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Similarly, the elastic net (EN) of Zou and Hastie [23], i.e., the minimization

(1.5) min
x∈Rn

(
1

2
∥Ax− b∥22 + λ∥x∥1 +

γ

2
∥x∥22

)
is also induced from the ℓ2-norm errors (1.3). A generalization of EN to p-elastic
net (p-EN) can be found in [1].

However, Tropp [16, page 1045] pointed out that “One can imagine situations
where the ℓ2 norm is not the most appropriate way to measure the error in approx-
imating the input signal.” He further suggested that it may be more effective to
use the convex program min ∥b−Ax∥p+λ∥x∥1, where p ∈ [1,∞]. To be consistent,
we will raise the pth power to the ℓp-norm error (so that when p = 2, our prob-
lem exactly reduces to the lasso) and consider the ℓ1-regularized least pth powered
optimization problem

(1.6) min
x∈Rn

1

p
∥Ax− b∥pp + λ∥x∥1

for p ∈ [1,∞) and

(1.7) min
x∈Rn

∥Ax− b∥∞ + λ∥x∥1.

The ℓ1 norm case is studied in [17] and the ℓ∞ norm case (1.7) in [10], respectively.
We will in this paper focus on the ℓp norm case for p ∈ (1,∞). [Note that ℓp-norm
regularization is also popularly utilized [1, 8, 20].]

In this paper we will discuss certain basic properties of the ℓp-norm error problem
(1.6). We also briefly discuss iterative methods for solving it, including the proximal
gradient algorithm and the generalized Frank-Wolfe algorithm.

2. Preliminaries

Let p ∈ [1,∞]. Recall the ℓp norm on Rn is defined as

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

(1 ≤ p < ∞),

∥x∥∞ = max
1≤i≤n

|xi|.

Note that (Rn, ∥ · ∥p) is a Banach space (not Hilbertian unless p = 2).

2.1. Duality Maps. Assume p ∈ (1,∞). Recall that the duality map Jp is the
(generalized) mapping Jp from (Rn, ∥ · ∥p) to its dual space (Rn, ∥ · ∥q), with q =
p/(p− 1), such that

⟨x, Jpx⟩ = ∥x∥p, ∥Jpx∥q = ∥x∥p−1
p

for all x ∈ Rn. [Note: Jp is the identity mapping when p = 2.] It is known that
Jpx = ∇(1p∥x∥

p
p) and has the expression:

(Jpx)i = xi|xi|p−2, i = 1, 2, . . . , n.

Moreover, Jp is strongly monotone as stated below.
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Lemma 2.1. Assume p ∈ (1,∞). Then the duality map Jp is strongly monotone,
namely, there exists a constant cp > 0 such that [18]

(2.1) ⟨Jpx− Jpy, x− y⟩ ≥ cp∥x− y∥pp, x, y ∈ Rn.

2.2. Convex Functions and Subdifferential. Let φ : Rn → R := R ∪ {∞} be
an extended real-valued function. We say that φ is convex [14] if

(2.2) φ((1− λ)x+ λy) ≤ (1− λ)φ(x) + λφ(y)

for all λ ∈ (0, 1) and x, y ∈ Rn. We say that φ is strictly convex if the strict
inequality in (2.2) holds for all x ̸= y and λ ∈ (0, 1) and that φ is proper if there
exists at least one x ∈ Rn such that φ(x) is finite. Recall that φ is said to be
lower semicontinuous if lim infy→x φ(y) ≥ φ(x) for all x ∈ Rn. As standard, the
symbol Γ0(Rn) stands for the class of all proper, lower semicontinuous (l.s.c.), convex
functions from Rn to R.

The subdifferential of φ ∈ Γ0(Rn) is the operator ∂φ defined by

(2.3) ∂φ(x) = {ξ ∈ Rn : φ(y) ≥ φ(x) + ⟨ξ, y − x⟩, y ∈ Rn}, x ∈ Rn.

The inequality in (2.3) is referred to as the subdifferential inequality of φ at x. We
say that f is subdifferentiable at x if ∂φ(x) is nonempty. It is well-known that for an
everywhere finite-valued convex function φ on Rn, φ is everywhere subdifferentiable.

Examples: (i) If φ(x) = |x| for x ∈ R, then ∂φ(0) = [−1, 1]; (ii) If φ(x) = ∥x∥1
for x ∈ Rn, then ∂φ(x) is given componentwise by

(2.4) (∂φ(x))j =

{
sgn(xj), if xj ̸= 0,

ξj , if xj = 0,
1 ≤ j ≤ n,

where ξj ∈ [−1, 1] is any number, and ‘sgn’ is the sign function, that is, for a ∈ R,

sgn(a) =

 1, if a > 0,
0, if a = 0,

−1, if a < 0.

[More details about convex analysis can be found in [14].]

2.3. Proximal Mappings.

Definition 2.2. Let H be a Hilbert space and let Γ0(H) be the space of convex
functions in H that are proper, lower semicontinuous and convex. The proximal
operator of φ of order λ > 0 is defined as [13]

proxλφ(x) := argmin
v∈H

{
φ(v) +

1

2λ
∥v − x∥2

}
, x ∈ H.

It is not hard to find that if φ(x) = |x| (for x ∈ R) is the absolute value function,
then

proxλ|·|(x) = sgn(x)max{|x| − λ, 0}.
This can be extended to the ℓ1-norm of x ∈ Rn as follows:

proxλ∥·∥(x) = (y1, . . . , yn)
⊤

where yi = proxλ|·|(xi) = sgn(xi)max{|xi| − λ, 0} for 1 ≤ i ≤ n, and the symbol ⊤

means transpose.
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It is also known [7] that proximal mappings are firmly nonexpansive, that is, if
we set T = proxλφ(·), where φ ∈ Γ0(H) and λ > 0, then

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, x, y ∈ H.

In particular, T is nonexpansive, i.e., ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ H.

2.4. Proximal-Gradient Algorithm. Consider a composite optimization prob-
lem of the form in a Hilbert space H:

(2.5) min
x∈H

φ(x) := f(x) + g(x)

where f, g ∈ Γ0(H).
The following equivalence of (2.5) to a fixed point problem is known (cf. [7, 19]).

Proposition 2.3. Let λ > 0 and assume f is continuously differentiable. Then x∗

is a solution to (2.5) if and only if x∗ is a solution to the fixed point problem

(2.6) x∗ = proxλg(x
∗ − λ∇f(x∗)).

The proximal gradient algorithm for solving (2.5) is a fixed point algorithm de-
fined as follows.

Initializing x0 ∈ H and iterating

(2.7) xk+1 = proxλkg
(xk − λk∇f(xk)),

where {λk} is a sequence of positive real numbers.
We have the following convergence result.

Theorem 2.4 ([7,19]). Assume (2.5) is solvable and f has a Lipschitz continuous
gradient:

(2.8) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, x, y ∈ H.

Assume, in addition, the stepsize sequence (λk) satisfies the condition:

(2.9) 0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

L
.

Then the sequence (xk) converges weakly to a solution of (2.5).

3. Geometric Properties of ℓp-norm errors

Let λ > 0 and 1 < p < ∞, and set

(3.1) φλ(x) :=
1

p
∥Ax− b∥pp + λ∥x∥1, x ∈ Rn.

Let Sλ be the set of minimizers of φλ, i.e.,

Sλ = arg min
x∈Rn

(
1

p
∥Ax− b∥pp + λ∥x∥1

)
.

Since φλ is continuous, convex, and coercive (i.e., φλ(x) → ∞ as ∥x∥2 → ∞), we
find that Sλ is closed, convex, and nonempty.

Proposition 3.1. Let λ > 0 and 1 < p < ∞. We have the following statements.
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(i) The matrix A and the norm ∥·∥1 are constant on Sλ, that is, Axλ = Ax̂λ and
∥xλ∥1 = ∥x̂λ∥1 for xλ, x̂λ ∈ Sλ. Consequently, we can define the functions
ρ and η by

(3.2) ρ(λ) := ∥xλ∥1, η(λ) :=
1

p
∥Axλ − b∥pp (xλ ∈ Sλ).

(ii) ρ(λ) is decreasing and continuous in λ > 0.
(iii) η(λ) is increasing in λ > 0.
(iv) Axλ is continuous in λ > 0.

Proof. Take xλ ∈ Sλ. Using the optimality condition

0 ∈ ∂φλ(xλ) = A⊤Jp(Axλ − b) + λ∂∥xλ∥1 or − 1

λ
A⊤(Axλ − b) ∈ ∂∥xλ∥1,

with A⊤ the transpose of A, we find that the subdifferential inequality turns out to
be

(3.3) λ∥x∥1 ≥ λ∥xλ∥1 − ⟨Jp(Axλ − b), A(x− xλ)⟩, ∀x ∈ Rn.

In particular, we get, for x̂λ ∈ Sλ,

(3.4) λ∥x̂λ∥1 ≥ λ∥xλ∥1 − ⟨Jp(Axλ − b), A(x̂λ − xλ)⟩.
Interchanging xλ and x̂λ yields

(3.5) λ∥xλ∥1 ≥ λ∥x̂λ∥1 − ⟨Jp(Ax̂λ − b), A(xλ − x̂λ)⟩.
Adding up (3.4) and (3.5) yields

0 ≥ ⟨Jp(Axλ − b)− Jp(Ax̂λ − b), (Axλ − b)− (Ax̂λ − b)⟩ ≥ cp∥Axλ −Ax̂λ∥pp.
Consequently, Ax̂λ = Axλ. Moreover, further using (3.4) and (3.5), we immediately
get ∥x̂λ∥1 = ∥xλ∥1. Therefore, the functions ρ and η defined by (3.2) are well-defined
for λ > 0.

It turns out from (3.3) that, for xβ ∈ Sβ with β > 0,

(3.6) λ∥xβ∥1 ≥ λ∥xλ∥1 − ⟨Jp(Axλ − b), A(xβ − xλ)⟩.
Similarly, we have (or interchanging λ and β, and xλ and xβ in (3.6)

(3.7) β∥xλ∥1 ≥ β∥xβ∥1 − ⟨Jp(Axβ − b), A(xλ − xβ)⟩.
Adding up (3.6) and (3.7) obtains

(3.8) (λ− β)(∥xβ∥1 − ∥xλ∥1) ≥ ⟨Jp(Axλ − b)− Jp(Axβ − b)⟩ ≥ cp∥Axλ −Axβ∥pp.
It immediately turns out that the function λ 7→ ∥xλ∥1 is nonincreasing: ∥xβ∥1 ≥
∥xλ∥1 for 0 < β < λ, namely, ρ(λ) is nonincreasing. (3.8) also shows that Axγ is
continuous, which implies the continuity of η(λ) for λ > 0.

To see the increasingness of the function η(λ), we notice that the fact xλ ∈ Sλ

implies for β > 0

1

p
∥Axλ − b∥pp + λ∥xλ∥1 ≤

1

p
∥Axβ − b∥pp + λ∥xβ∥1

which can be rewritten as
1

p
∥Axλ − b∥pp ≤

1

p
∥Axβ − b∥pp + λ(∥xβ∥1 − ∥xλ∥1).
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Now if β > λ > 0, then as ∥xβ∥1 ≤ ∥xλ∥1, we immediately get that 1
p∥Axλ − b∥pp ≤

1
p∥Axβ − b∥pp. Namely, η(λ) ≤ η(β).

Finally to the continuity of ρ(λ) for λ > 0, we assume 0 < β < λ and take the
limit as β → λ in (3.6), arriving at (noticing the continuity of Axλ)

λρ(λ−) = λ lim
β→λ−

ρ(β) ≥ λρ(λ)− lim
β→λ−

⟨Jp(Axλ − b), Axβ −Axλ⟩ = λρ(λ).

Hence, ρ(λ−) ≥ ρ(λ). This suffices to imply the continuity of ρ at λ > 0 because of
the nonincreasingness of ρ. �
Proposition 3.2. Assume S := argminx∈Rn ∥Ax− b∥pp is nonempty.

(i) limλ→0 ρ(λ) = minx∈S ∥x∥1.
(ii) limλ→0 η(λ) = minx∈Rn

1
p∥Ax− b∥pp.

Proof. To prove (i), we first assert that ∥xλ∥1 ≤ ∥x̃∥1 for any x̃ ∈ S. As a matter
of fact,

1
p∥Axλ − b∥22 + λ∥xλ∥1 ≤ 1

p∥Ax̃− b∥pp + λ∥x̃∥1
≤ 1

p∥Axλ − b∥pp + λ∥x̃∥1.
It turns out that ∥xλ∥1 ≤ ∥x̃∥1. In particular, ∥xλ∥1 ≤ ∥x†∥1, where x† is a
minimum-norm element of S, that is, ∥x†∥1 = minx∈S ∥x∥1.

Assume λk → 0 is such that xλk
→ x̂. Then for any x,

1
p∥Ax̂− b∥pp = limk→∞

1
p∥Axλk

− b∥pp
= limk→∞

1
p∥Axλk

− b∥pp + λk∥xλk
∥1

≤ limk→∞
1
p∥Ax− b∥pp + λk∥x∥1 = 1

p∥Ax− b∥pp.

It turns out that x̂ solves the least pth-power problem minx
1
p∥Ax − b∥pp, that is,

x̂ ∈ S. Consequently,

lim
λ→0

ρ(λ) = lim
k→∞

ρ(λk) = lim
k→∞

∥xλk
∥1 = ∥x̂∥1 ≤ ∥x†∥1 = min

x∈S
∥x∥1.

This suffices to imply that the conclusion of (i).
To prove (ii) we first notice the boundedness of (xλ). Next by taking the limit

as λ → 0 in the inequality

1

p
∥Axλ − b∥pp + λ∥xλ∥1 ≤

1

p
∥Ax− b∥pp + λ∥x∥1, ∀x ∈ Rn

we obtain

lim
η→0

η(λ) ≤ 1

p
∥Ax− b∥pp, ∀x ∈ Rn.

The result in (ii) follows immediately. �
The following result shows that if λ > 0 is sufficiently big, then the minimization

(1.6) has trivial solutions only.

Proposition 3.3. Assume S = argminx∈Rn ∥Ax− b∥pp is nonempty and set

(3.9) ∆p := sup
λ>0

∥A⊤(Jp(Axλ)− Jp(Axλ − b))∥∞ < ∞.

If λ > ∆p, then xλ = 0.
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Proof. The optimality condition

−A⊤Jp(Axλ − b) ∈ λ∂∥xλ∥1
implies that

−(A⊤(Jp(Axλ − b)))i = λ · sgn[(xλ)i], if (xλ)i ̸= 0,
|(A⊤(Jp(Axλ − b)))i| ≤ λ, if (xλ)i = 0.

Taking x = 2xλ in the subdifferential inequality (3.3) yields

λ∥xλ∥1 ≥ −⟨A⊤Jp(Axλ − b), xλ⟩

= −
∑

(xλ)i ̸=0(A
⊤(Jp(Axλ − b)))i(xλ)i

=
∑

(xλ)i ̸=0 λ · [sgn(xλ)]i(xλ)i
= λ

∑
(xλ)i ̸=0 |(xλ)i| = λ∥xλ∥1.

Consequently, we must have

λ∥xλ∥1 = −⟨A⊤Jp(Axγ − b), xλ⟩ = −⟨Jp(Axλ)− b, Axλ⟩
= ⟨Jp(Axλ)− Jp(Axλ − b), Axλ⟩ − ∥Axλ∥pp
≤ ⟨A⊤(Jp(Axλ)− Jp(Axλ − b)), xλ⟩

≤ ∥xλ∥1∥A⊤(Jp(Axλ)− Jp(Axλ − b))∥∞
≤ ∆p∥xλ∥1.

This implies that if xλ ̸= 0, we must have λ ≤ ∆p. This finishes the proof. �

Remark 3.4. When p = 2, the duality map Jp = I and ∆2 = ∥A⊤b∥∞. Thus

xλ = 0 whenever λ > ∥A⊤b∥∞. This recovers [19, Proposition 2.3]

Proposition 3.5. Let λ > 0 and xλ ∈ Sλ. Then x̂ ∈ Rn is a solution of the lasso
(1.4) if and only if Ax̂ = Axλ and ∥x̂∥1 ≤ ∥xλ∥1. It turns out that

(3.10) Sλ = xλ +N(A) ∩Bρ(λ),

where N(A) = {x ∈ Rn : Ax = 0} is the null space of A and Br denotes the closed
ball centered at the origin and with radius of r > 0. This shows that if we can find
one solution to the lasso (1.4), then all solutions are found by (3.10).

Proof. If Ax̂ = Axλ, then from the relations

φλ(xλ) =
1

p
∥Axλ − b∥pp + λ∥xλ∥1

≤ 1

p
∥Ax̂− b∥pp + λ∥x̂∥1

=
1

p
∥Axλ − b∥pp + λ∥x̂∥1,

we obtain ∥xλ∥1 ≤ ∥x̂∥1. This together with the assumption that ∥x̂∥1 ≤ ∥xλ∥1
yields that ∥x̂∥1 = ∥xλ∥1 which in turns implies that φλ(x̂) = φλ(xλ) and hence
x̂ ∈ Sλ. �
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4. Iterative Methods

Taking f(x) = 1
p∥Ax − b∥pp and g(x) = λ∥x∥1, we rewrite (1.6) as (2.5). Notice

that f is diffferentiable with gradient given by (assuming p ∈ (1,∞))

(4.1) ∇f(x) = A⊤Jp(Ax− b).

4.1. Proximal-gradient algorithm. Applying the proximal gradient algorithm
(2.7) to (1.6), we get a sequence (xk) given as follows:

(4.2) xk+1 = proxλkλ∥·∥1(xk − λkA
⊤Jp(Axk − b)),

where x0 ∈ Rn is an initial guess and {λk} is a sequence of positive real numbers.
However, Theorem 2.4 does not apply to (4.2) because the gradient of f , ∇f , as
given in (4.1), fails to be Lipschitz (except for the case of p = 2). We therefore pose
the following open question.

Question: Does the sequence (xk) generated by the algorithm (4.2) converge to
a solution of (1.6)?

4.2. Generalized Frank-Wolfe Algorithm. The Frank-Whole algorithm (FWA)
[11] provides an iterative algorithm that does not require the gradient to be Lipschitz
continuous, and is thus applicable to the optimization (1.6). In fact, a generalization
of FWA, called generalized Frank-Whole algorithm (gFWA) [2,21], has recently been
developed to treat the composite optimization (2.5). Let C be a closed bounded
convex subset of Rn. The gFWA generates a sequence (xk) via the following iteration
process:

{
x̄k = argmin

x∈C
⟨f ′(xk), x⟩+ g(x),(4.3a)

xk+1 = xk + γk(x̄k − xk)(4.3b)

where x0 ∈ C is an initial and γk ∈ [0, 1) is the stepsize of the kth iteration.

Theorem 4.1 ([21, Theorem 5.2]). Consider the sequence {xk} generated by the
generalized Frank-Wolfe algorithm (4.4). Assume the conditions below are satisfied:

(i) the Fréchet derivative f ′ is uniformly continuous over C;
(ii) the stepsizes {γk} ⊂ (0, 1] satisfy the open loop conditions:

(C1) limk→∞ γk = 0,
(C2)

∑∞
k=0 γk = ∞.

Then limk→∞ φ(xk) = φ∗ := infC φ, where φ = f + g.

Now assume S = argminx∈Rn ∥Ax− b∥pp is nonempty. Then by (3.9) we find that

the solution xλ of (1.6) is trivial (i.e., xλ = 0) for all λ > ∆̃p, where

∆̃p := sup{∥A⊤(Jpx− Jpy)∥∞ : ∥x∥2, ∥y∥2 ≤ ∥A∥1,2|S|1 + ∥b∥2},
where |S|1 := min{∥z∥1 : z ∈ S} and ∥A∥1,2 := sup{∥Ax∥2/∥x∥1 : x ̸= 0} is
the (1, 2) operator norm of A. It turns out that we can restrict the minimization
problem (1.6) to the closed ball Br for achieving nontrivial solutions. Here r > 0
is big enough (i.e. r > ∥A∥1,2|S|1 + ∥b∥2). Hence, the gFWA (4.4) applies, where
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we take f(x) = 1
p∥Ax − b∥pp and g(x) = λ∥x∥1. Note again f ′(x) = A⊤Jp(Ax − b).

Consequently, the following result follows immediately from Theorem 4.1.

Theorem 4.2. Let the sequence {xk} be generated by the generalized Frank-Wolfe
algorithm: {

x̄k = arg min
x∈Br

⟨A⊤Jp(Axk − b), x⟩+ λ∥x∥1,(4.4a)

xk+1 = xk + γk(x̄k − xk)(4.4b)

Assume (γk) satisfies the above conditions (C1) and (C2). Then limk→∞ φλ(xk) =
minRn φλ, with φλ defined in (3.1).
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