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ON ISEKI’ STRICT FIXED POINT THEOREM

GHIOCEL MOŢ AND ADRIAN PETRUŞEL

Abstract. In this paper we will present an extended version of Iseki’ strict fixed
point theorem for multi-valued operators. We will discuss existence, uniqueness,
continuous data dependence of the strict fixed point as well as some other stability
properties, such as well-posednss, Ulam-Hyers stability and Ostrowski property.

1. Introduction

One of the most important metric strict fixed point theorem for multi-valued
operators was proved in 1972 by Simeon Reich (see [20]), in the context of a complete
metric space. The proof of this result is based on a fixed point theorem for single-
valued operators given by Reich in the same paper (see also [4,23,24]). In 1975, K.
Iseki gives (see [9]) a generalization of Reich’s theorem, using the above mentioned
fixed point theorem for single-valued operators of S. Reich. For related results and
generalizations see [1, 3, 5, 10].

It is worth to notice that strict fixed point theorems have nice applications
in mathematical economics and game theory. The strict fixed point property also
appear in the context of iterative methods for finding fixed points various classes of
multi-valued operators.

The aim of this paper to present an extended (by the conclusions point of view)
version of Iseki’ strict fixed point theorem for multi-valued operators in complete
metric space. Some related stability properties will be considered: data depen-
dence, Ulam-Hyers stability, well-posedness, Ostrovski property. A local fixed point
theorem will be proved too. Our results extend a recent work related to Reich’s
theorem, see [14].

2. Preliminaries

Let us recall first some important preliminary concepts and results.
Let (X, d) be a metric space and P (X) be the family of all nonempty subsets ofX.

We denote by Pcl(X) the family of all nonempty closed subsets of X and by Pb(X)
the family of all nonempty bounded subsets of X. Also Pb,cl(X) := Pb(X)∩Pcl(X).
For x0 ∈ X and r > 0 we will also denote by B(x0; r) := {x ∈ X|d(x0, x) < r} the

open ball, respectively by B̃(x0; r) := {x ∈ X|d(x0, x) ≤ r} the closed ball, centered
in x0 with radius r.
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The following functionals are needed in the main sections:
(a) the gap functional generated by d:

Dd : P (X)× P (X) → R+, Dd(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}.

(b) the excess functional of A over B generated by d:

ed : P (X)× P (X) → R+ ∪ {+∞}, ed(A,B) := sup{Dd(a,B) | a ∈ A}.

(c) the Hausdorff-Pompeiu functional generated by d:

Hd : P (X)× P (X) → R+ ∪ {+∞}, Hd(A,B) = max{ed(A,B), ed(B,A)}.

(d) the diameter functional generated by d:

δd : P (X)× P (X) → R+, δd(A,B) := sup{d(a, b) | a ∈ A, b ∈ B}.

The diameter of a set A ∈ P (X) is diamd(A) := δd(A,A). If the context is evident,
we will avoid the subscript d.

Some useful properties of these functionals are re-called (see, for example, [2,8,12])
in the next lemmas.

Lemma 2.1. If (X, d) is a metric space, then we have:

(a) if A ∈ Pcl(X) and x ∈ X are such that D(x,A) = 0, then x ∈ A.
(b) if A,B ∈ Pb(X) and q < 1, then, for every a ∈ A there exists b ∈ B such

that d(a, b) ≥ qδ(A,B).
(c) the functional δ has the following properties:

(1) δ(A,B) = 0 implies that A = B = {x∗};
(2) δ(A,B) ≤ δ(A,C) + δ(C,B), for all A,B,C ∈ Pb(X);
(3) δ(A,B) = δ(B,A), for all A,B ∈ Pb(X).
(d) if A ∈ Pb(X) then diam(A) = 0 if and only if A is a singleton

Finally, let us recall that if X is a nonempty set and F : X → P (X) is a multi-
valued operator, then we denote by Fix(F ) := {x ∈ X : x ∈ F (x)} the fixed point
set for F , and by SFix(F ) := {x ∈ X : {x} = F (x)} the strict fixed point set for
F . In some papers, the strict fixed point is called stationary point or end-point. We
also denote by Graph(F ) := {(x, y) ∈ X ×X|y ∈ F (x)} the graph of F .

Moreover, for arbitrary (x0, x1) ∈ Graph(F ), the sequence (xn)n∈N with the pro-
perty xn+1 ∈ F (xn) (for n ∈ N) is called the sequence of successive approximations
for F staring from (x0, x1).

The concepts of multi-valued weakly Picard operator and multi-valued Picard
operator are very important in fixed point theory for multi-valued operators.

Definition 2.2 ([15, 24, 25]). Let (X, d) be a metric space. Then F : X → P (X)
is called a multivalued weakly Picard operator (briefly, MWP operator) if for each
x ∈ X and each y ∈ F (x) there exists a sequence {xn}n∈N in X such that

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ F (xn), for all n ∈ N;
(iii) the sequence {xn}n∈N is convergent and its limit is a fixed point of F .

Let us recall the following important notion.
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Definition 2.3. Let (X, d) be a metric space and F : X → P (X) be an MWP
operator. Then we define the multivalued operator F∞ : Graph(F ) → P (Fix(F ))
by the formula F∞(x, y) = {z ∈ Fix(F ) | there exists a sequence of successive
approximations of F starting from (x, y) that converges to z}.

An important concept is given by the following definition.

Definition 2.4. Let (X, d) be a metric space and F : X → P (X) an MWP operator.
Then F is a ψ-multi-valued weakly Picard operator (briefly ψ-MWP operator) if
ψ : R+ → R+ is increasing, continuous in 0 with ψ(0) = 0 and there exists a
selection f∞ of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(F ).

In particular, if ψ(t) = ct, we say that F is a c-multi-valued weakly Picard operator
(briefly c-MWP operator).

Definition 2.5 (see [9]). Let (X, d) be a metric space. Then, F : X → Pcl(X) is
called a multi-valued (α, β, γ)-contraction if α, β, γ ≥ 0, α+ 2β + 2γ < 1 and

H(F (x1), F (x2)) ≤ αd(x1, x2) + β (Dd(x1, F (x1)) +Dd(x2, F (x2)))

+ γ (Dd(x1, F (x2)) +Dd(x2, F (x1))) , for all x1, x2 ∈ X.

Example 2.6. An (α, β, γ)-contraction is a c-MWP operator with c := 1−β−γ
1−(α+β+γ) .

Definition 2.7 ([15, 16]). We say that F : X → P (X) is a multi-valued Picard
operator if:

(i) SFix(F ) = Fix(F ) = {x∗};
(ii) Fn(x)

Hd→ {x∗} as n→ ∞, for each x ∈ X.

Several examples of Picard and weakly Picard operators and some studies of it
are presented in [12,13,15,16,18].

3. Iseki’s strict fixed point theorem

In 1973, Hardy and Rogers proved the following very general fixed point theo-
rem for single-valued operators.

Theorem 3.1 (Hardy-Rogers’ Theorem). Let (X, d) be a complete metric space
and f : X → X be a (α, β, γ)-contraction, i.e., α, β, γ ≥ 0, α+ 2β + 2γ < 1 and

d(f(x1), f(x2)) ≤ αd(x1, x2) + β (d(x1, f(x1)) + d(x2, f(x2)))

+ γ (d(x1, f(x2)) + d(x2, f(x1))) , for all x1, x2 ∈ X.

Then f has a unique fixed point, i.e., there exists a unique x∗ ∈ X such that
x∗ = f(x∗).

In particular, if γ = 0 in the above theorem, then we get Reich’s Theorem in [20].
In 1975, Iseki extended the above result to the case of multi-valued operators,

proving a strict fixed point theorem. The purpose of this section is to study the
strict fixed point problem for the class of multi-valued (α, β, γ)− δ-contractions in
the sense of Iseki.

Actually, in [9] K. Iseki proved the following strict fixed point principle.



108 G. MOŢ AND A. PETRUŞEL

Theorem 3.2 (Iseki’s Theorem). Let (X, d) be a complete metric space and F :
X → Pb(X) be a multi-valued operator for which there exist α, β, γ ≥ 0 with α +
2β + 4γ < 1 such that

δ(F (x), F (y)) ≤ αd(x, y) + β (δ(x, F (y)) + δ(y, F (y)))

+ γ (δ(x, F (y)) + δ(y, F (x))) , for all x, y ∈ X.

Then Fix(F ) = SFix(F ) = {x∗}.

Proof. A. Iseki’s original proof. Let p :=
√
α+ 2β + 4γ ∈ (0, 1). Then, by Lemma

2.1, we can define a selection f : X → X of F , by letting to each point x ∈ X the
point f(x) ∈ F (x) which satisfies d(x, f(x)) ≥ pδ(x, F (x)). Then, we have

d(f(x), f(y)) ≤ δ(F (x), F (y))

≤ αd(x, y) + β (δ(x, F (x)) + δ(y, F (y)))

+ γ (δ(x, F (y)) + δ(y, F (x)))

≤ αd(x, y) + β (δ(x, F (x)) + δ(y, F (y)))

+ γ (2d(x, y) + δ(x, F (x)) + δ(y, F (y)))

≤ αd(x, y) + βp−1 (d(x, f(x)) + d(y, f(y)))

+ γp−1 (2d(x, y) + d(x, f(x)) + d(y, f(y)))

= (α+ 2γp−1)d(x, y) + (β + γ)p−1 (d(x, f(x)) + d(y, f(y))) .

Since α+2βp−1 +4γp−1 < p−1(α+2β +4γ) = p < 1, we obtain that f satisfies all
the conditions of Reich’ Theorem (see Theorem 3.1 for the case γ = 0) and hence
f has a unique fixed point x∗ ∈ X. Thus x∗ ∈ Fix(F ).

On the other hand, let us notice that, since 0 = d(x∗, f(x∗)) ≥ pδ(x∗, F (x∗)), we
get δ(x∗, F (x∗)) = 0 and thus F (x∗) = {x∗}. Hence, x∗ ∈ SFix(F ). We show now
that Fix(F ) ⊂ SFix(F ). Indeed, let y ∈ Fix(F ). If δ(y, F (y)) > 0, then

diam(F (y)) = δ(F (y), F (y)) ≤ 2(β + γ)δ(y, F (y)) < δ(y, F (y)),

which is a contradiction. Hence δ(y, F (y)) = 0 and thus F (y) = {y}.
For the uniqueness of the strict fixed point (and the fixed point too), we notice

that, if z ∈ X is another strict fixed point of F such that x∗ ̸= z, then we have

d(x∗, z) = δ(F (x∗), F (z))

≤ αd(x∗, z) + β (δ(x∗, F (x∗)) + δ(z, F (z)))

+ γ (δ(x∗, F (z)) + δ(z, F (x∗)))

= (α+ 2γ)d(x∗, z) < d(x∗, z),

which gives a contradiction. Thus z = x∗.
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B. An alternative proof. Let q > 1 and let x0 ∈ X be arbitrary. Then there exists
x1 ∈ F (x0) such that δ(x0, F (x0)) ≤ q · d(x0, x1). Thus, we have

δ(x1, F (x1)) ≤ δ(F (x0), F (x1))

≤ αd(x0, x1) + β (δ(x0, F (x0)) + δ(x1, F (x1)))

+ γ (δ(x0, F (x1)) + δ(x1, F (x0)))

≤ αd(x0, x1) + βqd(x0, x1) + βδ(x1, F (x1))

+ γ (2d(x0, x1) + δ(x0, F (x0)) + δ(x1, F (x1)))

≤ (α+ 2γ)d(x0, x1) + (β + γ)qd(x0, x1) + (β + γ)δ(x1, F (x1)).

Hence, we get

δ(x1, F (x1)) ≤
α+ 2γ + (β + γ)q

1− β − γ
d(x0, x1).

By this approach we can construct a sequence (xn)n∈N ⊂ X of successive approxi-
mations for F , such that

d(xn, xn+1) ≤ δ(xn, F (xn)) ≤
(
α+ 2γ + (β + γ)q

1− β − γ

)n

d(x0, x1), for all n ∈ N.

Choosing 1 < q < 1−(α+β+3γ)
β+γ we obtain α+2γ+(β+γ)q

1−β−γ < 1. Hence (xn)n∈N ia a

Cauchy sequence in the complete metric space (X, d). Let us denote by x∗ ∈ X its
limit. We show that x∗ is a strict fixed point for F , i.e., F (x∗) = {x∗}. We have

δ(x∗, F (x∗)) ≤ d(x∗, xn+1) +D(xn+1, F (xn)) + δ(F (xn), F (x
∗)) ≤

d(x∗, xn+1) + αd(xn, x
∗) + βδ(xn, F (xn))

+ βδ(x∗, F (x∗)) + γ (δ(xn, F (x
∗)) + δ(x∗, F (xn)))

≤ d(x∗, xn+1) + (α+ 2γ)d(xn, x
∗) + (β + γ)δ(xn, F (xn)) + (β + γ)δ(x∗, F (x∗))

≤ d(x∗, xn+1) + (α+ 2γ)d(xn, x
∗) + (β + γ)

(
α+ 2γ + (β + γ)q

1− β − γ

)n

d(x0, x1)

+ (β + γ)δ(x∗, F (x∗)).

Thus, we obtain that

δ(x∗, F (x∗)) ≤ 1

1− β − γ
(d(x∗, xn+1) + (α+ 2γ)d(xn, x

∗))

+
β + γ

1− β − γ

(
α+ 2γ + (β + γ)q

1− β − γ

)n

d(x0, x1).

As n→ ∞, we obtain that δ(x∗, F (x∗)) = 0 and thus F (x∗) = {x∗}. The fact that
Fix(F ) = SFix(F ) and the uniqueness of the strict fixed point follow as before. �
Remark 3.3. By the alternative proof, it also follows that there exists a sequence
(xn)n∈N of successive approximations for F starting from arbitrary x0 ∈ X, such
that

d(xn, x
∗) ≤ kn

1− k
d(x0, x1), for all n ∈ N,

where k := α+2γ+(β+γ)q
1−β−γ , with any q ∈ (1, 1−(α+β+3γ)

β+γ ).
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On the other hand, it is worth to notice that by Iseki’s original proof we also
obtain, taking into account the proof of Reich’s Theorem (see [21], [19]), that the
sequence un := fn(x0), for n ∈ N∗ (where x0 is arbitrary in X) converges to
x∗ ∈ Fix(f) ⊂ Fix(F ) (where f is the selection of F constructed above) and the
following apriori estimation holds

d(un, x
∗) ≤ Kn

1−K
d(x0, f(x0)), for all n ∈ N,

where K := α
√
α+2β+4γ+(β+3γ)√
α+2β+4γ−(β+γ)

< 1. Hence, for the strict fixed point x∗ ∈ X the

following estimation holds

d(un, x
∗) ≤ Kn

1−K
d(x0, x1), for all n ∈ N.

Remark 3.4. The following open question can be pointed out in this context: prove
an Iseki type theorem for multi-valued operators using Hardy-Rogers’ fixed point
theorem in [7], see Theorem 3.1.

We also the following interesting result.

Theorem 3.5. Let (X, d) be a complete metric space and F : X → Pb(X) be a
multi-valued operator for which there exist α, β, γ ∈ R+ with α+ 2β + 4γ < 1, such
that, for all x, y ∈ X we have

δ(F (x), F (y)) ≤ αd(x, y)+β (δ(x, F (x)) + δ(y, F (y)))+γ (δ(x, F (y)) + δ(y, F (x))) .

Then F is a MP operator.

Proof. By Theorem 3.2 we know that Fix(F ) = SFix(F ) = {x∗}. We have to

prove that Fn(x)
Hd→ {x∗} as n → ∞, for each x ∈ X. We have, for every x ∈ X,

that

δ(F (x), x∗) = δ(F (x), F (x∗))

≤ αd(x, x∗) + β (δ(x, F (x)) + δ(x∗, F (x∗)))

+ γ (δ(x, F (x∗)) + δ(x∗, F (x)))

≤ αd(x, x∗) + β(d(x, x∗) + δ(x∗, F (x)))

+ γ(d(x, x∗) + δ(x∗, F (x∗)) + δ(x∗, F (x))).

Thus

δ(F (x), x∗) ≤ α+ β + γ

1− β − γ
d(x, x∗), for all x ∈ X.

Then
δ(F 2(x), x∗) = sup

y∈F (x)
δ(F (y), x∗) ≤

sup
y∈F (x)

(
α+ β + γ

1− β − γ

)
d(y, x∗) ≤

(
α+ β + γ

1− β − γ

)2

d(x, x∗).

By mathematical induction, we get that

δ(Fn(x), x∗) ≤
(
α+ β + γ

1− β − γ

)n

d(x, x∗) → 0 as n→ +∞, for each x ∈ X.

The proof is now complete. �
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It is important also to get a localization of the (strict) fixed point for a multi-
valued operator. In the case of (α, β, γ)− δ-contractions we have the following local
fixed point theorem.

Theorem 3.6. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Suppose

that F : B̃(x0; r) → Pb(X) is a multi-valued operator for which:

(a) there exist α, β, γ ∈ R+ with 0 < α + 2β + 4γ < 1 such that, for all x, y ∈
B̃(x0; r) ⊂ X, the following condition is satisfied

δ(F (x), F (y)) ≤ αd(x, y)+β (δ(x, F (x)) + δ(y, F (y)))+γ (δ(x, F (y)) + δ(y, F (x))) ;

(b) δ(x0, F (x0)) ≤ 1−α−2β−4γ
1+β+γ r.

Then there exists a unique x∗ ∈ B̃(x0; r) such that SFix(F ) = Fix(F ) = {x∗}. In
particular, if β > 0 then x∗ ∈ B(x0; r).

Proof. We will show that the closed ball B̃(x0; r) is invariant with respect to F ,

i.e., F (B̃(x0; r)) ⊆ B̃(x0; r). For this purpose, let x ∈ B̃(x0; r) and y ∈ F (x) be
arbitrary chosen. Then we have d(y, x0) ≤ δ(F (x), F (x0)) + δ(x0, F (x0)). On the
other hand,

δ(F (x), F (x0)) ≤ αr + β (δ(x, F (x)) + δ(x0, F (x0)))

+ γ (δ(x, F (x0)) + δ(x0, F (x)))

≤ αr + β (d(x, x0) + δ(x0, F (x0)) + δ(F (x0), F (x)) + δ(x0, F (x0)))

+ γ (d(x, x0) + δ(x0, F (x0)) + d(x0, x) + δ(x, F (x)))

≤ (α+ β + 3γ)r + (2β + 2γ)δ(x0, F (x0)) + (β + γ)δ(F (x0), F (x)).

Hence

δ(F (x), F (x0)) ≤
(α+ β + 3γ)r + 2(β + γ)δ(x0, F (x0))

1− β − γ
.

Hence, going back to our first relation we get

d(y, x0) ≤
(α+ β + 3γ)r + 2(β + γ)δ(x0, F (x0))

1− β − γ
+ δ(x0, F (x0))

=
(α+ β + 3γ)r + (β + γ + 1)δ(x0, F (x0))

1− β − γ
.

By (b) we obtain that d(y, x0) ≤ r, proving that the closed ball B̃(x0; r) is invariant
with respect to F . The conclusion follows now by Theorem 3.2.
If β > 0, then we can show that x∗ ∈ B(x0; r). Indeed, suppose, by contradiction,
that d(x∗, x0) = r. Then we have

r = d(x∗, x0) ≤ δ(F (x∗), F (x0)) + δ(x0, F (x0))

≤ (α+ 2γ)d(x∗, x0) + (β + γ + 1)δ(x0, F (x0))

≤ (α+ 2γ)r + (β + γ + 1)
1− α− 2β − 4γ

1 + β + γ
r

= (1− 2β − 2γ)r < r.

This is a contradiction and the proof is now complete. �
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We will discuss now the well-posedness of the strict fixed point problem. For the
well-posedness concept in the single-valued case see the paper Reich-Zaslavski [22],
while the multi-valued case is considered in [17].

Definition 3.7. Let (X, d) be a metric space and F : X → Pb(X) be a multivalued
operator. The strict fixed point problem

(3.1) {x} = F (x), x ∈ X

is well-posed for F if:

(a2) SFix(F ) = {x∗}
(b2) If (xn)n∈N is a sequence in X such that δ(xn, F (xn)) → 0 as n→ +∞,

then xn → x∗ as n→ +∞.

In this respect, we have the following result.

Theorem 3.8. Let (X, d) be a complete metric space and F : X → Pb(X) be a
multi-valued operator for which there exist α, β, γ ∈ R+ with 0 < α + 2β + 4γ < 1
such that, for all x, y ∈ X, we have

δ(F (x), F (y)) ≤ αd(x, y)+β (δ(x, F (x)) + δ(y, F (y)))+γ (δ(x, F (y)) + δ(y, F (x))) .

Then the strict fixed point problem is well-posed for F .

Proof. By Theorem 3.2 we know that Fix(F ) = SFix(F ) = {x∗}. Let (xn)n∈N
be a sequence in X such that δ(xn, F (xn)) → 0 as n → +∞. We will prove that
xn → x∗ as n→ +∞. For this purpose, we have

d(xn, x
∗) ≤ δ(xn, F (xn)) + δ(F (xn), F (x

∗))

≤ δ(xn, F (xn)) + αd(xn, x
∗) + β (δ(xn, F (xn)) + δ(x∗, F (x∗)))

+ γ (δ(xn, F (x
∗)) + δ(x∗, F (xn)))

≤ (1 + β + γ)δ(xn, F (xn)) + (α+ 2γ)d(xn, x
∗).

Letting n→ ∞ we obtain the desired conclusion. �

We will continue our study by presenting the concept of Ulam-Hyers stability for
the strict fixed point problem. For related definitions and results see [11].

Definition 3.9. Let (X, d) be a metric space and F : X → Pb(X) be a multi-valued
operator. The strict fixed point problem (3.1) is called Ulam-Hyers stable if there
exists c > 0 such that for each ε > 0 and for each ε-solution y ∈ X of the strict
fixed point problem, i.e.,

(3.2) δ(y, F (y)) ≤ ε,

there exists a solution x∗ ∈ X of the strict fixed point inclusion (3.1) such that

d(y, x∗) ≤ cε.

We have the following result concerning the Ulam-Hyers stability of the strict
fixed point problem.
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Theorem 3.10. Let (X, d) be a complete metric space and F : X → Pb(X) be a
multi-valued operator for which there exist α, β, γ ∈ R+ with 0 < α + 2β + 4γ < 1
such that, for all x, y ∈ X, we have

δ(F (x), F (y)) ≤ αd(x, y)+β (δ(x, F (x)) + δ(y, F (y)))+γ (δ(x, F (y)) + δ(y, F (x))) .

Then the strict fixed point problem is Ulam-Hyers stable.

Proof. By Theorem 3.2 we know that Fix(F ) = SFix(F ) = {x∗}. Let ε > 0 and
y ∈ X such that δ(y, F (y)) ≤ ε. Then, we have

d(y, x∗) ≤ δ(y, F (y)) + δ(F (y), F (x∗))

≤ δ(y, F (y)) + αd(y, x∗) + β (δ(y, F (y)) + δ(x∗, F (x∗)))

+ γ (δ(y, F (x∗)) + δ(x∗, F (y)))

≤ (1 + β + γ)δ(y, F (y)) + (α+ 2γ)d(y, x∗).

Thus

d(y, x∗) ≤ 1 + β + γ

1− α− 2γ
δ(y, F (y)) ≤ 1 + β + γ

1− α− 2γ
ε.

The proof is complete. �

Another stability concept is given in the next definition.

Definition 3.11. Let (X, d) be a metric space and F : X → P (X) be a multi-
valued operator with SFix(F ) = {x∗}. If (yn)n∈N is a sequence in X such that the
following implication holds

D(yn+1, F (yn)) → 0 as n→ ∞ ⇒ yn → x∗ as n→ ∞,

then we say that the strict fixed point problem (3.1) has the Ostrovski property.

Theorem 3.12. Let (X, d) be a complete metric space and F : X → Pb(X) be a
multi-valued operator for which there exist α, β, γ ∈ R+ with 0 < α + 2β + 4γ < 1
such that, for all x, y ∈ X, we have

δ(F (x), F (y)) ≤ αd(x, y) + β (δ(x, F (x)) + δ(y, F (y)))

+ γ (δ(x, F (y)) + δ(y, F (x))) .

Then the strict fixed point problem as the Ostrovski property.

Proof. By Theorem 3.2 we know that Fix(F ) = SFix(F ) = {x∗}. Let (yn)n∈N be
a sequence in X such that D(yn+1, F (yn)) → 0 as n→ ∞. Next, we have

d(yn+1, x
∗) ≤ D(yn+1, F (yn)) + δ(F (yn), x

∗).

On the other hand, we observe that

δ(F (yn), x
∗) = δ(F (yn), F (x

∗))

≤ αd(yn, x
∗) + βδ(yn, F (yn)) + γ (δ(yn, F (x

∗)) + δ(x∗, F (yn))))

≤ (α+ γ)d(yn, x
∗) + β (d(yn, x

∗) + δ(x∗, F (yn))) + γδ(x∗, F (yn))

= (α+ β + γ)d(yn, x
∗) + (β + γ)δ(x∗, F (yn)).

Hence

δ(F (yn), x
∗) ≤ α+ β + γ

1− β − γ
d(yn, x

∗) for all n ∈ N.



114 G. MOŢ AND A. PETRUŞEL

Denote p := α+β+γ
1−β−γ ∈ (0, 1). As a consequence, we obtain

d(yn+1, x
∗)

≤ D(yn+1, F (yn)) + pd(yn, x
∗) ≤ · · ·

≤
n∑

k=0

pkD(yn−k+1, F (yn−k)) + pn+1d(y0, x
∗).

By Cauchy’s Lemma (see [18]), we obtain the desired conclusion. �
Finally, we will present a data dependence theorem for the strict fixed point

problem.

Theorem 3.13. Let (X, d) be a complete metric space and F : X → Pb(X) be a
multi-valued operator for which there exist α, β, γ ∈ R+ with 0 < α + 2β + 4γ < 1
such that, for all x, y ∈ X, we have

δ(F (x), F (y)) ≤ αd(x, y)+β (δ(x, F (x)) + δ(y, F (y)))+γ (δ(x, F (y)) + δ(y, F (x))) .

Suppose that G : X → Pb(X) is a multi-valued operator such that SFix(G) ̸= ∅ and
there exists η > 0 such that δ(F (x), G(x)) ≤ η, for every x ∈ X. Then

δ(SFix(F ), SF ix(G)) ≤ η

1− α− 2γ
.

Proof. By Theorem 3.2 we know that Fix(F ) = SFix(F ) = {x∗}. Let y ∈ SFix(G)
be arbitrary chosen. Then, we also have

d(y, x∗) = δ(G(y), F (x∗)) ≤ δ(G(y), F (y)) + δ(F (y), F (x∗)) ≤
η + (α+ 2γ)d(y, x∗).

Thus d(y, x∗) ≤ η
1−α−2γ , which gives immediately the desired conclusion. �
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[13] A. Petruşel and G. Petruşel, Multivalued Picard operators, J. Nonlinear Convex Anal. 13
(2012), 157–171.
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