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EVALUATION OF STOCHASTIC APPROXIMATION
ALGORITHM AND VARIANTS FOR LEARNING SUPPORT
VECTOR MACHINES

KEIGO FUJIWARA, KAZUHIRO HISHINUMA, AND HIDEAKI IIDUKA

ABSTRACT. This paper considers a convex stochastic optimization problem and
presents several variants of an algorithm for solving it that is defined by combining
an existing stochastic approximation algorithm for convex stochastic optimization
with search directions for unconstrained nonconvex optimization. It shows that,
under certain assumptions, the expected error of the current solution in terms
of the distance to the solution of the problem is of order (’)(7”[1/2)7 where n is
the number of iterations. The variants of the proposed algorithm are numerically
compared with the Pegasos machine learning algorithm in binary and multiclass
classification experiments using LIBSVM datasets. The results show that the
proposed stochastic optimization algorithm and its variants have higher classifier
accuracy; in particular, the results of t-tests show that their average performance
is significantly different from that of Pegasos.

1. INTRODUCTION

This paper considers a convex stochastic optimization problem [10, (1.1)] for min-
imizing the expectation of convex functions. This problem appears in subproblems
of learning support vector machines. Support vector machines are an effective and
widely used classification learning tool [15, Section 1|. The task of learning a sup-
port vector machine can be expressed as a constrained quadratic loss optimization
problem [15, Section 1]. The task is an empirical loss minimization problem with a
penalty term for the norm of the classifier that is being learned [15, Problem (1)].

There are several practical optimization algorithms for solving a convex stochastic
optimization problem. The stochastic approximation (SA) algorithm [2,10,13] for
example, uses the subgradients of randomly chosen objective functions. The primal
estimated sub-gradient solver (Pegasos) algorithm for support vector machines [15]
is an SA algorithm programmed for learning support vector machines [15]. It is
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Many iterative algorithms have been presented for unconstrained smooth opti-
mization to accelerate the steepest descent method. Two examples are the conjugate
gradient algorithm [7] [11, Chapters 5] and the three-term conjugate gradient algo-
rithm [3-6,9]. In this paper, we present a novel algorithm (plus several variants)
obtained by combining the SA algorithm with the three-term conjugate gradient
algorithm. The proposed algorithm (plus variants) shortens the computation time
and finds better solutions than the Pegasos learning algorithm. We show that, un-
der certain assumptions, the expected error of the current solution in terms of the
distance to the solution of the problem is of order O(n~'/2), where n is the number
of iterations.

We numerically compared the proposed learning algorithm (plus variants) with
the Pegasos learning algorithm by applying them to both binary and multiclass
classification problems using LIBSVM machine learning datasets [8]. We compared
their performances in terms of the classification scores and computation times. The
results showed that our proposed algorithm (plus variants) had higher classification
scores than Pegasos and that it required less computation time to learn support vec-
tor machines. Moreover, the results of t-tests showed that its average performance
was significantly different from that of Pegasos.

This paper is organized as follows. Section 2 covers the mathematical prelimi-
naries and presents the convex stochastic optimization problem considered. Section
3 presents the algorithm proposed for solving the problem. Section 4 evaluates the
application of the proposed algorithm (plus 10 variants) to support vector machine
learning using 15 LIBSVM machine learning datasets [8] in comparison with that
of the Pegasos learning algorithm. Section 5 concludes the paper with a summary
of the key points.

2. MATHEMATICAL PRELIMINARIES

2.1. Notation and definitions. Let RV be an N-dimensional Euclidean space
with inner product (-,-) and its induced norm || - ||. Let N be the set of all positive
integers including zero. A mapping T: RY — R¥ is said to be nonezpansive [1,
Definition 4.1(ii)] if it is Lipschitz continuous with constant 1; i.e., [|T(z) — T (y)|| <
|z — y| for all 2,y € RY. Given a nonempty, closed convex set C C R¥ the
metric projection onto C, denoted by Pg, is defined for all x € RY by Po(x) € C
and ||z — Po(z)|| = infyec ||z — y||. Let ¢ > 0. A function f: R" — R is said to
be c-strongly convez [1, Definition 10.5] if, for all z,y € R™ and for all « € (0,1),
flaz+(1—a)y)+(ca(l—a)/2)|[lz—y||* < af(z)+(1—a)f(y). The subdifferential [1,
Definition 16.1, Corollary 16.14] of a convex function f: RY — R is the set-valued
operator Of defined for all z € RN by 0f(z) = {u € H: f(y) > f(z)+{y—z,u) (y €
RM)} # (). Let O denote Landau’s symbol; i.e., y, = O(z,) if there exist ¢ > 0 and
ng € N such that y, < cx, for all n > ng.

2.2. Convex stochastic optimization problem. In this paper, we discuss the
following convex stochastic optimization problem [10, (1.1)]:

Problem 2.1. Assume that
(A1) f): RN 5 R (m e M :={1,2,...,M}) is convex;
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(A2) C c RY is a nonempty, bounded, closed convex set onto which the metric
projection Po can be efficiently computed.

Then
minimize f(w):=E [f(g)(w)} subject to w € C,

where f(© is a function involving a random variable £ € M, and one assumes that

(i) the expectation E[f€) (w)] is well defined and finite valued for all w € RY,
and f is Lipschitz continuous and strongly convex with a constant c;
(ii) there is an independent identically distributed sample &y, &1, ... of realiza-
tions of the random variable &;
(iii) there is an oracle such that, for (w,&) € RY x M, it returns a stochastic
subgradient G (w) such that g(w) := E[G®) (w)] is well defined and is a
subgradient of f at w.

An application of Problem 2.1 is the support vector machine (SVM) optimization
problem defined as follows: given A\ > 0 and a training set {(2m, ym)}M_;, where
Ty € RY and y,, € {—1,+1} (m € M),

M
A 1 ‘
(2.1)  minimize §Hw\|2 + i E max{0, 1 — Y, (w, x,,)} subject to ||w] <

m=1

>

For all m € M and for all w € RN, we define f™ (w) := (1/M)[(\/2)||w|* +
max{0, 1 — ym(w, zy,)}]. A useful algorithm for solving problem (2.1) is the primal
estimated sub-gradient solver (Pegasos) algorithm [15, Figure 1]:

Algorithm 1 Pegasos [15, Figure 1]

Require: \ >0
1: n<+ 0, wy € RN
2: loop
3 ap:=1/(AMn+1))
1. GE)(wy,) € &) (w,)
5 wpy1 = Po(wy, — anG(fn)(wn))
6: n<—n—+1
7: end loop

Step 5 in Algorithm 1 is stochastic approximation (SA) [2, (5.4.1)], [10,13] based
on the stochastic subgradient direction d,, := —G&)(w,). The discussion in [10,
Subsection 2.1] leads to the conclusion that Algorithm 1 with oy, = O(1/n) (n > 1)
satisfies, under the assumptions in Problem 2.1,

E [, - wl?] =0 (),

where w* is the solution to Problem 2.1.
Many iterative methods have been presented for unconstrained smooth optimiza-
tion to accelerate the steepest descent method defined by x,+1 = xp, + )\nd,s{i =
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Tp — Ay Vh(z,), where zg € RV, h: RNV — R is differentiable, and V5 is the gradi-
ent of h. An example method uses the three-term conjugate gradient direction [5,9],
defined as

(22) d:ltcg = _Vh(xn) + ﬁndnfl + Yn2n,

where (2,)neny € RY is an arbitrary sequence, and (B, )ner and (Vn)nen C R.
We can see that dy°® defined by (2.2) with 7, := 0 (n € N) coincides with the
conjugate gradient direction (see [11] for details of conjugate gradient methods).
From the above discussion, we derived a novel algorithm that can be obtained by
combining SA (step 5 in Algorithm 1) with the three-term conjugate direction (2.2)
with Vh = G,

3. STOCHASTIC APPROXIMATION ALGORITHM WITH THREE-TERM CONJUGATE
GRADIENT DIRECTION

The proposed algorithm for solving Problem 2.1 is given as

Algorithm 2 Stochastic approximation algorithm for Problem 2.1

Require: (an)nEN C [07 ]-]a (ﬂn)nEN C [O’ OO)? (Vn)nEN C [0? 00)7 (Zn)neN - RN
1m0, wy €RY, dy:= fG(&’)(wo)
2: loop
3 dy = _G(gn)(wn) + Bndp—1 + TnZn
4: wpy1 = Po(wy + apdy)
5
6

n<n+1
: end loop

Step 3 in Algorithm 2 is based on the three-term conjugate gradient direction
(2.2). Algorithm 2 coincides with Algorithm 1 when «,, :=1/(A(n+ 1)) and 8, =
Yn = 0 (n € N). Moreover, Algorithm 2 is almost the same as [14, (1.5)] when
T =0 (n e N).

The proofs of [14, Theorem 3.1] lead to the following.

Theorem 3.1. Let w* € C be the solution of Problem 2.1. Assume that the
assumptions in Problem 2.1 hold and there exists a positive number B such that
E[|GE) (w)|]?] < B? for all (w, &) € RN x M. Then the sequence (wy)nen generated
by Algorithm 2 satisfies the following conditions:

(a) If ay, :=1/(cn) and Bn,vn < 1/n for alln > 1, then, for alln > 1,
N 1+ logn
i ot

(b) If ap :=2/(c(n+ 1)) and Bpn,vn < 1/n for all n > 1, then, for allm > 1,

1
i wtl-a(l)
n
Since B, = v, := 0 (n € N) satisfies the conditions in Theorem 3.1(b), Algorithm
2 satisfies E[||w, — w*|?] = O(1/n) when 8, = 7, := 0 (n € N) (i.e., Algorithm 1),
which implies that Theorem 3.1 is a generalization of the results in [10, Subsection
2.1].
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4. APPLICATION TO LEARNING SUPPORT VECTOR MACHINES

We evaluated the performance of the proposed algorithm (Algorithm 2 plus sev-
eral variants) in comparison with that of Pegasos (Algorithm 1) for learning support
vector machines by using a large number of classification problems formulated as
machine learning datasets. Here we present the results and discuss the advantages
and disadvantages of each variant.

4.1. Experimental method and environment. The experimental programs were
written in Python 3 (version 3.6.3) using the NumPy and scikit-learn [12] packages.
They were run on an Apple Macbook Air with a 1.3-GHz Intel Core i5 CPU, 4-GB
DDR3 memory, and the Mac OSX 10.8.5 operating system.

The classification problems corresponded to 15 machine learning datasets, as
listed in Table 1. The datasets were obtained from LIBSVM datasets [8]. The ala,

TABLE 1. Datasets used for experiments

Name No. of classes Training size Testing size No. of features
ala 2 1,605 30,956 123
a2a 2 2,265 30,296 123
alda 2 3,185 29,376 123
diabetes 2 576 192 8
dna 3 2,000 1,186 180
iris 3 112 38 4
svmguidel 2 3,089 4,000 4
svmguide2 3 293 98 20
wine 3 133 45 13
segment 7 1732 578 19
breast-cancer 2 512 171 10
sonar 2 156 52 60
splice 2 1,000 2,175 60
german.numer 2 750 250 24
australian 2 517 173 14

a2a, a3a, dna, symguidel, and splice datasets were obtained as pairs of training and

test datasets. We used the training datasets to learn the support vector machines

and the test datasets to evaluate the performance of the learned classifiers. The
remaining datasets (diabetes, iris, svmguide2, wine, segment, breast-cancer, sonar,
german.numer and australian datasets) were not obtained as pairs. We thus divided

them into training and test datasets using the sklearn.model _selection.train_test_split
function provided in the scikit-learn package.

As preprocessing for learning classifiers, we standardized the features of the
datasets using the sklearn.preprocessing.StandardScaler class, which removes
the mean from the features and scales the features to unit variance.

We set wg := (0,0, ... ,0)T as an initial point to each algorithm. We ran ten
variants of Algorithm 2 for comparison.
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Variant 1: o, = % Bn=0,v%=0 (Algorithm 1);

(n+1)’
Variant 2: o, = m, Bn = n%rl, T = 0;
Variant 3: «,, = m, Bn = n%rl, Y = Bn;
Variant 4: «,, = m, Bn = m, Tn = 0;
Variant 5: o, = m, Bn = W, Y = Bn;
Variant 6: o, = ﬁ, Brn =0, v, =0;
Variant 7: o, = )\(n2+2), Bn n%q, Y = 0;
Variant 8: o, = ﬁ, Bn = n%rl, Y = Bn;
Variant 9: o, = ﬁ, Bn = m, Tn = 0;
Variant 10: «, = ﬁ, Bn = W, Y = Bn;

Variant 1 coincides with Algorithm 1 (Pegasos).
Now, we recall the task of learning support vector machines.

Problem 4.1 (Task of learning support vector machines). Suppose that a train-
ing set {(Tm,ym)}M_; € RY x {~1,+1} and a parameter A > 0 are given. Let
FO (w) = (1/M)[(N/2)||lw|?> + max{0,1 — g, (w, z,,)}] and let C := {z € RN :
|z|| < 1/A}. Then we would like to

minimize f(w):=E [f(g) (w)} subject to w € C.

We applied the variants of Algorithm 2 to Problem 4.1 for each dataset listed
in Table 1. For each variant, we evaluated the computation time and classification
score of the generated classifier w, (n = 103,10%).

4.2. Experimental results when ) := 1.0. First, we evaluated the performance
of the variants when A := 1.0 was used as the parameter of Problem 4.1. Tables 2—
16 show the computation times for acquiring classifier wy, (n = 103,10%) and the
classification scores for the test datasets. The scores were calculated using the
score method derived for each classifier from the sklearn.base.ClassifierMixin
class.
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TABLE 2. Computation times and classification scores for learning
wy, (n = 103,10%) for ala dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 71.59 0.48 71.10
2 0.18 71.55 0.59 70.84
3 0.18 71.35 0.58 70.94
4 0.18 71.52 0.58 71.04
5 0.28 72.03 0.48 70.98
6 0.18 70.37 0.63 70.98
7 0.17 70.53 0.48 71.08
8 0.18 69.03 0.48 70.92
9 0.18 70.97 0.48 71.12
10 0.18 71.18 0.58 70.98

TABLE 3. Computation times and classification scores for learning
wy, (n = 103,10%) for a2a dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 71.35 0.48 70.89
2 0.18 71.01 0.48 70.80
3 0.29 71.73 0.69 71.10
4 0.18 70.83 0.59 71.10
5 0.17 71.17 0.58 71.11
6 0.18 71.17 0.60 71.07
7 0.17 70.10 0.47 70.96
8 0.17 70.60 0.48 70.99
9 0.17 71.06 0.48 71.36
10 0.18 71.99 0.48 71.15
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TABLE 4. Computation times and classification scores for learning
wy, (n = 103,10%) for a3a dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 70.32 0.48 70.87
2 0.28 70.79 0.58 70.81
3 0.28 70.41 0.58 71.03
4 0.28 70.78 0.59 71.27
5 0.17 70.81 0.58 70.96
6 0.28 70.72 0.59 70.80
7 0.17 70.98 0.48 70.52
8 0.18 71.03 0.58 70.85
9 0.17 70.84 0.59 70.86
10 0.28 70.47 0.58 70.65

TABLE 5. Computation times and classification scores for learning
wy, (n = 103,10%) for diabetes dataset using each variant of Algo-
rithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 66.67 0.37 67.71
2 0.20 68.75 0.48 68.23
3 0.17 68.23 0.58 69.27
4 0.18 67.71 0.48 68.23
5 0.18 67.19 0.48 68.75
6 0.18 68.23 0.48 69.27
7 0.18 68.23 0.48 69.79
8 0.18 70.31 0.48 68.23
9 0.19 69.27 0.49 68.2
10 0.18 68.23 0.50 68.2
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TABLE 6. Computation times and classification scores for learning
wy, (n = 103,10%) for dna dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.27 86.68 0.68 87.18
2 0.29 85.92 0.89 86.76
3 0.29 85.33 1.11 87.10
4 0.28 84.99 0.88 86.68
5 0.27 84.91 0.78 86.93
6 0.28 84.57 0.79 87.02
7 0.28 84.57 0.68 86.76
8 0.28 84.82 0.78 87.10
9 0.30 85.33 0.89 87.18
10 0.28 85.08 0.88 87.10

TABLE 7. Computation times and classification scores for learning
wy, (n = 103,10%) for iris dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 81.58 0.58 81.58
2 0.18 81.58 0.78 81.58
3 0.17 81.58 0.89 81.58
4 0.18 81.58 0.78 81.58
5 0.18 81.58 0.68 81.58
6 0.18 81.58 0.69 81.58
7 0.17 81.58 0.69 81.58
8 0.17 81.58 0.57 81.58
9 0.17 81.58 0.68 81.58
10 0.17 81.58 0.68 81.58
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TABLE 8. Computation times and classification scores for learning
wy, (n = 103,10%) for sumguidel dataset using each variant of Algo-
rithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 84.48 0.37 84.68
2 0.19 84.40 0.50 84.78
3 0.17 84.58 0.58 84.90
4 0.19 84.65 0.53 84.60
5 0.17 83.90 0.48 84.83
6 0.18 84.63 0.49 84.78
7 0.17 83.80 0.38 84.70
8 0.17 84.68 0.37 84.63
9 0.17 84.28 0.38 84.73
10 0.17 84.20 0.48 84.90

TABLE 9. Computation times and classification scores for learning
wy, (n = 103,10%) for sumguide? dataset using each variant of Algo-
rithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 80.61 0.58 74.49
2 0.18 73.47 0.70 74.49
3 0.28 74.49 1.00 76.53
4 0.18 78.57 0.82 76.53
5 0.17 71.43 0.68 76.53
6 0.18 73.47 0.73 76.53
7 0.17 73.47 0.68 73.47
8 0.17 75.51 0.68 76.53
9 0.18 75.51 0.69 74.49
10 0.17 74.49 0.78 74.49
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TABLE 10. Computation times and classification scores for learning
wy, (n = 103, 10%) for wine dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 95.56 0.58 95.56
2 0.18 97.78 0.68 95.56
3 0.17 95.56 0.68 95.56
4 0.28 95.56 0.69 95.56
5 0.17 95.56 0.67 95.56
6 0.18 97.78 0.59 95.56
7 0.18 95.56 0.79 95.56
8 0.17 95.56 0.68 95.56
9 0.18 95.56 0.79 97.78
10 0.17 97.78 0.68 95.56

TABLE 11. Computation times and classification scores for learning
wy (n = 103,10%) for segment dataset using each variant of Algo-
rithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.28 78.03 1.18 77.85
2 0.29 75.09 1.39 78.20
3 0.29 77.51 1.59 77.85
4 0.28 77.68 1.49 77.51
5 0.28 77.34 1.49 77.68
6 0.29 79.24 1.52 76.99
7 0.29 77.85 1.50 76.82
8 0.28 76.12 1.38 78.37
9 0.28 77.85 1.49 78.55
10 0.28 76.82 1.60 77.51
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TABLE 12. Computation times and classification scores for learning
wy (n = 103,10%) for breast-cancer dataset using each variant of
Algorithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 97.08 0.38 97.08
2 0.18 97.08 0.48 97.08
3 0.17 97.08 0.48 97.08
4 0.18 97.08 0.49 97.08
5 0.17 97.08 0.48 97.08
6 0.18 97.08 0.38 97.08
7 0.18 97.08 0.38 97.08
8 0.17 97.08 0.47 97.08
9 0.17 97.08 0.49 97.08
10 0.17 97.08 0.47 97.08

TABLE 13. Computation times and classification scores for learning
wy, (n = 103, 10%) for sonar dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 65.38 0.59 71.15
2 0.17 69.23 0.49 69.23
3 0.18 71.15 0.48 71.15
4 0.18 69.23 0.49 69.23
5 0.18 67.31 0.47 71.15
6 0.19 71.15 0.48 69.23
7 0.18 67.31 0.48 69.23
8 0.18 71.15 0.48 69.23
9 0.18 71.15 0.48 71.15
10 0.17 73.08 0.48 69.23
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TABLE 14. Computation times and classification scores for learning
wy, (n = 103, 10%) for splice dataset using each variant of Algorithm 2
when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 83.40 0.60 84.74
2 0.18 84.46 0.48 84.51
3 0.17 83.08 0.48 84.55
4 0.18 83.17 0.48 84.69
5 0.17 83.77 0.48 84.46
6 0.19 82.94 0.48 84.28
7 0.18 82.11 0.52 85.10
8 0.17 81.84 0.48 84.78
9 0.17 83.03 0.48 84.64
10 0.18 82.71 0.48 84.60

TABLE 15. Computation times and classification scores for learning
wy, (n = 103,10%) for german.numer dataset using each variant of
Algorithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.19 69.60 0.48 70.00
2 0.18 69.20 0.48 70.40
3 0.17 71.60 0.48 70.80
4 0.18 66.40 0.49 69.60
5 0.18 69.60 0.48 68.40
6 0.18 68.40 0.48 70.40
7 0.18 67.60 0.48 70.80
8 0.17 68.40 0.47 68.00
9 0.17 66.80 0.48 68.80
10 0.17 67.60 0.48 70.80




42 K. FUJIWARA, K. HISHINUMA, AND H. IIDUKA

TABLE 16. Computation times and classification scores for learn-
ing w, (n = 10%,10%) for australian dataset using each variant of
Algorithm 2 when A := 1.0 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.22 87.28 0.49 88.44
2 0.18 88.44 0.48 89.02
3 0.17 88.44 0.47 88.44
4 0.18 87.86 0.49 89.02
5 0.18 87.86 0.48 88.44
6 0.18 88.44 0.48 87.86
7 0.18 87.86 0.48 88.44
8 0.17 87.86 0.47 89.02
9 0.17 88.44 0.48 88.44
10 0.17 86.71 0.48 88.44

In general, these results show that differences between any two variants did not
cause a significant difference in terms of computation time or classification score.
However, for some datasets (Tables 3, 10, and 13), Variant 10 generated classifiers
with scores higher than those generated by the other variants when n = 103. This
indicates that Variant 10 more quickly converges and finds better approximations
than the other variants.

Furthermore, as shown in Table 17, the performances of the variants were similar.
Table 18 shows the t-test results for Variants 2-10 compared to Variant 1 calculated

TABLE 17. Average time and score for each variant with A := 1.0

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.19 79.31 0.56 79.55
2 0.20 79.25 0.63 79.48
3 0.21 79.47 0.71 79.86
4 0.21 79.17 0.66 79.58
) 0.20 78.77 0.62 79.63
6 0.20 79.32 0.63 79.56
7 0.19 78.58 0.60 79.46
8 0.19 79.04 0.59 79.52
9 0.19 79.25 0.62 79.73
10 0.20 79.26 0.64 79.49

using the data in Tables 2 to 16. The results for most variants were similar to those
for Variant 1.
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TABLE 18. T-test results for Variants 2-10 compared to Variant 1
with A := 1.0

Variant 1,000 iterations 10,000 iterations

2 0.93 0.66
3 0.79 0.09
4 0.75 0.91
5 0.42 0.71
6 0.99 0.98
7 0.20 0.69
8 0.69 0.91
9 0.93 0.34
10 0.96 0.66

4.3. Experimental results when ) := 0.1. Next, we evaluated the performance
of each variant of Algorithm 2 when a smaller value of A (A := 0.1) was used as the
parameter of Problem 4.1. Tables 19-33 show the computation times for acquiring
classifier w,, (n = 103,10%) and the classification scores for the test datasets. The
computation method used for evaluating the classification scores was the same as
that described in Subsection 4.2.

TABLE 19. Computation times and classification scores for learning
wy, (n = 103,10%) for ala dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 70.96 0.48 73.29
2 0.18 71.08 0.49 72.64
3 0.18 72.71 0.48 72.32
4 0.18 68.79 0.48 73.05
5 0.18 70.51 0.48 71.87
6 0.29 70.12 0.48 71.74
7 0.17 70.66 0.48 72.53
8 0.17 66.88 0.47 72.81
9 0.28 69.95 0.48 72.81
10 0.18 69.89 0.48 72.69
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TABLE 20. Computation times and classification scores for learning
wy, (n = 103,10%) for a2a dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 69.94 0.48 71.97
2 0.18 69.30 0.48 72.37
3 0.18 70.73 0.48 71.89
4 0.18 71.02 0.48 71.23
5 0.17 70.72 0.47 71.65
6 0.18 68.11 0.48 71.94
7 0.17 68.02 0.48 72.13
8 0.29 68.63 0.59 72.65
9 0.18 70.39 0.48 71.34
10 0.18 69.49 0.48 72.80

TABLE 21. Computation times and classification scores for learning
wy, (n = 103,10%) for a3a dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 70.00 0.48 71.91
2 0.18 69.72 0.48 71.92
3 0.17 71.42 0.48 71.58
4 0.17 71.09 0.48 71.76
5 0.28 68.53 0.58 71.22
6 0.28 67.98 0.48 71.67
7 0.17 65.09 0.48 71.30
8 0.28 64.98 0.48 71.47
9 0.18 66.63 0.48 71.15
10 0.17 69.93 0.59 70.80
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TABLE 22. Computation times and classification scores for learning
wy, (n = 103,10%) for diabetes dataset using each variant of Algo-
rithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 69.79 0.38 69.27
2 0.18 68.75 0.38 69.79
3 0.17 69.79 0.48 69.79
4 0.18 68.23 0.48 69.79
5 0.18 69.27 0.48 68.75
6 0.17 69.79 0.37 68.23
7 0.17 69.79 0.48 68.75
8 0.18 75.00 0.48 69.27
9 0.17 68.75 0.48 69.79
10 0.20 71.88 0.48 69.79

TABLE 23. Computation times and classification scores for learning
wy, (n = 103,10%) for dna dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.27 81.87 0.69 87.61
2 0.27 82.97 0.68 86.76
3 0.28 83.22 0.78 87.27
4 0.27 82.88 0.67 87.35
5 0.27 83.14 0.78 88.20
6 0.27 77.82 0.68 86.93
7 0.28 80.27 0.68 87.27
8 0.29 79.85 0.88 87.18
9 0.28 79.85 0.78 87.44
10 0.29 79.34 0.81 85.75
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TABLE 24. Computation times and classification scores for learning
wy, (n = 103,10%) for 4ris dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 84.21 0.58 84.21
2 0.17 84.21 0.58 84.21
3 0.18 84.21 0.68 84.21
4 0.17 84.21 0.58 84.21
5 0.17 84.21 0.57 84.21
6 0.17 84.21 0.58 84.21
7 0.17 84.21 0.57 84.21
8 0.17 84.21 0.58 84.21
9 0.17 84.21 0.57 84.21
10 0.17 84.21 0.68 84.21

TABLE 25. Computation times and classification scores for learn-
ing wy, (n = 103,10%) for sumguidel dataset using each variant of
Algorithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 84.35 0.38 84.38
2 0.17 84.48 0.37 84.50
3 0.17 84.40 0.38 84.53
4 0.17 83.85 0.38 84.38
5 0.17 84.53 0.38 84.48
6 0.17 83.95 0.38 84.40
7 0.17 84.38 0.38 84.25
8 0.17 84.68 0.37 84.40
9 0.17 84.10 0.37 84.45
10 0.17 84.63 0.37 84.68
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TABLE 26. Computation times and classification scores for learn-
ing w, (n = 103,10%) for sumguide2 dataset using each variant of
Algorithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 72.45 0.58 74.49
2 0.17 71.43 0.58 74.49
3 0.17 72.45 0.58 77.55
4 0.18 72.45 0.59 73.47
5 0.17 76.53 0.68 76.53
6 0.17 65.31 0.58 75.51
7 0.17 71.43 0.57 75.51
8 0.17 72.45 0.68 75.51
9 0.17 69.39 0.68 73.47
10 0.17 81.63 0.68 74.49

TABLE 27. Computation times and classification scores for learning
wy, (n = 103, 10%) for wine dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 97.78 0.59 97.78
2 0.17 97.78 0.57 97.78
3 0.17 97.78 0.68 97.78
4 0.17 97.78 0.57 97.78
5 0.17 97.78 0.58 97.78
6 0.17 97.78 0.47 97.78
7 0.17 97.78 0.57 97.78
8 0.18 97.78 0.68 97.78
9 0.17 97.78 0.58 97.78
10 0.17 97.78 0.58 97.78
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TABLE 28. Computation times and classification scores for learning
wy (n = 103,10%) for segment dataset using each variant of Algo-
rithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.28 80.62 1.18 80.10
2 0.28 77.85 1.29 79.76
3 0.30 78.89 1.69 78.72
4 0.28 81.49 1.39 79.58
5 0.28 78.03 1.88 78.55
6 0.28 79.07 1.18 80.80
7 0.28 75.61 1.28 79.24
8 0.29 78.20 1.40 79.58
9 0.28 80.62 1.29 79.41
10 0.28 79.58 1.39 79.93

TABLE 29. Computation times and classification scores for learning
wy, (n = 103,10%) for breast-cancer dataset using each variant of
Algorithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 97.08 0.37 97.08
2 0.17 97.08 0.48 97.08
3 0.18 97.08 0.49 97.08
4 0.18 97.08 0.38 97.08
5 0.18 97.08 0.58 97.08
6 0.18 97.66 0.38 97.08
7 0.18 97.08 0.38 97.08
8 0.17 97.08 0.37 97.08
9 0.17 97.66 0.37 97.08
10 0.18 97.08 0.37 97.08
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TABLE 30. Computation times and classification scores for learning
wy, (n = 103, 10%) for sonar dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 67.31 0.38 65.38
2 0.17 71.15 0.48 65.38
3 0.17 59.62 0.48 71.15
4 0.17 65.38 0.37 67.31
5 0.17 67.31 0.47 67.31
6 0.17 71.15 0.37 63.46
7 0.17 67.31 0.37 71.15
8 0.17 67.31 0.48 67.31
9 0.17 65.38 0.48 71.15
10 0.17 71.15 0.49 67.31

TABLE 31. Computation times and classification scores for learning
wy, (n = 103, 10%) for splice dataset using each variant of Algorithm 2
when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 83.03 0.38 84.09
2 0.17 80.41 0.38 83.54
3 0.17 82.44 0.48 84.37
4 0.17 81.06 0.48 83.82
5 0.17 82.62 0.47 83.82
6 0.17 76.37 0.37 83.72
7 0.17 79.31 0.38 83.63
8 0.17 84.14 0.47 83.95
9 0.18 80.46 0.49 83.45
10 0.18 79.22 0.59 84.09
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TABLE 32. Computation times and classification scores for learning
wy, (n = 103,10%) for german.numer dataset using each variant of
Algorithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 67.60 0.38 70.80
2 0.17 67.60 0.48 72.40
3 0.19 66.80 0.47 70.40
4 0.17 69.20 0.47 70.80
5 0.17 69.60 0.48 70.80
6 0.17 65.20 0.38 69.60
7 0.17 66.40 0.48 71.20
8 0.18 70.40 0.47 69.60
9 0.17 63.60 0.48 72.00
10 0.18 65.20 0.48 70.80

TABLE 33. Computation times and classification scores for learn-
ing wy, (n = 103,10%) for australian dataset using each variant of
Algorithm 2 when A := 0.1 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 86.13 0.37 86.71
2 0.17 86.71 0.38 86.71
3 0.17 87.86 0.48 86.71
4 0.18 87.28 0.37 86.71
) 0.17 87.28 0.49 86.71
6 0.17 80.92 0.38 86.71
7 0.18 85.55 0.38 86.71
8 0.17 86.71 0.37 86.71
9 0.18 86.71 0.48 86.71
10 0.17 86.71 0.48 86.71

Table 34 shows that Variants 5 and 10 had slightly higher scores than the other
variants for 1000 iterations.
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TABLE 34. Average time and score for each variant with A := 0.1

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.19 78.87 0.51 79.94
2 0.19 78.70 0.54 79.96
3 0.19 78.63 0.61 80.36
4 0.19 78.79 0.54 79.89
5 0.19 79.14 0.63 79.93
6 0.20 77.03 0.50 79.58
7 0.19 77.52 0.53 80.18
8 0.20 78.55 0.59 79.97
9 0.19 77.70 0.57 80.15
10 0.19 79.18 0.60 79.93

Variants 3, 7, and 9 had average scores of over 80% for 10,000 iterations. Table 35
shows the t-test results for Variants 2-10 compared to Variant 1 calculated using
the data in Tables 19 to 33.

TABLE 35. T-test results for Variants 2-10 compared to Variant 1
with A := 0.1

Variant 1,000 iterations 10,000 iterations

2 0.67 0.90
3 0.68 0.37
4 0.79 0.77
) 0.51 0.98
6 0.03 0.11
7 0.01 0.56
8 0.63 0.88
9 0.01 0.62
10 0.71 0.96

The results for most variants were similar to those for Variant 1. On the whole,
the results were a little lower than when A = 1.0 (Table 18). For Variants 6, 7,
and 9, the results for 1000 iterations were lower than 0.05, indicating a significant
difference between Variant 1 and Variants 6, 7, and 9.

4.4. Experimental results when A := 10. Finally, we evaluated the performance
of each variant of Algorithm 2 when a larger value of A (A := 10) was used as the
parameter of Problem 4.1. Tables 36-50 show the computation times for acquiring
classifier w, (n = 103,10%) and the classification scores for the test datasets. The
computation method used for evaluating the classification scores was the same as
that described in Subsection 4.2.
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TABLE 36. Computation times and classification scores for learning
wy, (n = 103,10%) for ala dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 71.01 0.48 70.76
2 0.17 70.17 0.48 70.76
3 0.18 70.27 0.58 70.84
4 0.27 70.37 0.48 70.87
5 0.28 70.92 0.58 70.34
6 0.27 71.29 0.48 70.77
7 0.18 70.49 0.58 70.63
8 0.28 70.88 0.58 70.58
9 0.17 70.66 0.47 70.64
10 0.17 70.83 0.58 70.87

TABLE 37. Computation times and classification scores for learning
wy, (n = 103,10%) for a2a dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 70.08 0.58 70.63
2 0.18 70.45 0.49 70.80
3 0.18 71.74 0.58 71.11
4 0.19 70.30 0.49 70.69
5 0.18 70.87 0.57 70.95
6 0.17 70.94 0.48 70.86
7 0.17 71.14 0.48 70.63
8 0.17 70.84 0.48 70.75
9 0.17 70.73 0.48 70.61
10 0.27 70.83 0.58 70.85
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TABLE 38. Computation times and classification scores for learning
wy, (n = 103,10%) for a3a dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.28 70.92 0.48 70.30
2 0.27 70.13 0.48 70.51
3 0.28 70.29 0.58 70.34
4 0.17 70.81 0.48 70.81
5 0.18 70.29 0.58 70.35
6 0.17 70.47 0.48 70.49
7 0.18 70.68 0.48 70.14
8 0.17 70.05 0.58 70.01
9 0.18 70.59 0.48 70.26
10 0.27 70.33 0.58 70.27

TABLE 39. Computation times and classification scores for learning
wy, (n = 103,10%) for diabetes dataset using each variant of Algo-
rithm 2 when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 67.71 0.38 67.19
2 0.18 67.19 0.48 67.71
3 0.18 67.19 0.48 68.23
4 0.18 68.75 0.48 69.27
5 0.19 67.71 0.59 67.19
6 0.17 67.71 0.38 68.23
7 0.17 68.23 0.48 67.71
8 0.18 69.79 0.48 67.19
9 0.17 67.71 0.48 67.71
10 0.18 68.23 0.49 66.67
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TABLE 40. Computation times and classification scores for learning
wy, (n = 103,10%) for dna dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.28 82.88 0.78 84.74
2 0.27 84.99 0.78 84.99
3 0.28 84.65 0.90 84.57
4 0.27 83.31 0.79 84.91
5 0.28 83.05 0.99 84.91
6 0.27 83.56 0.68 84.57
7 0.27 85.41 1.11 84.49
8 0.27 84.23 0.88 84.49
9 0.28 84.49 0.78 85.16
10 0.27 84.32 0.88 84.57

TABLE 41. Computation times and classification scores for learning
wy, (n = 103,10%) for iris dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 73.68 0.58 73.68
2 0.17 73.68 0.57 73.68
3 0.18 73.68 0.70 73.68
4 0.17 73.68 0.68 73.68
5 0.18 73.68 0.67 73.68
6 0.17 73.68 0.58 73.68
7 0.18 73.68 0.68 73.68
8 0.17 73.68 0.68 73.68
9 0.17 73.68 0.58 73.68
10 0.17 73.68 0.67 73.68
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TABLE 42. Computation times and classification scores for learn-
ing w, (n = 103,10%) for sumguidel dataset using each variant of
Algorithm 2 when X := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 84.18 0.37 84.38
2 0.18 84.25 0.38 84.43
3 0.18 84.58 0.48 84.35
4 0.17 84.43 0.48 84.43
5 0.17 84.43 0.47 84.33
6 0.17 83.98 0.38 84.35
7 0.17 84.08 0.37 84.40
8 0.18 84.10 0.38 84.23
9 0.17 84.43 0.37 84.35
10 0.17 84.33 0.47 84.38

TABLE 43. Computation times and classification scores for learn-
ing w, (n = 103,10%) for sumguide2 dataset using each variant of
Algorithm 2 when X := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 69.39 0.59 71.43
2 0.18 66.33 0.68 69.39
3 0.19 72.45 0.88 69.39
4 0.17 69.39 0.68 70.41
5 0.18 67.35 0.69 68.37
6 0.18 69.39 0.58 70.41
7 0.17 69.39 0.79 70.41
8 0.17 72.45 0.68 70.41
9 0.17 67.35 0.68 69.39
10 0.18 72.45 0.67 69.39
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TABLE 44. Computation times and classification scores for learning
wy, (n = 103, 10%) for wine dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 91.11 0.58 91.11
2 0.28 91.11 0.68 88.89
3 0.18 88.89 0.67 88.89
4 0.17 91.11 0.57 88.89
5 0.17 88.89 0.67 88.89
6 0.17 88.89 0.58 91.11
7 0.18 93.33 0.69 88.89
8 0.17 91.11 0.68 91.11
9 0.17 91.11 0.67 88.89
10 0.17 88.89 0.68 91.11

TABLE 45. Computation times and classification scores for learning
wy (n = 103,10%) for segment dataset using each variant of Algo-
rithm 2 when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.28 59.86 1.29 62.63
2 0.29 63.84 1.52 61.94
3 0.29 66.09 1.60 62.63
4 0.28 60.55 1.39 62.46
5 0.28 60.55 1.48 64.88
6 0.28 61.07 1.40 63.49
7 0.28 65.57 1.40 64.88
8 0.28 64.88 1.49 65.92
9 0.28 59.86 1.28 63.84
10 0.28 59.52 1.48 63.49
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TABLE 46. Computation times and classification scores for learning
wy, (n = 103,10%) for breast-cancer dataset using each variant of
Algorithm 2 when X := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 97.08 0.37 97.08
2 0.17 97.08 0.48 97.08
3 0.18 97.08 0.48 97.08
4 0.17 97.08 0.48 97.08
5 0.17 97.08 0.48 97.08
6 0.17 97.08 0.48 97.08
7 0.18 97.08 0.47 97.08
8 0.17 97.08 0.47 97.08
9 0.17 97.08 0.47 97.08
10 0.17 97.08 0.47 97.08

TABLE 47. Computation times and classification scores for learning
wy, (n = 103, 10%) for sonar dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.17 75.00 0.38 73.08
2 0.17 76.92 0.48 75.00
3 0.18 75.00 0.48 76.92
4 0.17 76.92 0.48 75.00
5 0.17 73.08 0.47 75.00
6 0.17 75.00 0.38 75.00
7 0.18 73.08 0.47 76.92
8 0.17 73.08 0.48 76.92
9 0.17 75.00 0.47 75.00
10 0.18 78.85 0.48 75.00
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TABLE 48. Computation times and classification scores for learning
wy, (n = 103, 10%) for splice dataset using each variant of Algorithm 2
when A := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 81.70 0.37 82.11
2 0.18 82.34 0.47 83.26
3 0.19 82.25 0.48 82.62
4 0.17 80.14 0.48 82.34
5 0.17 82.16 0.48 82.53
6 0.17 81.06 0.38 82.62
7 0.18 81.10 0.58 82.11
8 0.17 79.68 0.47 82.62
9 0.17 81.89 0.48 82.71
10 0.17 81.70 0.48 82.57

TABLE 49. Computation times and classification scores for learning
wy, (n = 103,10%) for german.numer dataset using each variant of
Algorithm 2 when X := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 65.60 0.38 70.00
2 0.17 69.20 0.48 70.00
3 0.17 69.20 0.49 70.40
4 0.17 64.00 0.48 66.80
5 0.17 68.80 0.48 69.60
6 0.17 70.80 0.48 69.60
7 0.17 70.40 0.47 71.20
8 0.17 68.80 0.48 68.80
9 0.17 69.20 0.48 70.40
10 0.17 67.60 0.48 70.00
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TABLE 50. Computation times and classification scores for learn-
ing wy, (n = 103,10%) for australian dataset using each variant of
Algorithm 2 when X := 10 was used

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.18 82.66 0.37 83.82
2 0.17 82.08 0.48 83.82
3 0.17 80.92 0.47 83.82
4 0.17 84.97 0.48 83.82
5 0.17 83.82 0.47 83.82
6 0.17 84.97 0.37 84.39
7 0.17 84.97 0.48 83.82
8 0.17 84.97 0.48 83.82
9 0.18 83.24 0.47 83.82
10 0.17 81.50 0.47 83.82

Table 51 shows that the average scores were lower than when A = 1.0.

TABLE 51. Average time and score for each variant with A := 10

1,000 iterations 10,000 iterations
Variant Time [s] Score [%]  Time [s] Score [%]

1 0.20 76.19 0.53 76.86
2 0.20 76.65 0.60 76.82
3 0.20 76.95 0.66 76.99
4 0.19 76.39 0.59 76.76
5 0.20 76.18 0.65 76.79
6 0.19 76.66 0.54 77.11
7 0.19 77.24 0.64 77.13
8 0.19 77.04 0.62 77.17
9 0.19 76.47 0.58 76.90
10 0.20 76.67 0.63 76.92

Table 52 shows the T-test results for Variants 2-10 compared to Variant 1 calcu-
lated using the data in Tables 36 to 50.
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TABLE 52. T-test results for Variants 2-10 compared to Variant 1
with A := 10

Variant 1,000 iterations 10,000 iterations

2 0.34 0.87
3 0.20 0.72
4 0.48 0.78
5 0.97 0.84
6 0.29 0.18
7 0.07 0.46
8 0.12 0.40
9 0.38 0.88
10 0.25 0.80

The results for most variants were similar to those for Variant 1. On the whole
the results were lower than when A = 1.0 (Table 18) and A = 0.1 (Table 35).

5. CONCLUSION

This paper presented a stochastic optimization algorithm plus variants for solv-
ing convex stochastic optimization problems. The proposed algorithm achieves a
convergence rate of O(n~'/2). Numerical comparison of the performances of the
variants with Pegasos for specific support vector machine optimization problems
using LIBSVM datasets showed that their computation times for learning support
vector machines were shorter and their classification scores were higher. In par-
ticular, t-test results showed that the average performances of the variants were
significantly different from that of Pegasos.
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