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PROPERTIES OF /,-NORM ERRORS IN SIGNAL RECOVERY

HONG-KUN XU

ABSTRACT. We use the f,-norm (1 < p < o) to measure the errors in sig-
nal processing. This requires to minimize the ¢;-norm regularized pth power of
the errors and thus carries the difficulty that the gradient fails to be Lipschitz
continuous (when p # 2), which further makes the proximal gradient algorithm
inapplicable. In this paper we present several useful properties of the ¢,-norm
errors. We also discuss iterative algorithms that can be used to find solutions of
the ¢ regularized problems.

1. INTRODUCTION

In signal processing theory, a signal x € R™ of interest is sampled m > 1 times
linearly and then recovered from the linear (exact) system

(1.1) Az =b.

Here A € R™*™ is an m X n matrix and b € R is the observation. In compressed
sensing [6,9], m < n and a sparse signal z is intended to be recovered. However,
samples (or measurements) are taken with noises; in other words, the signal x is to
be recovered from the perturbed linear (inexact) system

(1.2) Az +e=b,

where e represents noises.
A key issue is in which way the errors e = b— Az are measured. The most popular
way is using the least-squares (i.e., the f3-norm) to measure the errors 12,15, 23]:

(1.3) lella = [[Az — b|s.

This leads to the ¢1-norm regularized least-squares minimization problem (for re-
covering a sparse signal)

1
1. in —||Az — b3
(1.4) min oAz = bllz + Allzs,

where A > 0 is a regularization parameter. This is equivalent to the lasso of Tib-
shirani [15] for variable selections (in group lasso [22] as well), and also used in
compressed sensing [4-6,9] to recover the sparsest signal z if the measurement ma-
trix A satisfies the restricted isometry property [3].
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Similarly, the elastic net (EN) of Zou and Hastie [23], i.e., the minimization

(1 gl
(1.5 i (51142~ 0B + Al + Jlel3 )

is also induced from the f3-norm errors (1.3). A generalization of EN to p-elastic
net (p-EN) can be found in [1].

However, Tropp [16, page 1045] pointed out that “One can imagine situations
where the £ norm is not the most appropriate way to measure the error in approx-
imating the input signal.” He further suggested that it may be more effective to
use the convex program min ||b — Ax||, + Al|z||1, where p € [1, 00]. To be consistent,
we will raise the pth power to the £),-norm error (so that when p = 2, our prob-
lem exactly reduces to the lasso) and consider the ¢;-regularized least pth powered
optimization problem

1
(1.6) min Az = bl + Al

for p € [1,00) and
(L.7) min ||Az — b|loc + Allx]|1-
TzeR™
The ¢; norm case is studied in [17] and the /o, norm case (1.7) in [10], respectively.
We will in this paper focus on the ¢, norm case for p € (1,00). [Note that £,-norm
regularization is also popularly utilized [1,8,20].]
In this paper we will discuss certain basic properties of the £,-norm error problem

(1.6). We also briefly discuss iterative methods for solving it, including the proximal
gradient algorithm and the generalized Frank-Wolfe algorithm.

2. PRELIMINARIES

Let p € [1,00]. Recall the ¢, norm on R" is defined as

1
n P
]|, = <Z Ixi!p> (1<p<oo),
i=1
[#][oc = max [a].
1<i<n

Note that (R™, || - ||,) is a Banach space (not Hilbertian unless p = 2).

2.1. Duality Maps. Assume p € (1,00). Recall that the duality map J, is the
(generalized) mapping J, from (R”,| - ||,) to its dual space (R™, | - ||4), with ¢ =
p/(p — 1), such that

(@, Jpz) = z|P, | Jpzllg =l

for all z € R™. [Note: J, is the identity mapping when p = 2.] It is known that
Jpt = V(%Hac”ﬁ) and has the expression:

(Jpx)i:l'i‘.%'i’p_z, i:1,2,...,n.

Moreover, J, is strongly monotone as stated below.
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Lemma 2.1. Assume p € (1,00). Then the duality map J, is strongly monotone,
namely, there exists a constant ¢, > 0 such that [18]

(2.1) (Jpr — Jpy, v —y) = cplle —y|b, =,y €R™

2.2. Convex Functions and Subdifferential. Let ¢ : R — R := R U {00} be
an extended real-valued function. We say that ¢ is convex [14] if

(2.2) p((1 =z + Ay) < (1= ANp() + Ap(y)

for all A € (0,1) and z,y € R™ We say that ¢ is strictly convex if the strict
inequality in (2.2) holds for all x # y and A € (0,1) and that ¢ is proper if there
exists at least one x € R™ such that p(z) is finite. Recall that ¢ is said to be
lower semicontinuous if liminf, ., p(y) > ¢(z) for all z € R™. As standard, the
symbol I'g(R™) stands for the class of all proper, lower semicontinuous (1.s.c.), convex
functions from R™ to R.

The subdifferential of ¢ € I'g(R™) is the operator d¢ defined by

(2.3) Op(x) ={ € R" : p(y) = p(z) + (§;,y —x), yeR"}, zeR™

The inequality in (2.3) is referred to as the subdifferential inequality of ¢ at x. We

say that f is subdifferentiable at z if dp(x) is nonempty. It is well-known that for an

everywhere finite-valued convex function ¢ on R”, ¢ is everywhere subdifferentiable.
Examples: (i) If p(z) = |z| for z € R, then 0p(0) = [—1,1]; (ii) If p(z) = ||z|

for x € R™, then dp(x) is given componentwise by

| sgn(zy), if x; #0, .
(2.4 I B A S R EF R
where &; € [—1,1] is any number, and ‘sgn’ is the sign function, that is, for a € R,
1, if a >0,
sgn(a) = 0, ifa=0,
-1, if a < 0.

[More details about convex analysis can be found in [14].]
2.3. Proximal Mappings.

Definition 2.2. Let H be a Hilbert space and let I'o(H) be the space of convex
functions in H that are proper, lower semicontinuous and convex. The proximal
operator of ¢ of order A > 0 is defined as [13]

1
prox,,(z) := argiréilgl {(p(v) + ﬁHv — J:]2} , x€H.

It is not hard to find that if ¢(x) = |z| (for z € R) is the absolute value function,
then
prox,.|(z) = sgn(z) max{|z[ — A, 0}.
This can be extended to the ¢1-norm of x € R™ as follows:
proxy . (z) = (Y1,-- - yn) "
where y; = prox,.(z;) = sgn(z;) max{|z;| — A,0} for 1 <i < n, and the symbol T
means transpose.
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It is also known [7] that proximal mappings are firmly nonexpansive, that is, if
we set T' = prox,,(-), where ¢ € T'o(H) and A > 0, then
’|T$_Ty”2§ <T$—Ty,$—y>, fE,yGH.
In particular, T' is nonexpansive, i.e., ||[Tx — Ty| < ||z — y|| for all z,y € H.

2.4. Proximal-Gradient Algorithm. Consider a composite optimization prob-
lem of the form in a Hilbert space H:

(2.5) min ¢(z) := f(z) + ()

where f,g € To(H).
The following equivalence of (2.5) to a fixed point problem is known (cf. [7,19]).

Proposition 2.3. Let A > 0 and assume f is continuously differentiable. Then x*
is a solution to (2.5) if and only if x* is a solution to the fixed point problem

(2.6) r* = prox,,(z* — AV f(z")).

The proximal gradient algorithm for solving (2.5) is a fixed point algorithm de-
fined as follows.
Initializing xg € H and iterating

(2.7) Tpy1 = prox,, o (zr — MV f(2r)),

where {\;} is a sequence of positive real numbers.
We have the following convergence result.

Theorem 2.4 ([7,19]). Assume (2.5) is solvable and f has a Lipschitz continuous
gradient:

(2.8) IVf(z) =Vl < Lz —yl, =yeH.

Assume, in addition, the stepsize sequence (\;) satisfies the condition:

2
(2.9) 0 < liminf Ay <limsup \p < —.
k—o00 k—o00 L

Then the sequence () converges weakly to a solution of (2.5).

3. GEOMETRIC PROPERTIES OF {,-NORM ERRORS
Let A >0and 1 <p < o0, and set
1
(3.1) ox(z) ::]—DHAx—ng—i—)\Hle, x € R™
Let Sy be the set of minimizers of @), i.e.,
) 1
Sy = arg min <pHAx = b[|p + )\||x]1> .

Since ¢, is continuous, convex, and coercive (i.e., py(z) — oo as ||z||2 = o0), we
find that S is closed, convex, and nonempty.

Proposition 3.1. Let A > 0 and 1 < p < co. We have the following statements.
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(i) The matriz A and the norm ||-||1 are constant on Sy, that is, Azy = Az and

lzalli = |Zall1 for zx, &x € Sx. Consequently, we can define the functions
p andn by
1
(3-2) P = llzall, n(A) = i Azy = bl (2 € 5h).

(ii) p(A) is decreasing and continuous in A > 0.
(iii) n(N) is increasing in A > 0.
(iv) Azy is continuous in A > 0.

Proof. Take x) € Sy. Using the optimality condition
1
0 € dpr(xy) = AT Jp(Azy —b) + ND||zal1 or — XAT(A:U,\ —b) € J||zall1,

with AT the transpose of A, we find that the subdifferential inequality turns out to
be

(3.3) Mzl = AMzalli = (Jp(Azy — b), A(z — zy)), Vo eR"™
In particular, we get, for &) € Sj,

(3.4) AlEallr = Allzally = (Jp(Azy = b), A(Zx — 22))-
Interchanging =) and ) yields

(3.5) Alzally = AllZally = (Jp(AZx —b), A(zx — 22))-

Adding up (3.4) and (3.5) yields
0> <Jp(Al‘)\ —b) — Jp(Ai‘)\ —b),(Az) —b) — (Az)\ — b)) > cpHAa:)\ — Ai)\Hg.

Consequently, Az) = Az). Moreover, further using (3.4) and (3.5), we immediately
get || Zx]|1 = ||zall1. Therefore, the functions p and n defined by (3.2) are well-defined
for A > 0.

It turns out from (3.3) that, for 23 € Sz with g > 0,

(3.6) Mlzslly = Mzall = (Jp(Azx = b), A(zg — 1))
Similarly, we have (or interchanging A and 3, and z and z3 in (3.6)
(3.7) Bllaally = Bllzslly — (Jp(Azg — b), A(zy — z5)).

Adding up (3.6) and (3.7) obtains
(3-8) (A=B)llzalls = llzall) = (Jp(Azy — b) = Jp(Azp — b)) = cp||Azy — Awgllp.

It immediately turns out that the function A — ||z)||1 is nonincreasing: ||zg|:1 >
|zxll1 for 0 < B < A, namely, p()) is nonincreasing. (3.8) also shows that Az, is
continuous, which implies the continuity of n(\) for A > 0.

To see the increasingness of the function n(\), we notice that the fact x) € Sy
implies for 8 > 0

1 1
EHAOCA = bl[p + Allzallr < EHA»”% = bl[5 + Azl
which can be rewritten as

1 1
EHAm — bl < ];IIAS% = bllp + Allzslly = [lzxllr)-
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Now if 8 > XA > 0, then as [|zg|1 < ||zx]|1, we immediately get that %HA{L‘)\ —b|h <
sllAzs — bl[p. Namely, n(\) < n(B).

Finally to the continuity of p(A) for A > 0, we assume 0 < 8 < A and take the
limit as 8 — X in (3.6), arriving at (noticing the continuity of Ax))

Ap(A=) = A lim p(B8) = Ap(A) — lim (Jp(Azy —b), Azg — Azy) = Ap(A).
B—A— B—A—
Hence, p(A—) > p(A). This suffices to imply the continuity of p at A > 0 because of
the nonincreasingness of p. O

Proposition 3.2. Assume S := argmin,cgn ||Az — bl is nonempty.

(i) imy_0 p(N\) = mingeg ||z1-
(ii) limyon(N) = mingern 5| Az — b|p.

Proof. To prove (i), we first assert that ||z)|l1 < ||Z|1 for any & € S. As a matter
of fact,
pllAzy = b3 + Mlzalle < SllAZ =0l + A2

< pllAzy = bllp + Az

It turns out that |[zy|l1 < ||Z[1. In particular, ||zxl1 < [|27|1, where 2T is a
minimum-norm element of S, that is, ||zf||; = minges ||z||1.
Assume A\ — 0 is such that xy, — 2. Then for any z,

SlIAE = blp = limy o0 5[l Az, — b}
= limy o0 | Az, — bllp + Ml 11
< limpse0 | Az = b5 + Aellzln = ;[ Az — B[}

It turns out that & solves the least pth-power problem min, %HAm — b||b, that is,
Z € §. Consequently,

li — ] — ] — 4l < lztlly = mi )
lim p(\) = lim p(\) = lim [,y = |2s < [l = min o]

This suffices to imply that the conclusion of (i).
To prove (ii) we first notice the boundedness of (x,). Next by taking the limit
as A — 0 in the inequality

1 1
ATy = bl & Alleall < ZllAz = bllp + Allzfh, - Ve € R
we obtain 1
li < —||Az —b|]? R"™.
lig ) < LlAe bl i e
The result in (ii) follows immediately. O

The following result shows that if A > 0 is sufficiently big, then the minimization
(1.6) has trivial solutions only.

Proposition 3.3. Assume S = argmingcgn [|[Az — b||} is nonempty and set

(3.9) A, = iu% HAT(Jp(Ax,\) — Jp(Azy — b)) |loo < 00.
>

If x> A,, then x) = 0.
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Proof. The optimality condition
—ATJ,(Azy —b) € Ad||2Allx
implies that

—(AT(Jp(Azx = b)) = A-sgal(zn)d, if (2n)i # 0,
(AT (Jp(Azx = b))i| < A if (z2); = 0.

Taking x = 2x) in the subdifferential inequality (3.3) yields
Mlaali = —(ATJp(Azy = b),2)
= = D(anizo(A (Jp(Azy = b)))i(2)s
= D@0 [sgn(@a)]i(za)i
= AD (a0 @0l = Allzall

Consequently, we must have

Mzali = —(ATJy(Azy = b),25) = —(Jy(Azy) — b, Azy)
= (Jp(Azy) — Jp(Azx — b), Azy) — [[Azs|lp
< (AT(Jp(Azy) — Jp(Azy = b)), 2)
< laalh AT (Fp(Az)) = Jp(Azy = 1))l
< Apllzall
This implies that if ) # 0, we must have A < A,,. This finishes the proof. O

Remark 3.4. When p = 2, the duality map J, = I and Ay = ||ATb||. Thus
x\ = 0 whenever A > ||ATb||oo. This recovers [19, Proposition 2.3]

Proposition 3.5. Let A > 0 and x) € S\. Then £ € R" is a solution of the lasso
(1.4) if and only if ATz = Axy and ||Z]|1 < ||xA|l1. It turns out that

(3.10) S)\:l')\—i-N(A)ﬂBp()\),

where N(A) = {x € R™ : Ax = 0} is the null space of A and B, denotes the closed
ball centered at the origin and with radius of v > 0. This shows that if we can find
one solution to the lasso (1.4), then all solutions are found by (3.10).

Proof. If Az = Az, then from the relations
o) = Ay = b+ Naals
< llAd = bl + Al
= lldes = + Al

we obtain |lxy|l1 < ||Z][1. This together with the assumption that ||Z|1 < |lzall1
yields that ||Z||1 = ||za|l1 which in turns implies that ¢)(Z) = pa(x)) and hence

T € Sy. [l
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4. ITERATIVE METHODS
Taking f(z) = %HA:L’ —b||5 and g(z) = A||z||1, we rewrite (1.6) as (2.5). Notice
that f is diffferentiable with gradient given by (assuming p € (1, 00))

(4.1) Vf(x)=ATJ,(Az —b).

4.1. Proximal-gradient algorithm. Applying the proximal gradient algorithm
(2.7) to (1.6), we get a sequence (z) given as follows:

(4.2) Thy1 = Proxy ., (Tk — MAT T (Axy, — b)),
I

where xg € R" is an initial guess and {\;} is a sequence of positive real numbers.
However, Theorem 2.4 does not apply to (4.2) because the gradient of f, Vf, as
given in (4.1), fails to be Lipschitz (except for the case of p = 2). We therefore pose
the following open question.

Question: Does the sequence (z) generated by the algorithm (4.2) converge to
a solution of (1.6)7

4.2. Generalized Frank-Wolfe Algorithm. The Frank-Whole algorithm (FWA)
[11] provides an iterative algorithm that does not require the gradient to be Lipschitz
continuous, and is thus applicable to the optimization (1.6). In fact, a generalization
of FWA, called generalized Frank-Whole algorithm (gFWA) [2,21], has recently been
developed to treat the composite optimization (2.5). Let C' be a closed bounded
convex subset of R™. The gFWA generates a sequence (xy) via the following iteration
process:

(4.3a) { zy = argmin(f'(zy,), @) + g(2),
(4.3b) Trt1 = Tk + Ve(Tk — Tp)

where g € C' is an initial and 7, € [0, 1) is the stepsize of the kth iteration.

Theorem 4.1 ([21, Theorem 5.2]). Consider the sequence {x} generated by the
generalized Frank-Wolfe algorithm (4.4). Assume the conditions below are satisfied:
(i) the Fréchet derivative f' is uniformly continuous over C';
(ii) the stepsizes {7y} C (0, 1] satisfy the open loop conditions:
(C1) limp_y00 1% = 0,
(C2) Zzio Tk = 0.
Then limy_00 p(x) = ¢* :=info , where o = f + g.

Now assume S = arg mingegn || Az —b||j is nonempty. Then by (3.9) we find that
the solution z) of (1.6) is trivial (i.e., zy = 0) for all A > A, where
Ap = sup{ AT (S = Jpy)loc ¢ llzll2, Iyll2 < [AllL2lS]1 + [1b]23,

where |S|; := min{||z||; : z € S} and ||Al12 = sup{||Az|]2/||z|1 : = # 0} is
the (1,2) operator norm of A. It turns out that we can restrict the minimization
problem (1.6) to the closed ball B, for achieving nontrivial solutions. Here r > 0
is big enough (i.e. r > [|Al|12|S]1 + ||b]|2). Hence, the gFWA (4.4) applies, where
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we take f(z) = %HAZL‘ —b||p and g(z) = A|=|1. Note again f'(z) = ATJ,(Ax — b).
Consequently, the following result follows immediately from Theorem 4.1.
Theorem 4.2. Let the sequence {xy} be generated by the generalized Frank-Wolfe

algorithm:

(4.4a) Ty = arg Hel}Bn (AT T (Azy — b)) + M|z,
(4.4b) Trt1 = Tk + Ve(Tr — Tp)

Assume () satisfies the above conditions (C1) and (C2). Then limy_,o @a(z) =
mingn @y, with @y defined in (3.1).
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