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converges weakly to a fixed point of T provided that the sequence {αn} satisfies cer-
tain conditions. This algorithm, however, does not converge in the strong topology
in general (see, eg, [3]).

Other iteration processes have been also used to approximate fixed points of
nonexpansive mappings in Hilbert and/or Banach spaces (see, eg, [7, 25]). One of
them is now known as Halpern’s iteration process [7].

Halpern [7] initiated the study of an (explicit) iterative method in Hilbert spaces:

xn+1 := αn+1u+ (1− αn+1)Txn, n ≥ 0,(1.3)

where u, x0 are arbitrary initial points in K, T is nonexpansive mapping of K into
itself and {αn} is a control sequence in (0, 1). He proved the strong convergence of
the sequence {xn} to a fixed point of T provided that {αn} ⊂ (0, 1) satisfies certain
mild conditions.

Next, consider r nonexpansive self-mappings T1, T2, ..., Tr. For a sequence {αn} ⊆
(0, 1) and an arbitrary u ∈ K, let the sequence {xn} in K be iteratively defined by
x0 ∈ K

xn+1 := αn+1u+ (1− αn+1)Tn+1xn, n ≥ 0,(1.4)

where Tn = Tn (mod r).
In 1996, Bauschke [2] studied the iterative process (1.4) for finding a common

fixed point of a finite family of nonexpansive mappings. Under suitable conditions
he proved that the sequence {xn} converges strongly to a common fixed point PFu
of T1, T2, ..., Tr in K, where PF : H → F = ∩r

i=1F (Ti) is the metric projection, in
Hilbert space.

In 2002, Takahashi et al. [19], extended Bauschke’s result to uniformly convex
Banach spaces. More precisely, they proved the following result.

Theorem 1.1. Let K be a nonempty, closed and convex subset of a uniformly
convex Banach space E which has a uniformly Gâteaux differentiable norm. Let
Ti : K → K, i = 1, ..., r, be a family of nonexpansive mappings with

F :=
r∩

i=1

F (Ti) = F (TrTr−1...T1)

= F (Tr−1Tr−2...T1Tr)

= ... F (T1Tr...T2) ̸= ∅.

For given u, x0 ∈ K, let {xn} be generated by the algorithm in (1.4) where {αn} is
a real sequence which satisfies the following conditions: (i) limn→∞ αn = 0; (ii)∑∞

n=0 αn = ∞ and (iii)
∑∞

n=0 |αn+r − αn| < ∞. Then {xn} converges strongly to
a common fixed point of {T1, T2, ..., Tr}.

Furthermore, in 2006, Zhou et al. [21] proved the following result in Banach spaces
which has a weakly continuous normalized duality mapping J , where the mapping
J from E into 2E

∗
is defined by

Jx := {f∗ ∈ E∗ : ⟨x, f∗⟩ = ||x||2 = ||f∗||2},
where ⟨., .⟩ denotes the generalized duality pairing. It is well known that if E∗ is
strictly convex then J is single-valued and if the norm of E is uniformly Gâteaux
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differentiable then the duality mapping J is norm-to-weak∗ uniformly continuous
on bounded subsets of E (see, [5] for the details).

Theorem 1.2. Let K be a nonempty, closed and convex subset of a reflexive Banach
space E which has a uniformly Gâteaux differentiable norm, and a weakly continuous
duality mapping J . Let Ti : K → K, i = 1, ..., r, be a family of nonexpansive map-
pings with F :=

∩r
i=1 F (Ti) ̸= ∅ and

∩r
i=1 F (Ti) = F (TrTr−1...T1) = F (T1Tr...T2)

= ... = F (Tr−1Tr−2...T1Tr). Assume that every weakly compact convex subset of E
has the fixed point property for nonexpansive mappings. For given u, x0 ∈ K, let
{xn} be generated by the algorithm in (1.4) where {αn} is a real sequence which
satisfies the following conditions: (i) limn→∞ αn = 0; (ii)

∑
αn = ∞ and {xn}

is weakly asymptotically regular. Then {xn} converges strongly to a common fixed
point of {T1, T2, ..., Tr}.

Remark 1.3. We remark that in all the above results, the operator T remains a
self-mapping of a nonempty, closed and convex subset K of a Banach space E. If,
however, the domain of T , D(T ), is a proper subset of E (and this is the case in
several applications), and T maps D(T ) into E, then the iterative processes (1.3)
and (1.4) studied by these authors may fail to be well defined.

In order to deal with the non-self mappings, many researchers have made sig-
nificant progress by employing the concept of projection or sunny nonexpansive
retraction of the real Banach spaces E onto its closed and convex subset K of E
(see, e.g. [9–11,16,20]).

In 2008, Matsushita and Takahashi [11] studied strong convergence theorem for
nonexpansive non-self-mappings in the framework of a real uniformly convex Banach
spaces. In fact, they proved the following theorem.

Theorem 1.4. Let E be a uniformly convex Banach space whose norm is uniformly
Gateâux differentiable, let K be a nonempty, closed and convex subset of E and let
T be a nonexpansive mapping from K into E with F (T ) ̸= ∅. Suppose that K is
a sunny nonexpansive retract of E. Let {αn} be a sequence such that 0 ≤ αn ≤ 1,
limn→∞ αn = 0 and

∑
αn = ∞ and

∑
|αn+1 − αn| < ∞. Let u and x0 be elements

of K. Suppose that {xn} is given by

xn+1 = αnu+ (1− αn)QTxn, for n = 0, 1, 2, ...,(1.5)

where Q is a sunny nonexpansive retraction from E onto K. Then {xn} converges
strongly to z ∈ F (T ).

Several authors have also studied implicit and explicit iterative schemes of the
type (1.5) (see, e.g., [7, 9–11, 13, 15, 16, 23] and the references therein) for non-self
mappings. However, we observe that the method of calculating Q is generally
difficult in applications, even in Hilbert spaces when Q is metric projection. It
may require an approximating algorithm for itself. To avoid the necessity of using
an auxiliary mapping Q, Colao and Marino [6] introduced a new search strategy
for the coefficient αn which makes Mann algorithm well defined in the Hilbert
space settings. They obtained weak and strong convergence of the algorithm for
nonexpansive non-self mappings in Hilbert spaces.
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It is our purpose in this paper to define an algorithm and obtain a strong conver-
gence theorems to a fixed point of a finite family of non-self nonexpansive mappings
in Banach spaces more general than Hilbert spaces. The involvement of the projec-
tion or sunny nonexpansive retraction mapping in the algorithm is dispensed with.
Our results improve Theorem MT and the results of Colao and Marino [6] to Ba-
nach spaces more general than Hilbert spaces and/or to a finite family of nonlinear
non-self mappings.

2. Preliminaries

A real Banach space E with dual E∗ is called strictly convex if for all x, y ∈ E,
x ̸= y, ||x|| = ||y|| = 1, we have ||λx+(1−λ)y|| < 1, ∀λ ∈ (0, 1). The Banach space
E is said to be uniformly convex if, given ε > 0, there exists δ > 0, such that, for
all x, y ∈ E with ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x− y∥ ≥ ε,

∥∥1
2(x+ y)

∥∥ ≤ 1− δ. It is well
known that Lp, ℓp and Sobolev spaces W p

m, (1 < p < ∞), are uniformly convex.
The norm is said to be uniformly Gâteaux differentiable if for each y ∈ S1(0) :=

{x ∈ E : ||x|| = 1} the limit limt→0
||x+ty||−||x||

t exists uniformly for x ∈ S1(0). It is
well known that Lp spaces, 1 < p < ∞, have uniformly Gâteaux differentiable norm
(see e.g., [17]). Furthermore, if E has a uniformly Gâteaux differentiable norm, then
the duality mapping is norm-to-weak∗ uniformly continuous on bounded subsets of
E.

Let K ⊆ E be a closed, convex and Q be a mapping of E onto K. Then Q
is said to be sunny if Q(Qx + t(x − Qx)) = Qx for all x ∈ E and t ≥ 0. A
mapping Q of E into E is said to be a retraction if Q2 = Q. If a mapping Q is
a retraction, then Qz = z for every z ∈ R(Q), range of Q. A subset K of E is
said to be a sunny nonexpansive retract of E if there exists a sunny nonexpansive
retraction of E onto K and it is said to be a nonexpansive retract of E if there exists
a nonexpansive retraction of E onto K. If E = H, the metric projection PK is a
sunny nonexpansive retraction from H to any closed convex subset of H.

Let K be a nonempty subset of a Banach space E. For x ∈ K, the inward set
of x, IK(x), is defined by IK(x) := {x + λ(w − x) : w ∈ K,λ ≥ 1}. A mapping
T : K → E is called inward if Tx ∈ IK(x) for all x ∈ K, T is called weakly inward
if Tx ∈ cl[IK(x)] for all x ∈ K, where cl[IK(x)] denotes the closure of the inward
set. Every self-map is trivially inward.

In the sequel, we shall need the following lemmas.

Lemma 2.1 ( [12]). Let E be a smooth real Banach space and J be the duality
mapping. Then, for each x, y ∈ E, one has

||x+ y||2 ≤ ||x||2 + ⟨y, J(x+ y)⟩.

Lemma 2.2 ([23]). Let K be a nonempty, closed and convex subset of a real Banach
space E. Let T : K → E be a nonexpansive mapping satisfying weakly inward
condition with F (T ) ̸= ∅ and f : K → K be a contraction mapping. Then for
t ∈ (0, 1), there exists a sequence {yt} ⊂ K satisfying the following condition:

yt = (1− t)f(yt) + tT (yt).(2.1)

Furthermore, if E is a strictly convex and reflexive real Banach space having a
uniformly Gâteaux differentiable norm, then {yt}converges strongly to a fixed point
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z of T as t → 1− such that z is the unique solution in F (T ) to the following
variational inequality:

⟨(f − I)z, J(y − z)⟩ ≤ 0, for all y ∈ F (T ).(2.2)

Lemma 2.3 ( [4]). Let K be a nonempty, closed and convex subset of a strictly
convex Banach space E. Let Ti : K → E, i = 1, 2, ..., r be a family of nonexpansive
mappings such that

∩r
i=1 F (Ti) ̸= ∅. Let α0, α1, α2, ..., αr be real numbers in (0, 1)

such that
∑r

i=0 αi = 1 and S := α0I + α1T1 + ... + αrTr. Then S is nonexpansive
and F (S) =

∩r
i=1 F (Ti).

Lemma 2.4 ([22]). Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnδn, n ≥ n0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: (i)
∑∞

n=0 αn =
∞, and (ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 δn < ∞. Then, limn→∞ an = 0.

Let µ be a continuous, linear functional on l∞ and let (a0, a1, ...) ∈ l∞. We
write µn(an) instead of µ((a0, a1, ...)). We call µ a Banach limit [1] when µ satisfies
||µ|| = µn(1) = 1 and µ(an+1) = µ(an) for all (a0, a1, ...) ∈ l∞. We shall use the
following lemma.

Lemma 2.5. Let a be a real number and let (a0, a1, ...) ∈ l∞ such that µn(an) ≤ a
for all Banach limit µ and lim supn→∞(an+1 − an) ≤ 0. Then lim supn→∞ an ≤ a.

The proof of the following lemma basically uses the method of proof of Lemma
1 of Colao and Marino [6].

Lemma 2.6. Let K be a nonempty, closed and convex subset of E. Let T : K → E
be a mapping. Define h : K → R by h(x) = sup{λ ≥ 0 : (1−λ)x+λTx ∈ K}. Then
for any x ∈ K the following hold:

(1) h(x) ∈ [0, 1] and h(x) = 1 if and only if Tx ∈ K;
(2) if β ∈ [0, h(x)], then (1− β)x+ βTx ∈ K;
(3) if T is an inward mapping, then h(x) > 0;
(4) whenever, Tx /∈ K, (1− h(x))x+ h(x)Tx ∈ ∂K.

Proof. We note that the proofs of (1) and (2) follow directly from the definition
of h(x). Now, we prove (3). Suppose that T is an inward mapping. Then for any
arbitrary fixed element v we have Tx = x + c(v − x) for some c ≥ 1, x ∈ K. This
implies that

1

c
Tx =

(1
c
− 1

)
x+ v,

and hence

1

c
Tx+

(
1− 1

c

)
x ∈ K, for some c ≥ 1.(2.3)

Therefore,

h(x) = sup{λ ≥ 0 : (1− λ)x+ λTx ∈ K} ≥ 1

c
> 0.(2.4)
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(4) Note that h(x) > 0 by (3) and that (1 − h(x))x + h(x)Tx ∈ K. Now, let
{wn} ⊂ (h(x), 1) be a sequence of real numbers converging to h(x) and note that
by the definition of h(x), we have zn := (1 − wn)x + wnTx ̸∈ K, for any n ∈ N.
Since wn → h(x) and

||zn − ((1− h(x))x+ h(x)T (x))|| = ||(1− wn)x+ wnTx− ((1− h(x))x

+h(x)Tx)||
= |wn − h(x)|||x− Tx||,

it follows that zn → (1− h(x))x+ h(x)Tx ∈ K. Therefore,

(1− h(x))x+ h(x)Tx ∈ ∂K.

�

3. Main Results

Theorem 3.1. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E which has a uniformly Gâteaux differentiable
norm. Let f : K → K be a contraction with constant β. Let Ti : K → E, i = 1, ..., r
be a finite family of inward nonexpansive mappings with F =

∩r
i=1 F (Ti) ̸= ∅. Let

{xn} be generated from arbitrary initial point x0 ∈ K by λ0 = min{1
2 , h(x0)};

xn+1 = αnf(xn) + (1− αn)(λnSxn + (1− λn)xn);
λn+1 ∈ (0,min{λn, h(xn+1)}], n ≥ 0,

(3.1)

where S = a0I+a1T1+a2T2+ ...+arTr, for 0 < ai < 1, i = 0, 1, ..., r,
∑r

i=0 ai = 1,
and λn := sup{λ ≥ 0 : (1 − λ)xn + λSxn ∈ K}. If the real sequence {αn} satisfies
the following conditions: (i) limn→∞ αn = 0; (ii)

∑∞
n=0 |αn+1 − αn| < ∞; (iii)∑∞

n=0 αn = ∞, and there exists ϵ > 0 such that λn ≥ ϵ, for all n ≥ 0, then {xn}
converges strongly to some common fixed point z of the family Ti (i = 1, 2, ..., r)
such that z is the unique solution in F to the following variational inequality:

⟨(f − I)z, J(y − z)⟩ ≤ 0, for all y ∈ F .(3.2)

Proof. By Proposition 3.4 of [4] we obtain that S is weakly inward nonexpansive
mapping. Let yn = (1 − λn)xn + λnSxn, n ≥ 0. Then we have xn+1 = αnf(xn) +
(1−αn)yn, n ≥ 0. Now, for p ∈ F (S), one easily shows by induction that ||xn−p|| ≤
max{||x0− p||, 1

1−β ||f(p)− p||}, for all integers n ≥ 0, and hence {xn}, {f(xn)} and

{Sxn} are bounded. In addition, from (3.1) we obtain

||xn+1 − xn|| = ||(1− αn)(yn − yn−1) + (αn − αn−1)(f(xn−1)− yn−1)

+αn(f(xn)− f(xn−1))||,
≤ (1− αn)||yn − yn−1||+ |αn − αn−1|||f(xn−1)− yn−1||

+αnβ||xn − xn−1||,
≤ (1− αn)||yn − yn−1||+ |αn − αn−1|M + αnβ||xn − xn−1||,(3.3)



HALPERN-TYPE METHOD FOR NON-SELF MAPPINGS 151

where M := sup ||f(xn−1)− yn−1|| < ∞.

||yn − yn−1|| = ||(1− λn)xn + λnSxn − [(1− λn−1)xn−1 + λn−1Sxn−1]||
= ||λn(Sxn − Sxn−1) + (λn − λn−1)Sxn−1 + (1− λn)(xn − xn−1)

−(λn − λn−1)xn−1||
≤ λn||xn − xn−1||+ |λn − λn−1|||Sxn−1||+ (1− λn)||xn − xn−1||

+|λn − λn−1|||xn−1||
≤ ||xn − xn−1||+ |λn − λn−1|(||Sxn−1||+ ||xn−1||).(3.4)

Thus, from (3.3) and (3.4) we obtain

||xn+1 − xn|| ≤ (1− (1− β)αn)||xn − xn−1||+ |λn − λn−1|M ′

+|αn − αn−1|M ′,

where M ′ := supn{M + ||Sxn−1|| + ||xn−1||} < ∞. Note that
∑∞

n=0 |λn − λn−1| <
∞ (since {λn} ⊂ [0, 1] is monotone decreasing) and conditions (i) − (ii) of the
hypotheses are satisfied. Thus, with the use of Lemma 2.4 we obtain that

lim
n→∞

||xn+1 − xn|| → 0.(3.5)

Furthermore, from (3.1) we have ||xn+1 − yn|| = αn||f(xn) − yn|| → 0 as n → ∞,
and

||xn − yn|| ≤ ||xn − xn+1||+ ||xn+1 − yn|| → 0 as n → ∞.(3.6)

Thus, from the definition of yn and the fact that infn{λn} > 0, we obtain

||xn − Sxn|| =
1

λn
||yn − xn|| → 0 as n → ∞.(3.7)

Now, for each t ∈ (0, 1), let zt ∈ K be the unique fixed point of the contraction
mapping St (see Lemma 2.2) given by

Stx := (1− t)Sx+ tf(x), x ∈ K.

Then,
zt − xn = t(f(zt)− xn) + (1− t)(Szt − xn).

But the above implies that

||zt − xn||2 = (1− t)⟨Szt − xn, J(zt − xn)⟩+ t⟨f(zt)− xn, J(zt − xn)⟩
= (1− t)⟨Szt − Sxn, J(zt − xn)⟩+ (1− t)⟨Sxn − xn, J(zt − xn)⟩

+t⟨f(zt)− zt, J(zt − xn)⟩+ t||zt − xn||2

≤ ||xn − zt||2 + (1− t)||xn − Sxn||.||J(zt − xn)||
+t⟨f(zt)− zt, J(zt − xn)⟩,

and hence,

⟨f(zt)− zt, J(xn − zt)⟩ ≤
(1− t)||xn − Sxn||

t
||zt − xn||.

Since {xn}, {zt} and hence {Sxn} are bounded and ||xn − Sxn|| → 0 as n → ∞ it
follows from the last inequality that

µn⟨f(zt)− zt, J(xn − zt)⟩ ≤ 0.(3.8)
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Using the fact that E has a uniformly Gâteaux differentiable norm and tending
t → 0, inequality (3.8) provides

µn⟨f(z)− z, J(xn − z)⟩ ≤ 0.(3.9)

On the other hand, from (3.5) and the fact that J is norm to weak∗ uniformly
continuous we have

lim
n→∞

∣∣⟨f(z)− z, J(xn+1 − z)⟩ − ⟨f(z)− z, J(xn − z)⟩
∣∣ = 0.(3.10)

Hence, by Lemma 2.5 we obtain that

lim sup
n

⟨f(z)− z, J(xn − z)⟩ ≤ 0.(3.11)

Now, from (3.1) and Lemma 2.1 we get

||xn+1 − z||2 ≤ ||αn(f(xn)− f(z)) + (1− αn)(yn − z)||2

+2αn⟨f(z)− z, J(xn+1 − z)⟩
≤ (αnβ||xn − z||+ (1− αn)||xn − z||)2

+2αn⟨f(z)− z, J(xn+1 − z)⟩
≤ (1− αn(1− β))2||xn − z||2 + 2αn⟨f(z)− z, J(xn+1 − z)⟩
≤ (1− αn(1− β))||xn − z||2 + 2αn⟨f(z)− z, J(xn+1 − z)⟩,
≤ (1− αn(1− β))||xn − z||2 + 2αn⟨f(z)− z, J(xn − z)⟩,

+2αn⟨f(z)− z, J(xn+1 − z)− J(xn − z)⟩
≤ (1− αn(1− β))||zn − z||2 + αnσn,

where σn := 2βn +2⟨f(z)− z, J(xn+1 − z)− J(xn − z)⟩, for βn := ⟨f(z)− z, J(xn −
z)⟩. Note that from (3.10) and (3.11) we have that lim supσn ≤ 0. Therefore, by
Lemma 2.4, {xn} converges strongly to a common fixed point z of {T1, T2, ..., Tr}.
Furthermore, by Lemma 2.2, the point z satisfies the inequality (3.2). �

Remark 3.2. We remark that, in practical applications, we may consider λn+1 =
min{λn, h(xn+1)}, where λ0 = min{1

2 , h(x0)}; and h(xn) = (1 − ( 9
10)

in) for in :=

max{i ∈ N : ( 9
10)

ixn + (1− ( 9
10)

i)Sxn ∈ K}.
We also note that λ0 = min{1

2 , h(x0)} could be replaced with λ0 = min{a, h(x0)};
where a ∈ (0, 1) is a fixed and arbitrary value.

If, in Theorem 3.1, we consider a single nonexpansive mapping, then we have the
following corollary.

Corollary 3.3. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E which has a uniformly Gâteaux differentiable
norm. Let f : K → K be a contraction. Let T : K → E, be inward nonexpansive
mapping with F (T ) ̸= ∅. Let {xn} be generated from arbitrary initial point x0 ∈ K
by  λ0 = min{1

2 , h(x0)};
xn+1 = αnf(xn) + (1− αn)(λnTxn + (1− λn)xn);
λn+1 ∈ (0,min{λn, h(xn+1)}], n ≥ 0,
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where λn := sup{λ ≥ 0 : (1− λ)xn + λTxn ∈ K}. If the real sequence {αn} satisfies
the following conditions: (i) limn→∞ αn = 0; (ii)

∑∞
n=0 |αn+1 − αn| < ∞; (iii)∑∞

n=0 αn = ∞, and there exists ϵ > 0 such that λn ≥ ϵ, for all n ≥ 0, then {xn}
converges strongly to z ∈ F (T ) such that z is the unique solution in F (T ) to the
following variational inequality:

⟨(f − I)z, J(y − z)⟩ ≤ 0, for all y ∈ F (T ).(3.12)

If, in Theorem 3.1, Ti (i = 1, ..., r) are self-mappings then the requirements that
Ti (i = 1, 2, ...r) are inward, and the assumption that there exists ϵ > 0 such that
λn ≥ ϵ, for all n ≥ 0, may not be needed. In fact, Theorem 3.1 reduces to the
following corollary which is one of the main results in [25].

Corollary 3.4. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E which has a uniformly Gâteaux differentiable
norm. Let Ti : K → K, i = 1, ..., r be a family of nonexpansive mappings with
F =

∩r
i=1 F (Ti) ̸= ∅. Let f : K → K be contraction. For arbitrary x0 ∈ K, let

{xn} be generated by the algorithm

xn+1 = αnf(xn) + (1− αn)
1

2
(Sxn + xn);

where S = a0I+a1T1+a2T2+ ...+arTr, for 0 < ai < 1, i = 0, 1, ..., r,
∑r

i=0 ai = 1.
If the real sequence {αn} satisfies the following conditions: (i) limn→∞ αn = 0;
(ii)

∑∞
n=0 |αn+1 − αn| < ∞; (iii)

∑∞
n=0 αn = ∞, then {xn} converges strongly to

some common fixed point z of the family Ti (i = 1, 2, ..., r) such that z is the unique
solution in F to the following variational inequality:

⟨(f − I)z, J(y − z)⟩ ≤ 0, for all y ∈ F .(3.13)

Proof. Note that h(xn) = 1, for all n ≥ 0 and hence the result follows from Theorem
3.1 with λn = 1

2 . �

We observe that if f(x) = 0 ∈ K, then we have the following result for approxi-
mating the minimum-norm point of fixed points of a finite family of nonexpansive
non-self mappings.

Theorem 3.5. Let K be a nonempty, closed and convex subset of a strictly convex
and reflexive real Banach space E, containing zero, which has a uniformly Gâteaux
differentiable norm. Let Ti : K → E, i = 1, ..., r be a finite family of inward
nonexpansive mappings with F =

∩r
i=1 F (Ti) ̸= ∅. Let {xn} be generated from

arbitrary initial point x0 ∈ K by (3.1) with f(x) = 0. If the real sequence {αn}
satisfies the following conditions: (i) limn→∞ αn = 0; (ii)

∑∞
n=0 |αn+1 − αn| < ∞;

(iii)
∑∞

n=0 αn = ∞, and there exists ϵ > 0 such that λn ≥ ϵ, for all n ≥ 0, then {xn}
converges strongly to some common fixed point z of the family Ti (i = 1, 2, ..., r) such
that z is the unique minimum norm point of F .

Remark 3.6. If, in all the above theorems and corollaries, we have F (T ) is a subset
of interior of K, then the assumption that there exists ϵ > 0 such that λn ≥ ϵ ∀n ≥ 0,
may not be required.
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4. Numerical example

In this section, we consider two non-self nonexpansive mappings with conditions
of Theorem 3.1 and present some numerical experiment result to explain the con-
clusion of the theorem.

Example 4.1. Let E = R2 and letK = B1∩B2, where B1 = {(x, y) : (x−2)2+y2 ≤
(2.5)2} and B2 = {(x, y) : x2 + y2 ≤ 1}. Then, K is nonempty, convex and
closed subset of E. Now, let T1, T2 : K → E be given by T1(x, y) = (−x, y)
and T2(x, y) = (x, 12). Let f : K → K be defined by f(x, y) = 1

2(x,−y). Then,
T1 and T2 are inward non-self nonexpansive mappings with common fixed point
F := F (T1) ∩ F (T2) = {(0, 12)}. Now, taking a0 = a1 = a2 =

1
3 , the scheme in (3.1)

reduces to xn = (zn, yn) given by
(z0, y0) = (1/2, 1/3) ∈ K,
αn = 1

n+1 , λn = 0.1;

zn+1 =
zn
2 αn + (1− αn)

[
λn
3 zn + (1− λn)zn

]
,

yn+1 =
−yn
2 αn + (1− αn)

[
2
3λnyn + λn

6 + (1− λn)yn
]
, n ≥ 1.

(4.1)

Now, if we consider (z0, y0) = (12 ,
1
3), using MATLAB version 7.5.0.342(R2007b) we

obtain the following numerical data for particular values of n which indicates that
the sequence xn = (zn, yn) goes to the common fixed point (0, 12) (see, the table
below).

Table 1. Values of zn and yn for some values of n.

n 1 2 5 10 100 200 300 400 500

zn 0.5000 0.3583 0.1974 0.1026 0.0001 0.0000 0.0000 0.0000 0.0000
yn 0.3333 0.0861 0.0429 0.0619 0.3167 0.3968 0.4290 0.4459 0.4569

Remark 4.2. Theorem 3.1 provides convergence sequence to a common fixed point
of a finite family of non-self nonexpansive mappings. The algorithm does not involve
projection or sunny nonexpansive mappings.

Remark 4.3. Theorem 3.1 improves all the results on the approximation of fixed
points of self-map nonexpansive or non-self nonexpansive with projection mapping
schemes (see, for example, [10, 16,28] and the references therein) in the sense that
our convergence is to a common fixed point of a finite family of non-self nonex-
pansive mappings without involving projections or sunny nonexpansive retraction
mappings. In particular, our results extend and improve Theorem MT and the re-
sults of Colao and Marino [6] to more general Banach spaces and/or to the class of
non-self mappings.
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