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HALPERN-TYPE METHOD FOR NON-SELF NONEXPANSIVE
MAPPINGS IN BANACH SPACES

HABTU ZEGEYE AND OGANEDITSE A. BOIKANYO

ABSTRACT. The purpose of this paper is to introduce a Halpern-type algorithm
and prove that the algorithm converges strongly to a common fixed point of a
finite family of non-self nonexpansive mappings in Banach spaces. The algorithm
does not require metric projection or sunny nonexpansive retraction mapping. In
addition, a numerical example which supports our main result is presented. Our
results improve and unify most of the results that have been proved for this
important class of nonlinear operators.

1. INTRODUCTION

Let K be a nonempty, closed and convex subset of a real Banach space E. A
mapping T : K — E is called contraction if there exists L € [0, 1) such that

(1.1) [Tz — Ty|| < Ll|lz — y|| for all 2,y € K.

If in this case, (1.1) is satisfied with L = 1, then the mapping T is called a non-
expansive. Approximation of fixed points of nonlinear mappings is an active area
of nonlinear functional analysis due to the fact that many nonlinear problems can
be reformulated as fixed point equations of nonlinear mappings. This research area
dates back to Picard’s and Banach’s time. In fact, the well-known Banach contrac-
tion principle states that the Picard iterates {T"z(} converge to the unique fixed
point of T', whenever T is a contraction of a complete metric space. However, if T'
is not a contraction (nonexpansive, say), then the Picard iterates {T™z¢} fail, in
general, to converge; hence, other iterative methods are needed.

The most general iterative algorithm for nonexpansive mappings studied by many
authors is the following scheme known as Mann iteration scheme in the light of
Mann [8].

(1.2) Tnt1 = (1 —ap)zy + apyTa,,n > 1,

where {a,,} is a sequence in the unit interval (0,1), and satisfies certain mild
conditions. Mann " s algorithm (1.2) has been studied extensively (see, for exam-
ple, [14,18,20,24,26-28]), and in particular, it is known that if 7" is nonexpansive
and has a fixed point, then the sequence {x,} generated by Mann s algorithm (1.2)
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converges weakly to a fixed point of T provided that the sequence {«, } satisfies cer-
tain conditions. This algorithm, however, does not converge in the strong topology
in general (see, eg, [3]).

Other iteration processes have been also used to approximate fixed points of
nonexpansive mappings in Hilbert and/or Banach spaces (see, eg, [7,25]). One of
them is now known as Halpern’s iteration process [7].

Halpern [7] initiated the study of an (explicit) iterative method in Hilbert spaces:

(1.3) Tt = Qpy1t+ (1 — apq1)Txn,n >0,

where u, xg are arbitrary initial points in K, T' is nonexpansive mapping of K into
itself and {ay,} is a control sequence in (0,1). He proved the strong convergence of
the sequence {z,} to a fixed point of T" provided that {a,,} C (0, 1) satisfies certain
mild conditions.

Next, consider r nonexpansive self-mappings 71, Ts, ..., T,.. For a sequence {a,,} C
(0,1) and an arbitrary u € K, let the sequence {z,} in K be iteratively defined by
ro € K

(1.4) Tnt1 = Qpp1t + (1 — apy1)Thp12pn,n > 0,

where T, =T}, (mod r)-

In 1996, Bauschke [2] studied the iterative process (1.4) for finding a common
fixed point of a finite family of nonexpansive mappings. Under suitable conditions
he proved that the sequence {z,} converges strongly to a common fixed point Ppu
of Th,Ty,...,T; in K, where Pp : H — F = N]_, F(T;) is the metric projection, in
Hilbert space.

In 2002, Takahashi et al. [19], extended Bauschke’s result to uniformly convex
Banach spaces. More precisely, they proved the following result.

Theorem 1.1. Let K be a nonempty, closed and convexr subset of a uniformly
conver Banach space E which has a uniformly Gateaux differentiable norm. Let
T,: K> K, i=1,...,r, be a family of nonexpansive mappings with

F:=()F(T) = F(T,T,-1..Ty)
=1

= F(Ty_1Tr_o.. TAT})
= .. F(T\T,..Ty) # 0.

For given u,xg € K, let {z,,} be generated by the algorithm in (1.4) where {ay,} is
a real sequence which satisfies the following conditions: (i) lim, oo o, = 0; (ii)
Yoo g =00 and (iit) Y o7 o [Gnyyr — | < 00. Then {z,} converges strongly to
a common fixed point of {T1,T5, ..., T, }.

Furthermore, in 2006, Zhou et al. [21] proved the following result in Banach spaces
which has a weakly continuous normalized duality mapping .JJ, where the mapping
J from E into 2F" is defined by

Jo={f"€ E": (z, ) = ||l=I]* = [|/|I*},
where (.,.) denotes the generalized duality pairing. It is well known that if E* is
strictly convex then J is single-valued and if the norm of F is uniformly Gateaux
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differentiable then the duality mapping J is norm-to-weak™ uniformly continuous
on bounded subsets of E (see, [5] for the details).

Theorem 1.2. Let K be a nonempty, closed and convex subset of a reflexive Banach
space B which has a uniformly Gateaux differentiable norm, and a weakly continuous
duality mapping J. Let T; : K — K, i = 1,...,r, be a family of nonexpansive map-
pings with F := (,_, F(T;) # 0 and ";_, F(T;) = F(T,T,-1..T1) = F(T1T,...T»)
=..=F(T,_1T,—2..ThT,). Assume that every weakly compact convex subset of E
has the fixed point property for monexpansive mappings. For given u,xg € K, let
{zn} be generated by the algorithm in (1.4) where {a,} is a real sequence which
satisfies the following conditions: (i) limy, oo an = 0; (i) > o, = 0o and {x,}
is weakly asymptotically reqular. Then {x,} converges strongly to a common fized
point of {T1,T>,...,T;}.

Remark 1.3. We remark that in all the above results, the operator T remains a
self-mapping of a nonempty, closed and convex subset K of a Banach space E. If,
however, the domain of T, D(T'), is a proper subset of E (and this is the case in
several applications), and T maps D(T) into E, then the iterative processes (1.3)
and (1.4) studied by these authors may fail to be well defined.

In order to deal with the non-self mappings, many researchers have made sig-
nificant progress by employing the concept of projection or sunny nonerpansive
retraction of the real Banach spaces F onto its closed and convex subset K of F
(see, e.g. [9-11,16,20]).

In 2008, Matsushita and Takahashi [11] studied strong convergence theorem for
nonexpansive non-self-mappings in the framework of a real uniformly convex Banach
spaces. In fact, they proved the following theorem.

Theorem 1.4. Let E be a uniformly convexr Banach space whose norm is uniformly
Gateaux differentiable, let K be a nonempty, closed and conver subset of E and let
T be a nonexpansive mapping from K into E with F(T) # (. Suppose that K is
a sunny nonexpansive retract of E. Let {ay} be a sequence such that 0 < o, < 1,
lim, 00ty =0 and >, = 00 and Y |apy1 — an| < 00. Let u and xg be elements
of K. Suppose that {x,} is given by

(1.5) Tnt1 = aptu+ (1 — ) QT xy, for n=10,1,2, ...,

where @ is a sunny nonexpansive retraction from E onto K. Then {x,} converges
strongly to z € F(T).

Several authors have also studied implicit and explicit iterative schemes of the
type (1.5) (see, e.g., [7,9-11,13,15,16,23] and the references therein) for non-self
mappings. However, we observe that the method of calculating ) is generally
difficult in applications, even in Hilbert spaces when () is metric projection. It
may require an approximating algorithm for itself. To avoid the necessity of using
an auxiliary mapping @, Colao and Marino [6] introduced a new search strategy
for the coefficient o, which makes Mann algorithm well defined in the Hilbert
space settings. They obtained weak and strong convergence of the algorithm for
nonexpansive non-self mappings in Hilbert spaces.
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It is our purpose in this paper to define an algorithm and obtain a strong conver-
gence theorems to a fixed point of a finite family of non-self nonexpansive mappings
in Banach spaces more general than Hilbert spaces. The involvement of the projec-
tion or sunny nonexpansive retraction mapping in the algorithm is dispensed with.
Our results improve Theorem MT and the results of Colao and Marino [6] to Ba-
nach spaces more general than Hilbert spaces and/or to a finite family of nonlinear
non-self mappings.

2. PRELIMINARIES

A real Banach space E with dual E* is called strictly convex if for all x,y € F,
x # vy, ||z|| = |ly|]| = 1, we have || Az + (1 —=N)y|| < 1, VA € (0,1). The Banach space
E is said to be uniformly convez if, given € > 0, there exists § > 0, such that, for
all z,y € E with ||lz|| <1, [ly| <1 and |z —y| > ¢, [[3(z+y)|| <1-6. It is well
known that L,, ¢, and Sobolev spaces W), (1 < p < 00), are uniformly convex.

The norm is said to be uniformly Gateaux differentiable if for each y € S1(0) :=
{z € E:||z|| = 1} the limit lim; o w exists uniformly for z € S1(0). It is
well known that L, spaces, 1 < p < oo, have uniformly Gateaux differentiable norm
(see e.g., [17]). Furthermore, if E has a uniformly Gateaux differentiable norm, then
the duality mapping is norm-to-weak* uniformly continuous on bounded subsets of
E.

Let K C FE be a closed, convex and ) be a mapping of F onto K. Then @
is said to be sunny if Q(Qz + t(x — Qz)) = Qux for all z € F and t > 0. A
mapping Q of E into E is said to be a retraction if Q*> = Q. If a mapping Q is
a retraction, then Qz = z for every z € R(Q), range of Q). A subset K of E is
said to be a sunny nonerpansive retract of E if there exists a sunny nonexpansive
retraction of F onto K and it is said to be a nonexpansive retract of E if there exists
a nonexpansive retraction of E onto K. If E = H, the metric projection Py is a
sunny nonerpansive retraction from H to any closed conver subset of H.

Let K be a nonempty subset of a Banach space E. For x € K, the inward set
of z, Ix(x), is defined by Ix(z) := {x + M(w —z) : w € K, A > 1}. A mapping
T : K — FE is called inward if Tx € Ix(x) for all x € K, T is called weakly inward
if Tx € cl[Ik(z)] for all x € K, where cl[Ix(z)] denotes the closure of the inward
set. Every self-map is trivially inward.

In the sequel, we shall need the following lemmas.

Lemma 2.1 ([12]). Let E be a smooth real Banach space and J be the duality
mapping. Then, for each x,y € E, one has

e +ylI? < [l2l]* + (y, J(z + 1))

Lemma 2.2 ([23]). Let K be a nonempty, closed and convex subset of a real Banach
space E. Let T : K — FE be a nonexpansive mapping satisfying weakly inward
condition with F(T) # 0 and f : K — K be a contraction mapping. Then for
t € (0,1), there exists a sequence {y;} C K satisfying the following condition:

(2.1) ye = (1 =) f(ye) +tT(ye).
Furthermore, if E is a strictly conver and reflexive real Banach space having a
uniformly Gateauz differentiable norm, then {y.}converges strongly to a fizved point
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z of T ast — 17 such that z is the unique solution in F(T) to the following
variational inequality:

(2.2) (f =Dz, J(y—=2)) <0, forally € F(T).

Lemma 2.3 ([4]). Let K be a nonempty, closed and convex subset of a strictly
conver Banach space E. Let T; : K — E, i =1,2,...,7 be a family of nonexpansive
mappings such that (\,_, F(T;) # 0. Let o, a1, 2, ..., op be real numbers in (0,1)
such that ZLO oa; =1 and S .= apgl + aqT1 + ... + o, 1. Then S is nonexpansive
and F(S) =Ni_, F(T3).

Lemma 2.4 ([22]). Let {a,} be a sequence of nonnegative real numbers satisfying
the following relation:

ant+1 < (1 — ap)an + andp, n > ny,

where {o,} C (0,1) and {0,,} C R satisfying the following conditions: (i) > o" ;c =
00, and (i) imsup,, o 0 <0 or > 7 (6, < 0o0. Then, lim, o0 a, = 0.

Let p be a continuous, linear functional on [*° and let (ag,ai,...) € I*°. We
write py,(ay) instead of p((ao,ai,...)). We call p a Banach limit [1] when pu satisfies
llel] = pn(1) = 1 and p(ap+1) = play) for all (ag,a,...) € 1°°. We shall use the
following lemma.

Lemma 2.5. Let a be a real number and let (ag,a1,...) € I°° such that p,(ay) < a
for all Banach limit p and limsup,,_, o (an+1 — an) < 0. Then limsup,,_,., an < a.

The proof of the following lemma basically uses the method of proof of Lemma
1 of Colao and Marino [6].

Lemma 2.6. Let K be a nonempty, closed and convex subset of E. LetT : K — E
be a mapping. Define h: K — R by h(x) =sup{\ > 0: (1 —XN)z+ ATz € K}. Then
for any x € K the following hold:

(1) h(z) €10,1] and h(z) =1 if and only if Tx € K;

(2) if B €0, h(x)], then (1 — B)x + pTx € K;
(3) if T is an inward mapping, then h(x) > 0;
(4) whenever, Tx ¢ K, (1 — h(z))x + h(x)Tx € OK.

Proof. We note that the proofs of (1) and (2) follow directly from the definition
of h(x). Now, we prove (3). Suppose that T is an inward mapping. Then for any
arbitrary fixed element v we have Tx = = + c¢(v — z) for some ¢ > 1, € K. This
implies that

c
and hence
1 1
(2.3) -Tx+ (1 - f)x € K, for some ¢ > 1.
c c
Therefore,

(2.4) h(z) =sup{A>0: (1 =Nz + Tz € K} > E > 0.
c
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(4) Note that h(x) > 0 by (3) and that (1 — h(x))z + h(x)Tx € K. Now, let
{wn} C (h(z),1) be a sequence of real numbers converging to h(z) and note that
by the definition of h(x), we have z, = (1 — wy)x + w,Tz ¢ K, for any n € N.
Since wy, — h(x) and

|zn = (1 = h(z))z + h(2)T(2))|| = [[(1—wn)z+w,Tz - ((1 - h(z))z
+h(z)Tx)||
= |wp — h(2)||z — Tz,

it follows that z, — (1 — h(x))x + h(z)Tx € K. Therefore,

(1—h(z))x + h(z)Tz € OK.

3. MAIN RESULTS

Theorem 3.1. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E which has a uniformly Gateaux differentiable
norm. Let f : K — K be a contraction with constant 8. LetT; : K - E, i =1,...,1
be a finite family of inward nonexpansive mappings with F = (\i_; F(T;) # 0. Let
{zn} be generated from arbitrary initial point zo € K by

Ao = min{%, h(zo)};
(3.1) Tnt1 = A f(xn) + (1 — an)(ASzpn + (1 — An)xn);
Ant1 € (0, min{ A\, h(xpy1)}],n >0,

where S = apl + a1 Ty +axTo+ ...+ a,; Ty, for 0<a; <1,i=0,1,...,r, > i ja; =1,
and Ay :=sup{\ > 0: (1 — Nz, + ASz,, € K}. If the real sequence {a,} satisfies
the following conditions: (i) iMoo o = 0; (19) Yooy |ant1 — an| < 00; (it7)
Yooy = 00, and there exists € > 0 such that A, > €, for alln > 0, then {x,}
converges strongly to some common fized point z of the family T; (i = 1,2,...,r)
such that z is the unique solution in F to the following variational inequality:

(3.2) (f=1z,J(y—2)) <0, forally € F.

Proof. By Proposition 3.4 of [4] we obtain that S is weakly inward nonexpansive
mapping. Let y, = (1 — \p)zp + A\ySxp,n > 0. Then we have 5,11 = o f(z)) +
(1—apn)yn,n > 0. Now, for p € F(S), one easily shows by induction that ||z, —p|| <
max{||zo — pll, ﬁ\\f(p) —p||}, for all integers n > 0, and hence {x,}, {f(x,)} and
{Sz,} are bounded. In addition, from (3.1) we obtain

[Tns1 —2nll = [[(1 = an)(Yn — Yn-1) + (an — @n—1)(f(Tn-1) — Yn-1)
+an(f(@n) — f(@n—1)l;
< (= an)llyn = yn-all + lon — an—1l[|f(zn-1) — yn-1ll
+an BT — zn-1l],

(3.3) (1 = an)llyn — Yn—1l| + lan — an_1|M + anBl|zn — Tn-1]],

IN
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where M :=sup || f(zn-1) — Yn—1]| < 00.
Hyn = ynall = [[(1 = An)@n + AnSzn = [(1 = An—1)Zn—1 + An—1Szn1]||
= ||A(Sxp — Szp_1) + (A — An—1)STpn—1 + (1 = M) (T, — Tp—1)
—(An = A1) Tn1]|
< Anllzn = zpall + A = Anca|[|STa—a || + (1 = An)[|2n — 2n—1]|
A0 = An—l[#n-1]|
(3-4) < lzn = znall + A = A (19201 + [[2n-1l])-
Thus, from (3.3) and (3.4) we obtain
|Zn41 —2nll < (1= 1= B)an)||lzn — za-a|l + [An = Apa| M’
+la — a1 | M,
where M’ := sup, {M + ||Szp_1]| + ||zn-1]|} < co. Note that Y > ;| Ay — Ap_1] <

oo (since {A\,} C [0,1] is monotone decreasing) and conditions (i) — (i¢) of the
hypotheses are satisfied. Thus, with the use of Lemma 2.4 we obtain that

(3.5) lim ||zp4+1 — zn]| — 0.
n—oo
Furthermore, from (3.1) we have ||zp11 — ynl| = anl|f(2n) — yn|| = 0 as n — oo,
and
(3.6) |zn = ynll < llen = nial] + [[2n11 = ynll = 0 as n — oo

Thus, from the definition of y,, and the fact that inf,,{\,} > 0, we obtain
1
(3.7) Hxn—S:an:)\—Hyn—xnﬂ—)()asn—)oo.
Now, for each t € (0,1), let z; € K be the unique fixed point of the contraction
mapping S; (see Lemma 2.2) given by
Six = (1—-t)Sz+tf(z), v € K.
Then,
2t — xn = t(f(2t) — 7n) + (1 = 1)(Sz — xp).
But the above implies that
2t — xn||? = (1—8)(Sz — xp, J (2t — x0)) + t{f(2) — Ty J (2t — 1))
(1 —=t){(Szt — Sxp, J (2t — zp)) + (L = t){(Szy, — 2, J (20 — 7))
+(f (2) — 20, J (20 — w)) + tl |2t — 2
<l = 2P+ (1= )| |0 — Saa| ||| (2 — 22)]|
+H(f(2t) — 21, J (2t — w0)),

and hence,

() = 21, — 2 < LM = 5all

Since {x,}, {z:} and hence {Sx,} are bounded and ||z, — Sz,|| = 0 as n — oo it
follows from the last inequality that

(3.8) tn(f(2t) = 2t, J (@0 — 2¢)) < 0.

— Tpl|.
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Using the fact that E has a uniformly Gateaux differentiable norm and tending
t — 0, inequality (3.8) provides

(3.9) pn(f(2) = 2, (2n — 2)) < 0.

On the other hand, from (3.5) and the fact that J is norm to weak® uniformly
continuous we have

(310)  lim [(f(2) = 2, J(@ns1 = 2)) = (F(2) = 2, T (2n — 2))[ = 0.
Hence, by Lemma 2.5 we obtain that
(3.11) limsup(f(z) — z, J(z, — 2)) < 0.

Now, from (3.1) and Lemma 2.1 we get

i — 21 < lan(f(@n) = f(2) + (1 = an)(yn — 2)|
2, (f(2) — 2, J(xpt1 — 2))

< (anBllzn =2l + (1 = an)||zn — 2[])°
+200(f(2) = 2, J (Tnt1 — 2))
< (1= an(1=B) e — 2|1° + 200 (f(2) = 2, I (Tnt1 — 2))
< (L= an(l=P)lzn — 21> + 200 (f (2) = 2, T (@nt1 — 2)),
< (1= an(1 = B))lln — 21 + 20n{f(2) — 2 J(wn — 2)),
+20,(f(2) — 2, J (xn41 — 2) — J(xn, — 2))
< (1_0‘71(1_6)>Hzn_ZH2+ananv

where o, = 26, +2(f(2) — 2, J(¥nt1 — 2) — J(xp — 2)), for B, == (f(2) — 2, J(zn, —
z)). Note that from (3.10) and (3.11) we have that limsup o, < 0. Therefore, by
Lemma 2.4, {x,} converges strongly to a common fixed point z of {11,T%,...,T;}.
Furthermore, by Lemma 2.2, the point z satisfies the inequality (3.2). O

Remark 3.2. We remark that, in practical applications, we may consider Apy1 =
min{A,, h(zn41)}, where Ag = min{3, h(wo)}; and h(zyn) = (1 — (35)™) for in =
maz{i € N : (35) @, + (1 — (35)%) Sz, € K}.

We also note that Ao = min{3, h(xo)} could be replaced with Ao = min{a, h(zo)};
where a € (0,1) is a fived and arbitrary value.

If, in Theorem 3.1, we consider a single nonexpansive mapping, then we have the
following corollary.

Corollary 3.3. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E which has a uniformly Gateauz differentiable
norm. Let f: K — K be a contraction. Let T : K — FE, be inward nonexpansive
mapping with F(T) # (. Let {x,} be generated from arbitrary initial point zo € K
by

Ao = min{%, h(zo)};

Tnt+1 = anf(xn) + (1 - an)()\nTxn + (1 - )\n)'fl:n)a
Ant1 € (0, min{\,, A(2p41)}],n >0,
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where Ay, :=sup{\ > 0: (1 — N, + ATz, € K}. If the real sequence {ay,} satisfies
the following conditions: (i) limy oo o = 0; (18) Yooy |@ni1 — an| < 00; (ii7)
Yooy o = 00, and there exists € > 0 such that A, > €, for alln > 0, then {x,}
converges strongly to z € F(T) such that z is the unique solution in F(T) to the
following variational inequality:

(3.12) (f =Dz J(y —2)) <0, forally € F(T).

If, in Theorem 3.1, T; (i = 1,...,7) are self-mappings then the requirements that
T; (i = 1,2,...r) are inward, and the assumption that there exists e > 0 such that
An > ¢, for all n > 0, may not be needed. In fact, Theorem 3.1 reduces to the
following corollary which is one of the main results in [25].

Corollary 3.4. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E which has a uniformly Gateauz differentiable
norm. LetT; : K — K, ©« = 1,...,7 be a family of nonexpansive mappings with
F=N—1 F(T}) #0. Let f : K — K be contraction. For arbitrary x¢ € K, let
{z,} be generated by the algorithm

1
Tpy1 = anf(an) + (1 — an)i(sxn + xp);

where S = apl + a1y +aTo+ ...+ a,; Ty, for 0<a; <1,i=0,1,...,r, > i ja; =1.
If the real sequence {ay,} satisfies the following conditions: (i) lim,_oo an = 0;
(1) Yoo lamyr — an| < o005 (iii) > 07 g o = 00, then {x,} converges strongly to
some common fixed point z of the family T; (i = 1,2,...,7) such that z is the unique
solution in F to the following variational inequality:

(3.13) (f =Dz, J(y—2)) <0, forallyc F.
Proof. Note that h(z,) = 1, for all n > 0 and hence the result follows from Theorem
3.1 with A, = 1. O

We observe that if f(x) =0 € K, then we have the following result for approxi-
mating the minimum-norm point of fixed points of a finite family of nonexpansive
non-self mappings.

Theorem 3.5. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E, containing zero, which has a uniformly Gateaux
differentiable norm. Let T; : K — E, i = 1,....,r be a finite family of inward
nonexpansive mappings with F = (Vi_y F(T;) # 0. Let {z,} be generated from
arbitrary initial point xo € K by (3.1) with f(xz) = 0. If the real sequence {on}
satisfies the following conditions: (i) limy_s0o 0y = 0; (1) Y07 [Qng1 — | < 00;
(ii1) Yo7 g o = 00, and there exists € > 0 such that A, > €, for alln > 0, then {xy}
converges strongly to some common fixed point z of the family T; (i = 1,2, ...,7) such
that z is the unique minimum norm point of F.

Remark 3.6. If, in all the above theorems and corollaries, we have F(T) is a subset
of interior of K, then the assumption that there exists € > 0 such that A, > € Vn > 0,
may not be required.



154 H. ZEGEYE AND O. A. BOIKANYO

4. NUMERICAL EXAMPLE

In this section, we consider two non-self nonexpansive mappings with conditions
of Theorem 3.1 and present some numerical experiment result to explain the con-
clusion of the theorem.

Example 4.1. Let E = R? and let K = B1N By, where By = {(z,y) : (z—2)2+y% <
(2.5)?} and By = {(z,y) : 2> + y* < 1}. Then, K is nonempty, convex and
closed subset of E. Now, let 71,7 : K — E be given by Ti(z,y) = (—z,y)
and Th(z,y) = (x,%) Let f : K — K be defined by f(z,y) = %(x, —y). Then,
Ty and Ty are inward non-self nonexpansive mappings with common fixed point
F = F(Ty) N F(T3) = {(0,3)}. Now, taking ag = a; = az = %, the scheme in (3.1)
reduces to x, = (zn,yn) given by

(2’073/0) — (1/27 1/3> S K7
(41) = n%—l’)‘" =0.1;

' Zny1 = Bom + (1 —ay) [%”zn +(1- )\n)zn],

Yn+1 = _Tynan + (1 - an) [%Anyn + % + (]— - )\n)yn]7n > 1.
Now, if we consider (zp,y0) = (%, %), using MATLAB version 7.5.0.342(R2007b) we
obtain the following numerical data for particular values of n which indicates that

the sequence x, = (zn,yn) goes to the common fixed point (0, %) (see, the table
below).

TABLE 1. Values of z, and y,, for some values of n.

n 1 2 ) 10 100 200 300 400 500

zn, 0.5000 0.3583 0.1974 0.1026 0.0001 0.0000 0.0000 0.0000 0.0000
yn 0.3333 0.0861 0.0429 0.0619 0.3167 0.3968 0.4290 0.4459 0.4569

Remark 4.2. Theorem 3.1 provides convergence sequence to a common fized point
of a finite family of non-self nonexpansive mappings. The algorithm does not involve
projection or sunny NMONeTrpansive mappings.

Remark 4.3. Theorem 3.1 improves all the results on the approrimation of fized
points of self-map nonexpansive or non-self nonexpansive with projection mapping
schemes (see, for example, [10, 16, 28] and the references therein) in the sense that
our convergence is to a common fized point of a finite family of non-self nonex-
pansive mappings without involving projections or sunny nonerpansive retraction
mappings. In particular, our results extend and improve Theorem MT and the re-
sults of Colao and Marino [6] to more general Banach spaces and/or to the class of
non-self mappings.
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