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THE VITALI TYPE THEOREM FOR THE CHOQUET

INTEGRAL

JUN KAWABE

Abstract. The Vitali theorem for uniformly integrable functions is fundamental
in Lebesgue integration theory and contains other important convergence theo-
rems for the abstract Lebesgue integral. The purpose of the paper is to prove
Vitali type theorems for the Choquet integral and its symmetric and asymmetric
extensions with respect to a nonadditive measure. The bounded convergence the-
orem and the dominated convergence theorem for Choquet integrals are obtained
as their applications.

1. Introduction

The Vitali theorem for the abstract Lebesgue integral states that, for any finite
measure µ on a measurable space (X,A) and any sequence {fn}n∈N of A-measurable
functions converging in µ-measure to an A-measurable function f , if {fn}n∈N is
uniformly µ-integrable, then f is µ-integrable and

∫
X fndµ →

∫
X fdµ. The Vitali

theorem is fundamental in Lebesgue integration theory and contains other important
convergence theorems such as the bounded convergence theorem and the dominated
convergence theorem.

Recently, nonadditive measure theory has been extensively studied with applica-
tions to decision theory under uncertainty, game theory, data mining, some economic
topics under Knightian uncertainty and others [3, 5, 11, 12, 16, 18, 19]. For a non-
additive measure, several types of nonlinear integrals have been proposed. Among
them, the Choquet integral [1,14] is typical and widely used in nonadditive measure
theory as well as its applications. The purpose of the paper is to formulate Vitali
type theorems for the Choquet integral and its symmetric and asymmetric exten-
sions with respect to a nonadditive measure and obtain the bounded convergence
theorem and the dominated convergence theorem as their applications.

The paper is organized as follows. In Section 2, we recall some basic properties of
nonadditive measures and Choquet integrals. In Section 3, we introduce the notion
of uniform integrability of functions that will be used when formulating our Vitali
type theorems for the Choquet integral. In Section 4, we give a primitive form of
the Vitali type theorem for the Choquet integral and its dual measure form. They
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are extended in Section 5 to symmetric and asymmetric Choquet integrals. In Sec-
tion 6, we obtain the bounded convergence theorem and the dominated convergence
theorem for Choquet integrals as applications of our Vitali type theorems.

2. Preliminaries

In this paper, unless stated otherwise, X is a non-empty set and A is a field of
subsets of X. Let 2X denote the family of all subsets of X.

Let R and N denote the set of all real numbers and the set of all natural numbers.
Let R := R∪{−∞,∞} with usual total order. For any a, b ∈ R, let a∨b := max (a, b)
and a∧ b := min (a, b). For any functions f, g : X → R, let (f ∨ g)(x) := f(x)∨ g(x)
and (f ∧ g)(x) := f(x) ∧ g(x) for every x ∈ X. We adopt the usual conventions for
algebraic operations on R. We also adopt the convention (±∞) · 0 = 0 · (±∞) = 0
and inf ∅ = ∞. If a positive number c may take ∞, we explicitly write c ∈ (0,∞]
instead of the ambiguous expression c > 0. In other words, c > 0 always means
c ∈ (0,∞). This notational convention will be used for similar cases.

Let χA denote the characteristic function of a set A, that is, χA(x) = 1 if x ∈
A and χA(x) = 0 otherwise. A function f : X → R is called A-measurable if
{f ≥ t} := {x ∈ X : f(x) ≥ t} ∈ A and {f > t} := {x ∈ X : f(x) > t} ∈ A
for every t ∈ R. Any constant function and the characteristic function χA of any
set A ∈ A are A-measurable. If f and g are A-measurable and c ∈ R, then so
are f+ := f ∨ 0, f− := (−f) ∨ 0, |f | := f ∨ (−f), cf , f + c, (f − c)+, f ∨ g,
and f ∧ g. Note that f = f ∧ c + (f − c)+. Let F(X) denote the set of all A-
measurable functions f : X → R. For every f ∈ F(X), let ∥f∥ := supx∈X |f(x)|.
Then ∥f∥ < ∞ if and only if f is bounded. Let Fb(X) := {f ∈ F(X) : ∥f∥ < ∞},
F+(X) := {f ∈ F(X) : f ≥ 0}, and F+

b (X) := {f ∈ Fb(X) : f ≥ 0}. A simple
function is a function whose range space is a finite subset of R.

2.1. The nonadditive measure. A nonadditive measure onX is an extended real-
valued set function µ : A → [0,∞] such that µ(∅) = 0 and µ(A) ≤ µ(B) whenever
A,B ∈ A and A ⊂ B. It is called finite if µ(X) < ∞. This type of set function is
also called a monotone measure [18], a capacity [1], or a fuzzy measure [16] in the
literature.

Let M(X) denote the set of all nonadditive measures µ : A → [0,∞]. Let
Mb(X) := {µ ∈ M(X) : µ(X) < ∞}. For any µ ∈ Mb(X), its dual µ̄ ∈ Mb(X) is
defined by

µ̄(A) := µ(X)− µ(Ac)

for every A ∈ A, where Ac denotes the complement of A. It is obvious that ¯̄µ = µ.
If µ is finitely additive, then µ = µ̄.

Definition 2.1 ([18]). Let µ ∈ M(X).

(1) µ is called subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) whenever A,B ∈ A and
A ∩B = ∅.

(2) µ is called autocontinuous from above if µ(A∪Bn) → µ(A) whenever A ∈ A,
Bn ∈ A (n = 1, 2, . . . ) and µ(Bn) → 0.

(3) µ is called autocontinuous from below if µ(A\Bn) → µ(A) whenever A ∈ A,
Bn ∈ A (n = 1, 2, . . . ) and µ(Bn) → 0.
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(4) µ is called autocontinuous if it is autocontinuous from above and from below.

Every subadditive nonadditive measure is obviously autocontinuous. Every non-
additive measure µ satisfying inf{µ(A) : A ∈ A, A ̸= ∅} > 0 is also autocontinu-
ous [18, Theorem 6.5]. Moreover, every distorted measure µ of the form

µ(A) := φ(m(A)), A ∈ A,

where m is a finitely additive measure on A and φ : [0,∞] → [0,∞] is an increasing
function with φ(0) = 0, is autocontinuous if φ is continuous and strictly increasing
on a neighborhood of the origin (cf. [18, Theorem 6.15]).

The following example illustrates that the dual measure µ̄ is not autocontinuous
even if µ is autocontinuous.

Example 2.2. (1) Let X := [0, 1]. Let µ : 2X → [0, 1] be the nonadditive measure
defined by

µ(A) :=

{
1 if A ̸= ∅,
0 if A = ∅.

Then µ is subadditive and hence autocontinuous. Its dual µ̄ : 2X → [0, 1] is given
by

µ̄(A) =

{
1 if A = X,

0 if A ̸= X

and neither autocontinuous from above nor from below.
(2) Let X := [0, 1]. Let A be the σ-field of all Lebesgue measurable subsets of

X and λ the Lebesgue measure on (X,A). Let µ : A → [0, 2] be the nonadditive
measure defined by

µ(A) :=

{
1 + λ(A) if A ̸= ∅,
0 if A = ∅.

Then µ is subadditive and hence autocontinuous. It dual µ̄ : A → [0, 2] is given by

µ̄(A) =

{
2 if A = X,

λ(A) if A ̸= X

and neither autocontinuous from above nor from below.

Nevertheless, µ̄ has the following form of the autocontinuity-like property.

Proposition 2.3. Let µ ∈ Mb(X).

(1) µ is autocontinuous from above if and only if µ̄(A \ Bn) → µ̄(A) whenever
A ∈ A, Bn ∈ A (n = 1, 2, . . . ), and µ(Bn) → 0.

(2) µ is autocontinuous from below if and only if µ̄(A ∪ Bn) → µ̄(A) whenever
A ∈ A, Bn ∈ A (n = 1, 2, . . . ), and µ(Bn) → 0.

Proof. The proof is elementary since µ̄(A \B) = µ(X)−µ(Ac ∪B) and µ̄(A∪B) =
µ(X)− µ(Ac \B) for every A,B ∈ A. �

See [3, 12,18] for further information on nonadditive measures.
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2.2. The Choquet integral. The Choquet integral [1] is a typical nonlinear inte-
gral and widely used in nonadditive measure theory.

Definition 2.4. Let (µ, f) ∈ M(X)×F+(X). The Choquet integral is defined by

Ch(µ, f) :=

∫ ∞

0
µ({f > t})dt,

where the integral of the right hand side is the Lebesgue integral.
If f ∈ F+(X) and Ch(µ, f) < ∞, then f is called µ-integrable. If f ∈ F(X)

and Ch(µ, |f |) < ∞, then f is called µ-absolutely integrable, which will be called
µ-integrable for short without any confusion.

Remark 2.5. (1) In the definition of the Choquet integral, the µ-distribution func-
tion µ({f > t}) can be replaced with µ({f ≥ t}) without any change.

(2) The Choquet integral is equal to the abstract Lebesgue integral if µ is σ-
additive and A is a σ-field [15, Corollary 18]; see also [8, Propositions 8.1 and 8.2].

(3) In Section 5, other types of the integrability will be introduced for not neces-
sarily non-negative functions.

The following properties of the Choquet integral can be directly proved by its
definition and will be used later without mentioning explicitly.

Proposition 2.6. Let µ ∈ M(X), A ∈ A, and f, g, h ∈ F+(X). Let a ≥ 0 be a
constant.

(1) 0 ≤ Ch(µ, f) ≤ ∥f∥µ · µ({f > 0}), where ∥f∥µ := inf{c > 0: µ({f > c}) =
0}.

(2) If f(x) ≤ g(x) for every x ∈ X, then Ch(µ, f) ≤ Ch(µ, g).
(3) Ch(µ, aχA) = aµ(A).
(4) Ch(µ, af) = aCh(µ, f).
(5) Ch(µ, f + a) = Ch(µ, f) + aµ(X).
(6) Assume that either f or g is µ-integrable. If |f(x) − g(x)| ≤ a for every

x ∈ X, then |Ch(µ, f)− Ch(µ, g)| ≤ aµ(X).

The Choquet integral has the following useful inequality.

Proposition 2.7. For any µ ∈ M(X), f ∈ F+(X), A ∈ A, and c ≥ 0, it holds
that

cµ(A ∩ {f ≥ c}) ≤ Ch(µ, χAf)

≤ cµ(A ∩ {f > 0}) + Ch(µ, χA∩{f>c}f).

Proof. The first inequality follows from

Ch(µ, χAf) =

∫ ∞

0
µ({A ∩ {f ≥ t})dt

≥
∫ c

0
µ(A ∩ {f ≥ c})dt = cµ(A ∩ {f ≥ c}),
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while the second inequality follows from

Ch(µ, χAf) =

∫ c

0
µ(A ∩ {f > t})dt+

∫ ∞

c
µ(A ∩ {f > t})dt

≤
∫ c

0
µ(A ∩ {f > 0})dt+

∫ ∞

c
µ({χA∩{f>c}f > t})dt

≤ cµ(A ∩ {f > 0}) + Ch(µ, χA∩{f>c}f)

and the proof is complete. �
Proposition 2.8. Let µ ∈ M(X) and f ∈ F(X). If f is µ-integrable, then the
following conditions hold.

(1) limc→∞ µ({|f | > c}) = 0.
(2) limc→∞Ch(µ, χ{|f |>c}|f |) = 0.
(3) f is µ-absolutely continuous, that is, for any ε > 0, there is δ > 0 such that

Ch(µ, χA|f |) < ε whenever A ∈ A and µ(A) < δ.

Proof. (1) By Proposition 2.7, for any c > 0,

µ({|f | > c}) ≤ 1

c
Ch(µ, |f |).

Since Ch(µ, |f |) < ∞, letting c → 0 gives (1).
(2) Let {cn}n∈N be a sequence with cn > 0 and cn → ∞. Let φn(t) := µ({|f | >

cn ∨ t}) (n = 1, 2, . . . ) and φ(t) := µ({|f | > t}) for every t ∈ [0,∞). Then, φn and
φ are Lebesgue measurable and φn converges pointwise to 0. Since 0 ≤ φn ≤ φ
and

∫∞
0 φ(t)dt = Ch(µ, |f |) < ∞, by the dominated convergence theorem for the

Lebesgue integral,

lim
n→∞

Ch(µ, χ{|f |>cn}|f |) = lim
n→∞

∫ ∞

0
φn(t)dt = 0,

which implies (2).
(3) Let ε > 0. By (2) there is c0 > 0 such that Ch(µ, χ{|f |>c0}|f |) < ε/2. Let

δ := ε/(2c0) > 0. By Proposition 2.7, if µ(A) < δ, then

Ch(µ, χA|f |) ≤ c0µ(A) + Ch(µ, χ{|f |>c0}|f |) <
ε

2
+

ε

2
= ε.

Thus f is µ-absolutely continuous. �

3. Uniform integrability

The Vitali type theorem considered in this paper needs the uniform integrability
of a set of functions, which takes the same form as the case of the Lebesgue integral.

Definition 3.1. Let µ ∈ M(X) and F a non-empty subset of F(X).

(1) F is called uniformly µ-integral bounded if supf∈F Ch(µ, |f |) < ∞.
(2) F is called uniformly µ-absolutely continuous if, for any ε > 0, there is δ > 0

such that supf∈F Ch(µ, χA|f |) < ε whenever A ∈ A and µ(A) < δ.
(3) F is called uniformly µ-integrable if it holds that

lim
c→∞

sup
f∈F

Ch(µ, χ{|f |>c}|f |) = 0.
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For a non-empty F ⊂ F(X) and a ̸= 0, let F+ := {f+ : f ∈ F}, F− := {f− : f ∈
F}, |F| := {|f | : f ∈ F}, and aF := {af : f ∈ F}. The following proposition
immediately follows from the definition of the uniform integrability.

Proposition 3.2. Let µ ∈ M(X) and F a non-empty subset of F(X). Let a ̸= 0
be a constant. If F is uniformly µ-integrable, then so are aF , F+, F−, and |F|.

Proposition 3.3. Let µ ∈ M(X). Every uniformly µ-integral bounded subset F of
F(X) satisfies limc→∞ supf∈F µ({|f | > c}) = 0.

Proof. For any c > 0 and f ∈ F , by Proposition 2.7, µ({|f | > c}) ≤ Ch(µ, |f |)/c,
so that

0 ≤ sup
f∈F

µ({|f | > c}) ≤ 1

c
sup
f∈F

Ch(µ, |f |).

Letting c → ∞ gives the conclusion. �
Proposition 3.4. Let µ ∈ M(X). For a non-empty subset F of F(X), consider
the following two conditions:

(i) F is uniformly µ-integral bounded and uniformly µ-absolutely continuous.
(ii) F is uniformly µ-integrable.

Then (i) implies (ii). Conversely, (ii) implies the uniform µ-absolute continuity of
F . If µ is finite, then (ii) also implies the uniform µ-integral boundedness of F .

Proof. The proof goes along with the Lebesgue integral case and is given only for
convenience of readers; see [4, Theorem 10.3.5].

(i)⇒(ii): Let ε > 0. Since F is uniformly µ-absolutely continuous, there is δ > 0
such that

(3.1) sup
f∈F

Ch(µ, χA|f |) < ε

for any A ∈ A with µ(A) < δ. Since F is uniformly µ-integral bounded, by Propo-
sition 3.3, there is c0 > 0 such that

(3.2) sup
f∈F

µ({|f | > c0}) < δ.

Let c > c0. For each f ∈ F , let Af := {|f | > c}. Then by (3.2), µ(Af ) < δ. Thus,
by (3.1), for any f ∈ F ,

Ch(µ, χ{|f |>c}|f |) = Ch(µ, χAf
|f |) < ε,

which implies the uniform µ-integrability of F .
Next we assume (ii). By Proposition 2.7, for any A ∈ A and c > 0,

(3.3) sup
f∈F

Ch(µ, χA|f |) ≤ cµ(A) + sup
f∈F

Ch(µ, χ{|f |>c}|f |).

Let ε > 0. Since F is uniformly µ-integrable, there is c0 > 0 such that

(3.4) sup
f∈F

Ch(µ, χ{|f |>c0}|f |) <
ε

2
.

Let δ := ε/(2c0) > 0 and take A ∈ A with µ(A) < δ. Then, by (3.3) and (3.4),

sup
f∈F

Ch(µ, χA|f |) ≤ c0µ(A) + sup
f∈F

Ch(µ, χ{|f |>c0}|f |) < c0δ +
ε

2
= ε,
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which implies the uniform µ-absolute continuity of F .
Assume that µ(X) < ∞. Since F is uniformly µ-integrable, there is c0 > 0 such

that

(3.5) sup
f∈F

Ch(µ, χ{|f |>c0}|f |) < 1.

Letting A = X and c = c0 in (3.3), by (3.5),

sup
f∈F

Ch(µ, |f |) < c0µ(X) + 1 < ∞.

Thus F is uniformly µ-integral bounded. �
Remark 3.5. (1) The above result gives a necessary and sufficient condition for
the uniform integrability for the Choquet integral and was proved in [2, Lemma 3.2]
in the case that µ is subadditive.

(2) When µ(X) = ∞, the uniform µ-integral boundednes does not follow from
the uniform µ-integrability; in particular, for each f ∈ F(X), Ch(µ, |f |) < ∞ does
not follow from limc→∞Ch(µ, χ{|f |>c}|f |) = 0. In fact, let X := R, A the σ-field
of all Lebesgue measurable subsets of R, and λ the Lebesgue measure on R. For
each n ∈ N, define the A-measurable function fn(x) := 1 for every x ∈ R. Then
{fn}n∈N is obviously uniformly λ-integrable, but is not uniformly λ-integral bounded
since Ch(λ, |fn|) = ∞ for all n ∈ N. For this reason, the concept of the uniform
integrability is more interesting for finite measures.

4. The Vitali type theorems

In this section we formulate a primitive form of the Vitali type theorem and its
dual measure form for the Choquet integral. Let (X,A) be a measurable space, that
is, X is a non-empty set and A is a σ-field of subsets of X. Let F0(X) denote the set
of all A-measurable functions f : X → R and let F+

0 (X) := {f ∈ F0(X) : f ≥ 0}.
Let µ ∈ M(X). We say that a sequence {fn}n∈N ⊂ F0(X) converges in µ-measure

to a function f ∈ F0(X) and write fn
µ−→ f if µ({|fn − f | > ε}) → 0 for every

ε > 0. Obviously, if fn
µ−→ f , then |fn|

µ−→ |f |, f+
n

µ−→ f+, and f−
n

µ−→ f−. The
following proposition can be proved in a similar way to [10, Theorem 3.1].

Proposition 4.1. Let (X,A) be a measurable space and µ ∈ M(X). The following
conditions are equivalent.

(i) µ is autocontinuous.
(ii) µ({fn > t}) → µ({f > t}) t-a.e. for any sequence {fn}n∈N ⊂ F0(X) con-

verging in µ-measure to f ∈ F0(X).
(iii) µ({fn ≤ t}) → µ({f ≤ t}) t-a.e. for any sequence {fn}n∈N ⊂ F0(X) con-

verging in µ-measure to f ∈ F0(X).

Remark 4.2. In the above proposition, “t-a.e.” may be replaced with “except at
most countably many values of t” or “for every continuity point of the function
µ({f > t}) in (ii) and µ({f ≤ t}) in (iii).”

Proposition 4.3. Let (X,A) be a measurable space and µ ∈ M(X). Let {fn}n∈N ⊂
F0(X) be a sequence converging in µ-measure to f ∈ F0(X). Assume that µ is
autocontinuous.
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(1) If {fn}n∈N is uniformly µ-integral bounded, then f is µ-integrable.
(2) If µ is finite and {fn}n∈N is uniformly µ̄-integral bounded, then f is µ̄-

integrable.

Proof. (1) Since |fn|
µ−→ |f |, by Proposition 4.1, µ({|fn| > t}) → µ({|f | > t}) t-a.e.

Then by the Fatou lemma for the Lebesgue integral,

Ch(µ, |f |) =
∫ ∞

0
µ({|f | > t})dt

≤ lim inf
n→∞

∫ ∞

0
µ({|fn| > t})dt

≤ sup
n∈N

Ch(µ, |fn|) < ∞.

(2) It can be proved in the same way as (1) since µ̄({|fn| > t}) → µ̄({|f | > t})
t-a.e. by Proposition 4.1. �

Remark 4.4. Example 2.2 shows that µ̄ is not necessarily autocontinuous even if
µ is autocontinuous. Therefore, in the above proposition, (1) does not imply (2).

Now we introduce a primitive from of the Vitali type theorem for the Choquet
integral.

Theorem 4.5. Let (X,A) be a measurable space and µ ∈ Mb(X). The following
conditions are equivalent :

(i) µ is autocontinuous.
(ii) For any sequence {fn}n∈N ⊂ F+

0 (X) converging in µ-measure to f ∈ F+
0 (X),

if {fn}n∈N is uniformly µ-integrable, then fn and f are all µ-integrable and
Ch(µ, fn) → Ch(µ, f).

Proof. (i)⇒(ii): The uniform µ-integrability of {fn}n∈N implies

(4.1) lim
c→∞

sup
n∈N

Ch(µ, χ{fn>c}fn) = 0,

and by Proposition 3.4, {fn}n∈N is uniformly µ-integral bounded, in particular, each
fn is µ-integrable. Therefore by Proposition 4.3, f is also µ-integrable, and hence
by Proposition 2.8,

(4.2) lim
c→∞

Ch(µ, χ{f>c}f) = 0.

Let ε > 0. By (4.1) and (4.2), there is c0 > 0 such that

(4.3) sup
n∈N

Ch(µ, χ{fn>c0}fn) < ε

and

(4.4) Ch(µ, χ{f>c0}f) < ε.
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Let g := f ∧ c0 and gn := fn ∧ c0 for each n ∈ N. Then, g, gn ∈ F+
0 (X) and they

are µ-integrable. Moreover,

Ch(µ, f) =

∫ c0

0
µ({f > t})dt+

∫ ∞

c0

µ({f > t})dt

=

∫ c0

0
µ({g > t})dt+

∫ ∞

c0

µ({f > c0} ∩ {f > t})dt

=

∫ ∞

0
µ({g > t})dt+

∫ ∞

c0

µ({χ{f>c0}f > t})dt

≤ Ch(µ, g) + Ch(µ, χ{f>c0}f),

and thus by (4.4),

(4.5) |Ch(µ, f)− Ch(µ, g)| < ε.

In the same way, by (4.3),

(4.6) |Ch(µ, fn)− Ch(µ, gn)| < ε (n = 1, 2, . . . ).

Let h be an A-measurable simple function such that 0 ≤ h(x) ≤ c0 and |h(x) −
g(x)| < ε for every x ∈ X. Then h is µ-integrable and

(4.7) |Ch(µ, g)− Ch(µ, h)| ≤ εµ(X).

Let Bn := {|gn−h| > 2ε} for each n ∈ N. Since |gn(x)−g(x)| ≤ |fn(x)−f(x)| for
every x ∈ X, fn

µ−→ f implies gn
µ−→ g. Moreover, since |h(x)− g(x)| < ε for every

x ∈ X, {|gn − h| > 2ε} ⊂ {|gn − g| > ε}, which yields µ(Bn) → 0. It is easy to see
that the family {{h > t} : t ∈ R} consists of finitely many sets, say, A1, A2, . . . , Am,
the autocontinuity of µ implies µ(Ak \Bn) → µ(Ak) for each k = 1, 2, . . . ,m. Thus,
there is n1 ∈ N such that for any n ∈ N, if n ≥ n1, then

(4.8) µ(Ak) ≤ µ(Ak \Bn) +
ε

c0
(k = 1, 2, . . . ,m).

Take t ∈ R arbitrarily. Then {h > t} = Ak0 for some k0 (1 ≤ k0 ≤ m) and
{h > t} \ Bn ⊂ {gn > t− 2ε} for every n ∈ N. Therefore, if n ≥ n1, then by (4.8),
for any t ∈ R,

(4.9) µ({h > t}) ≤ µ({gn > t− 2ε}) + ε

c0
.

Since µ(Ak ∪ Bn) → µ(Ak) for each k = 1, 2, . . . ,m, in the same way as the above
argument, there is n2 ∈ N such that for any n ∈ N, if n ≥ n2, then for any t ∈ R,

(4.10) µ({gn > t+ 2ε}) ≤ µ({h > t}) + ε

c0
.

Let n0 := n1 ∨ n2 and fix n ∈ N with n ≥ n0. Then by (4.9),

Ch(µ, h) =

∫ c0

0
µ({h > t})dt

≤
∫ c0

0

{
µ({gn > t− 2ε}) + ε

c0

}
dt

≤ Ch(µ, gn + 2ε) + ε,
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so that

(4.11) Ch(µ, h) ≤ Ch(µ, gn) + 2εµ(X) + ε.

In the same way, by (4.10),

(4.12) Ch(µ, h) ≥ Ch(µ, gn)− 2εµ(X)− ε.

Therefore, by (4.11) and (4.12),

(4.13) |Ch(µ, gn)− Ch(µ, h)| ≤ 2εµ(X) + ε.

Moreover, by (4.5) and (4.7),

(4.14) |Ch(µ, f)− Ch(µ, h)| < ε+ εµ(X)

and by (4.6) and (4.13),

(4.15) |Ch(µ, fn)− Ch(µ, h)| < 2ε+ 2εµ(X).

Eventually, by (4.14) and (4.15),

(4.16) |Ch(µ, fn)− Ch(µ, f)| < 3ε+ 3εµ(X).

Letting n → ∞ in (4.16) gives

0 ≤ lim sup
n→∞

|Ch(µ, fn)− Ch(µ, f)| ≤ 3ε (1 + µ(X)).

Since ε > 0 is arbitrary, it holds that Ch(µ, fn) → Ch(µ, f).
(ii)⇒(i): Let A,Bn ∈ A (n = 1, 2, . . . ) and assume that µ(Bn) → 0. Let fn :=

χA∪Bn and f := χA. Then, fn, f ∈ F+
0 (X), fn

µ−→ f , and {fn}n∈N is uniformly
µ-integrable. Therefore, it holds that

µ(A ∪Bn) = Ch(µ, fn) → Ch(µ, f) = µ(A),

which implies the autocontinuity of µ from above. The autocontinuity of µ from
below can be proved similarly. �

By the help of Proposition 2.3, the dual measure form of the above Vitali type
theorem can be proved in a similar way to Theorem 4.5.

Theorem 4.6. Let (X,A) be a measurable space and µ ∈ Mb(X). The following
conditions are equivalent :

(i) µ is autocontinuous.
(ii) For any sequence {fn}n∈N ⊂ F+

0 (X) converging in µ-measure to f ∈ F+
0 (X),

if {fn}n∈N is uniformly µ̄-integrable, then fn and f are all µ̄-integrable and
Ch(µ̄, fn) → Ch(µ̄, f).

Remark 4.7. (1) Note that in the above dual measure form the convergence
Ch(µ̄, fn) → Ch(µ̄, f) can be obtained if we assume that µ itself is autocontinu-

ous and fn
µ−→ f instead of µ̄.

(2) By Example 2.2 the dual µ̄ is not necessarily autocontinuous even if µ is auto-
continuous, so that Theorem 4.6 is not an immediate consequence of Theorem 4.5.
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Let k ≥ 1 be a constant. A nonadditive measure µ is called k-subadditive if
µ(A ∪B) ≤ µ(A) + kµ(B) whenever A,B ∈ A and A ∩B = ∅ [12, Definition 11.9].
For instance, every subadditive nonadditive measure is 1-subadditive. This mea-
sure is a special case of k-triangular set functions that were investigated by many
mathematicians in the context of the Brooks-Jewett type theorem and Dieudonné
type theorems; see Section 11 of [12]. Every k-subadditive nonadditive measure is
autocontinuous. Moreover, if µ is finite and k-subadditive, then µ̄ ≤ kµ, so that
the uniform µ̄-integrability follows from the uniform µ-integrability and, in partic-
ular, the µ̄-integrability follows from the µ-integrability. Consequently, we have the
following corollary to Theorems 4.5 and 4.6.

Corollary 4.8. Let (X,A) be a measurable space and µ ∈ Mb(X). Assume that µ is
k-subadditive for some k ≥ 1 (in particular, µ is subadditive). If {fn}n∈N ⊂ F+

0 (X)
is a uniformly µ-integrable sequence converging in µ-measure to f ∈ F+

0 (X), then
fn and f are all µ-integrable and µ̄-integrable. Moreover, it holds that Ch(µ, fn) →
Ch(µ, f) and Ch(µ̄, fn) → Ch(µ̄, f).

Example 4.9. Let X := [0, 2]. Let A be the σ-field of all Lebesgue subsets of
X and λ the Lebesgue measure on (X,A). Let µ : A → [0, 3] be the nonadditive
measure defined by

µ(A) :=

{
λ(A) if λ(A) < 1,

2λ(A)− 1 if λ(A) ≥ 1.

Then, µ is 2-subadditive.

5. Extension to symmetric and asymmetric integrals

In this section, we extend the Vitali type theorem and its dual measure form to
symmetric and asymmetric Choquet integrals.

Definition 5.1. The symmetric Choquet integral is defined by

Chs(µ, f) := Ch(µ, f+)− Ch(µ, f−)

for every (µ, f) ∈ Ds, where

Ds := {(µ, f) ∈ M(X)×F(X) : Ch(µ, f+) < ∞ or Ch(µ, f−) < ∞}

and the asymmetric Choquet integral is defined by

Cha(µ, f) := Ch(µ, f+)− Ch(µ̄, f−)

for every (µ, f) ∈ Da, where

Da := {(µ, f) ∈ Mb(X)×F(X) : Ch(µ, f+) < ∞ or Ch(µ̄, f−) < ∞}.

If (µ, f) ∈ Ds and |Chs(µ, f)| < ∞, then f is called symmetrically µ-integrable.
Similarly, if (µ, f) ∈ Da and |Cha(µ, f)| < ∞, then f is called asymmetrically µ-
integrable. Recall that f is µ-integrable if (µ, f) ∈ M(X)×F(X) and Ch(µ, |f |) <
∞. For any (µ, f) ∈ M(X)×F(X), if f is µ-integrable, then so are f+ and f−, but
the converse statement does not hold in general. Moreover, f is not µ-integrable
even if it is symmetrically and asymmetrically µ-integrable.
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Example 5.2. Let X := (−1, 0) ∪ (0, 1). Let µ : 2X → [0, 1] be the nonadditive
measure defined by

µ(A) :=

{
1 if A ∩ (−1, 0) ̸= ∅ and A ∩ (0, 1) ̸= ∅,
0 otherwise.

Let f(x) := 1/x for every x ∈ X. Then Ch(µ, f+) = Ch(µ, f−) = 0, but
Ch(µ, |f |) = ∞. Moreover, Chs(µ, f) = 0 and Cha(µ, f) = −1.

Obviously, if f is µ-integrable, then f is symmetrically µ-integrable and
|Chs(µ, f)| ≤ Ch(µ, |f |), but this is not the case for the asymmetric µ-integral.

Example 5.3. Let X := (0, 1). Let µ : 2X → [0, 1] be the nonadditive measure
defined by

µ(A) :=

{
1 if A = X,

0 if A ̸= X.

Let f(x) := −1/x for every x ∈ X. Then Ch(µ, |f |) = 1 and Chs(µ, f) = −1, but
Cha(µ, f) = −∞.

By Proposition 3.2, the following Vitali type theorems for symmetric and asym-
metric Choquet integrals turn out to be immediate consequences of Theorems 4.5
and 4.6.

Theorem 5.4. Let (X,A) be a measurable space and µ ∈ Mb(X). Let {fn}n∈N ⊂
F0(X) be a sequence converging in µ-measure to f ∈ F0(X). Assume that µ is
autocontinuous.

(1) If {fn}n∈N is uniformly µ-integrable, then fn and f are all symmetrically
µ-integrable and Chs(µ, fn) → Chs(µ, f).

(2) If {fn}n∈N is uniformly µ̄-integrable, then fn and f are all symmetrically
µ̄-integrable and Chs(µ̄, fn) → Chs(µ̄, f).

Theorem 5.5. Let (X,A) be a measurable space and µ ∈ Mb(X). Let {fn}n∈N ⊂
F0(X) be a sequence converging in µ-measure to f ∈ F0(X). Assume that µ is
autocontinuous. If {fn}n∈N is simultaneously uniformly µ-integrable and uniformly
µ̄-integrable, then fn and f are all asymmetrically µ-integrable and asymmetrically
µ̄-integrable. Moreover, it holds that Cha(µ, fn) → Cha(µ, f) and Cha(µ̄, fn) →
Cha(µ̄, f).

Corollary 5.6. Let (X,A) be a measurable space and µ ∈ Mb(X). Assume
that µ is k-subadditive for some k ≥ 1. If {fn}n∈N ⊂ F0(X) is a uniformly µ-
integrable sequence converging in µ-measure to f ∈ F0(X), then fn and f are all
symmetrically µ-integrable, symmetrically µ̄-integrable, asymmetrically µ-integrable,
and asymmetrically µ̄-integrable. Moreover, it holds that Chs(µ, fn) → Chs(µ, f),
Chs(µ̄, fn) → Chs(µ̄, f), Cha(µ, fn) → Cha(µ, f), and Cha(µ̄, fn) → Cha(µ̄, f).

The following example shows that the uniform µ-integrability does not imply the
uniform µ̄-integrability even if both µ and µ̄ are autocontinuous.

Example 5.7. Let X := (0, 1). Let A be the σ-field of all Lebesgue measurable
subsets of X and λ the Lebesgue measure on (X,A). Let µ(A) := λ(A)2 for every
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A ∈ A. Then µ is autocontinuous and its dual µ̄ given by µ̄(A) = 2λ(A)−λ(A)2 for
every A ∈ A is also autocontinuous. For each n ∈ N, let fn(x) := 1/(nx) for every
x ∈ X. Then {fn}n∈N ⊂ F+

0 (X) is uniformly µ-integrable and Ch(µ, fn) = 2/n
for every n ∈ N. However, Ch(µ̄, fn) = ∞ for every n ∈ N, and hence by Propo-
sition 3.4, {fn}n∈N is not uniformly µ̄-integrable. In particular, f1 is µ-integrable,
but is not µ̄-integrable.

Remark 5.8. A similar result to Theorem 5.5 was already given in [17, Theorem 7]
and [18, Theorem 11.11] for a equi-integrable sequence {fn}n∈N under the additional
assumption that µ is continuous and f is µ-integrable.

6. The bounded and the dominated convergence theorem

In this section we show that the bounded convergence theorem and the dominated
convergence theorem can be obtained as applications of our Vitali type theorems
established in Sections 4 and 5.

Definition 6.1. Let µ ∈ M(X). Let F be a non-empty subset of F(X) and
f ∈ F(X).

(1) The function f is called µ-essentially bounded if there is c > 0 such that
µ({f ≥ c}) = 0 and µ({f ≥ −c}) = µ(X). The family F is called uniformly
µ-essentially bounded if there is c > 0 such that µ({f ≥ c}) = 0 and
µ({f ≥ −c}) = µ(X) for all f ∈ F .

(2) The function f is called µ-essentially symmetric bounded if there is c > 0
such that µ({f ≥ c}) = µ({f ≤ −c}) = 0. The family F is called uniformly
µ-essentially symmetric bounded if there is c > 0 such that µ({f ≥ c}) =
µ({f ≤ −c}) = 0 for all f ∈ F .

Remark 6.2. The notion of the µ-essential symmetric boundedness in this paper
slightly differs from that of [7, Definition 2.1]. Both notions coincide if the functions
are non-negative or if µ is weakly null-additive, that is, µ(A ∪ B) = 0 whenever
A,B ∈ A and µ(A) = µ(B) = 0. However, from now on we will distinguish
them and say that f is µ-essentially absolute bounded if there is c > 0 such that
µ({|f | ≥ c}) = 0, which was the definition of the µ-essential boundedness in [7].

Let Fµ,b(X) and Fµ,sb(X) denote the set of all f ∈ F(X) that are µ-essentially
bounded and µ-essentially symmetric bounded, respectively. Obviously, the notion
of the µ-essential boundedness and that of the µ-essential symmetric boundedness
coincide for nonnegative functions. If µ is finitely additive and µ(X) < ∞, then
Fµ,b(X) = Fµ,sb(X). In general, both notions are independent of each other [9,
Example 2.5].

For any f ∈ F(X), let

∥f∥µ := inf{c > 0: µ({f ≥ c}) = 0 and µ({f ≥ −c}) = µ(X)}.

Then f is µ-essentially bounded if and only if ∥f∥µ < ∞. It always holds that
Fb(X) ⊂ Fµ,b(X) ∩ Fµ,sb(X) and ∥f∥µ ≤ ∥f∥. Let us collect some basic properties
of essentially (symmetric) bounded functions, which can be proved directly from
Definition 6.1.
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Proposition 6.3. Let µ ∈ M(X). Let F be a non-empty subset of F(X) and
f ∈ F(X).

(1) f is µ-essentially symmetric bounded if and only if f+ and f− are both
µ-essentially bounded. Moreover, F is uniformly µ-essentially symmetric
bounded if and only if F+ and F− are both uniformly µ-essentially bounded.

(2) Assume that µ is finite. Then f is µ-essentially bounded if and only if f+

is µ-essentially bounded and f− is µ̄-essentially bounded. Moreover, F is
uniformly µ-essentially bounded if and only if F+ is uniformly µ-essentially
bounded and F− is uniformly µ̄-essentially bounded.

Proposition 6.4. Let µ ∈ M(X). Assume that F ⊂ F(X) is uniformly µ-
essentially absolute bounded.

(1) If supf∈F µ({|f | > 0}) < ∞ (in particular, µ(X) < ∞), then F is uniformly
µ-integral bounded.

(2) F is uniformly µ-absolutely continuous.
(3) F is uniformly µ-integrable.

Proof. (1) Since F is uniformly µ-essentially absolute bounded, there is c0 > 0 such
that µ({|f | > c0}) = 0 and hence

(6.1) Ch(µ, χA|f |) =
∫ c0

0
µ(A ∩ {|f | > t})dt

for every f ∈ F and A ∈ A. Therefore (1) follows from

sup
f∈F

Ch(µ, |f |) = sup
f∈F

∫ c0

0
µ({|f | > t})dt ≤ c0 sup

f∈F
µ({|f | > 0}) < ∞.

(2) For any ε > 0, let δ := ε/c0 > 0. If µ(A) < δ, then (6.1) gives

sup
f∈F

Ch(µ, χA|f |) = sup
f∈F

∫ c0

0
µ(A ∩ {|f | > t})dt ≤

∫ c0

0
µ(A)dt < ε,

which implies the uniform µ-absolute continuity of F .
(3) For any c > c0 and f ∈ F , (6.1) gives Ch(µ, χ{|f |>c}|f |) ≤ c0µ({|f | > c0}).

Since µ({|f | > c0}) = 0, Ch(µ, χ{|f |>c}|f |) = 0 and this implies the uniform µ-
integrability of F . �

The following proposition provides a bridge from our Vitali type theorems to the
bounded convergence theorem and the dominated convergence theorem.

Proposition 6.5. Let µ ∈ M(X). Let F be a non-empty subset of F(X).

(1) Assume that F is uniformly µ-essentially symmetric bounded. Then F+ and
F− are uniformly µ-integrable.

(2) Assume that µ is finite and F is uniformly µ-essentially bounded. Then F+

is uniformly µ-integrable, while F− is uniformly µ̄-integrable.
(3) Assume that there is a µ-integrable function g ∈ F+(X) such that |f | ≤ g

for every f ∈ F . Then F is uniformly µ-integrable.
(4) If supf∈F Ch(µ, |f |p) < ∞ for some p > 1, then F is uniformly µ-integrable.
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Proof. (1) and (2) follow from Propositions 6.3 and 6.4.
(3) For any c > 0, supf∈F Ch(µ, χ{|f |>c}|f |) ≤ Ch(µ, χ{g>c}g). Since g is µ-

integrable, by Proposition 2.8, F is uniformly µ-integrable.
(4) For any c > 0 and f ∈ F ,

Ch(µ, χ{|f |>c}|f |) =
∫ ∞

0
µ({|f | > c} ∩ {|f | > t})dt

≤
∫ ∞

0
µ({|f |p/cp−1 > t})dt

= Ch(µ, |f |p/cp−1),

so that supf∈F Ch(µ, χ{|f |>c}|f |) ≤ supf∈F Ch(µ, |f |p)/cp−1. Letting c → ∞ gives
the conclusion. �

The following bounded convergence theorem and the dominated convergence the-
orem for symmetric and asymmetric integrals follow from Propositions 6.5 and The-
orems 4.5, 4.6, 5.4 and 5.5.

Theorem 6.6. Let (X,A) be a measurable space. Let µ ∈ Mb(X). Let {fn}n∈N ⊂
F0(X) be a sequence converging in µ-measure to f ∈ F0(X). Assume that µ is
autocontinuous.

(1) If {fn}n∈N is uniformly µ-essentially symmetric bounded, then fn and f are
all symmetrically µ-integrable and Chs(µ, fn) → Chs(µ, f).

(2) If {fn}n∈N is uniformly µ̄-essentially symmetric bounded, then fn and f are
all symmetrically µ̄-integrable and Chs(µ̄, fn) → Chs(µ̄, f).

(3) If {fn}n∈N is uniformly µ-essentially bounded, then fn and f are all asym-
metrically µ-integrable and Cha(µ, fn) → Cha(µ, f).

(4) If {fn}n∈N is uniformly µ̄-essentially bounded, then fn and f are all asym-
metrically µ̄-integrable and Cha(µ̄, fn) → Cha(µ̄, f).

Theorem 6.7. Let (X,A) be a measurable space. Let µ ∈ Mb(X). Let {fn}n∈N ⊂
F0(X) be a sequence converging in µ-measure to f ∈ F0(X). Assume that µ is
autocontinuous.

(1) If there is a µ-integrable function g ∈ F+(X) such that |fn| ≤ g for every
n ∈ N, then fn and f are all symmetrically µ-integrable and Chs(µ, fn) →
Chs(µ, f).

(2) If there is a µ̄-integrable function g ∈ F+(X) such that |fn| ≤ g for every
n ∈ N, then fn and f are all symmetrically µ̄-integrable and Chs(µ̄, fn) →
Chs(µ̄, f).

(3) If there is a simultaneously µ-integrable and µ̄-integrable function g ∈ F+(X)
such that |fn| ≤ g for every n ∈ N (in particular, there is a constant c > 0
such that |fn| ≤ c for every n ∈ N), then fn and f are all asymmetri-
cally µ-integrable and asymmetrically µ̄-integrable. Moreover, it holds that
Cha(µ, fn) → Cha(µ, f) and Cha(µ̄, fn) → Cha(µ̄, f).

The last theorem follows from Corollary 4.8, Proposition 6.5, and Theorem 6.7.

Theorem 6.8. Let (X,A) be a measurable space. Let µ ∈ Mb(X). Assume that µ
is k-subadditive for some k ≥ 1. Let {fn}n∈N ⊂ F0(X) be a sequence converging in
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µ-measure to f ∈ F0(X). If {fn}n∈N is uniformly µ-essentially symmetric bounded
or there is a µ-integrable function g ∈ F+(X) such that |fn| ≤ g for every n ∈ N,
then fn and f are all symmetrically µ-integrable, symmetrically µ̄-integrable, asym-
metrically µ-integrable, and asymmetrically µ̄-integrable. Moreover, it holds that
Chs(µ, fn) → Chs(µ, f), Chs(µ̄, fn) → Chs(µ̄, f), Cha(µ, fn) → Cha(µ, f), and
Cha(µ̄, fn) → Cha(µ̄, f).

Remark 6.9. (1) Theorem 6.6 (3) and its extension to Riesz space-valued non-
additive measures were already given in [10, Theorem 3.3] and [6, Theorem 3.1],
respectively.

(2) Several types of convergence theorems for the asymmetric Choquet integral
were given in [13] for various modes of convergence of bounded measurable functions.
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