2.

(3.11)

Then we have

(2δ − b)b∥Axn −Ax∗∥2 ≤ ∥xn − x∗∥2 − ∥yn − x∗∥2

≤ ∥xn − yn∥(∥xn − x∗∥+ ∥yn − x∗∥).
(3.12)

By (3.10) and (3.12), we obtain

lim
n→∞

∥Axn −Ax∗∥ = 0.(3.13)

Since projC is firmly-nonexpansive, we have

∥zn − x∗∥2 = ∥projC(xn − λnAxn)− projC(x
∗ − λnAx∗)∥2

≤ ⟨(xn − λnAxn)− (x∗ − λnAx
∗), zn − x∗⟩

=
1

2
(∥(xn − λnAxn)− (x∗ − λnAx∗)∥2 + ∥zn − x∗∥2

− ∥(xn − λnAxn)− (x∗ − λnAx∗) + x∗ − zn∥2)

≤ 1

2
(∥xn − x∗∥2 + ∥zn − x∗∥2 − ∥(xn − zn)− λn(Axn −Ax∗)∥2)

=
1

2
(∥xn − x∗∥2 + ∥zn − x∗∥2 − ∥xn − zn∥2

+ 2λn⟨xn − zn, Axn −Ax∗⟩ − λ2
n∥Axn −Ax∗∥2).

(3.14)

It follows that

∥zn − x∗∥2 ≤ ∥xn − x∗∥2 + 2λn⟨xn − zn, Axn −Ax∗⟩
− ∥xn − zn∥2 − λ2

n∥Axn −Ax∗∥2.
(3.15)

From (3.3) and (3.15), we get

∥yn − x∗∥2 ≤ ∥zn − x∗∥2

≤ ∥xn − x∗∥2 − ∥xn − zn∥2 + 2λn⟨xn − zn, Axn −Ax∗⟩
− λ2

n∥Axn −Ax∗∥2

≤ ∥xn − x∗∥2 − ∥xn − zn∥2 + 2λn∥xn − zn∥∥Axn −Ax∗∥
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and so

∥xn − zn∥2 ≤ ∥xn − x∗∥2 − ∥yn − x∗∥2 + 2λn∥xn − zn∥∥Axn −Ax∗∥
≤ ∥xn − yn∥(∥xn − x∗∥+ ∥yn − x∗∥) + 2λn∥xn − zn∥∥Axn −Ax∗∥.

This together with (3.10) and (3.13) implies that

lim
n→∞

∥xn − zn∥ = 0.(3.16)

Next, we prove that u ∈ Fix(T ) ∩ V I(A,C). Note that

∥zn − Tzn∥ ≤ ∥zn − yn∥+ ∥yn − Tzn∥
≤ ∥zn − yn∥+ (1− αn)∥zn − Tzn∥+ αn∥Tvn − Tzn∥
≤ ∥zn − yn∥+ (1− αn)∥zn − Tzn∥+ αnL∥vn − zn∥
≤ ∥zn − yn∥+ (1− αn)∥zn − Tzn∥+ αnβnL∥zn − Tzn∥.

It follows that

∥zn − Tzn∥ ≤ 1

αn(1− βnL)
∥zn − yn∥ ≤ 1

c(1− dL)
∥zn − yn∥ → 0.(3.17)

Since xn → u, we have zn → u by (3.16). So, from (3.17) and Lemma 2.1, we
deduce that u ∈ Fix(T ). By the same argument as that in the proof of [4, Theorem
3.1], we can show that u ∈ V I(A,C). This implies that u ∈ V I(A,C). Therefore,
we have u ∈ Ω. Since xn+1 = projCn+1f(xn), we have

⟨f(xn)− xn+1, xn+1 − y⟩ ≥ 0

for all y ∈ Cn+1. Since Ω ⊂ Cn+1, we get

⟨f(xn)− xn+1, xn+1 − y⟩ ≥ 0

for all y ∈ Ω. Noting that xn → u ∈ Ω, we deduce

⟨f(u)− u, u− y⟩ ≥ 0

for all y ∈ Ω. Thus u = projΩf(u) = x†. This completes the proof. �

References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Stud. 63 (1994), 123–145.

[2] L. C. Ceng, A. Petrusel and J.C. Yao, Strong convergence of modified implicit iterative al-
gorithms with perturbed mappings for continuous pseudocontractive mappings, Applied Math.
Comput. 209 (2009), 162–176.

[3] L. Ciric, A. Rafiq, Nenad Cakic and J.S. Ume, Implicit Mann fixed point iterations for pseu-
docontractive mappings, Appl. Math. Let. 22 (2009), 581–584.

[4] J. W. Chen, E. Kobis, M. A. Kobis and J. C. Yao, Optimality conditions for solutions of
constrained inverse vector variational inequalities by means of nonlinear scalarization, J. Non-
linear Var. Anal. 1 (2017), 145–158.

[5] H. Iiduka and W. Takahashi, Weak convergence of a projection algorithm for variational in-
equalities in a Banach space, J. Math. Anal. Appl. 339 (2008), 668–679.

[6] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities
for monotone mappings, Panamerican Math. J. 14 (2004), 49–61.



SHRINKING PROJECTION ALGORITHM 71

[7] A. N. Iusem, An iterative algorithm for the variational inequality problem, Comput. Appl.
Math. 13 (1994), 103–114.

[8] G. M. Korpelevich, An extragradient method for finding saddle points and for other problems,
Ekonomika i Matematicheskie Metody 12 (1976), 747–756.

[9] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969),
326–329.

[10] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in
Math. 3 (1969), 510–585.

[11] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci.
Paris 258 (1964), 4413–4416.

[12] T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal.
Appl. 325 (2007), 342–352.

[13] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory
40 (1984), 301–309.

[14] Y. H. Yao, Y. C. Liou and J. C. Yao, Iterative algorithms for the split variational inequality
and fixed point problems under nonlinear transformations, J. Nonlinear Sci. Appl. 10 (2017),
843–854.

[15] Y. H. Yao and N. Shahzad, An algorithmic approach to the split variational inequality and
fixed point problem, J. Nonlinear Convex Anal. 18 (2017), 977–991.

[16] L. J. Lin and W. Takahashi, A general iterative method for hierarchical variational inequality
problems in Hilbert spaces and applications, Positivity 16 (2012), 429–453.

[17] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonex-
pansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006),
1230–1241.

[18] Y. H. Yao, Y. C. Liou, J. C. Yao, Split common fixed point problem for two quasi-
pseudocontractive operators and its algorithm construction, Fixed Point Theory Appl. 2015
(2015), Art. ID 127.

[19] Y. H. Yao and M. Postolache, Projection methods for firmly type nonexpansive operators, J.
Nonlinear Convex Anal. in press.

[20] H. Zegeye, N. Shahzad and T. Mekonen, Viscosity approximation methods for pseudocontrac-
tive mappings in Banach spaces, Appl. Math. Comput. 185 (2007), 538–546.

[21] H. Zegeye, N. Shahzad and Y. H. Yao, Minimum-norm solution of variational inequality and
fixed point problem in Banach spaces, Optim. 64 (2015), 453–471.

[22] H. Zhou, Convergence theorems of fixed points for Lipschitz pseudocontractions in Hilbert
spaces, J. Math. Anal. Appl. 343 (2008), 546–556.

Manuscript received 26 October 2017

Y. H. Yao
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China

E-mail address: yaoyonghong@aliyun.com


