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318 YUKIO TAKEUCHI

self–mappings on C such that ST = TS and F (T ) ∩ F (S) ̸= ø. Let x1 ∈ C and
define a sequence {xn} in C by

xn+1 =
an

n2

n−1∑
i=0

n−1∑
j=0

SiT jxn + (1− an)xn for n ∈ N.

Then {xn} converges weakly to a common fixed point z of S and T .

Theorem 1.3. Let {an} be a sequence in [0, 1] with

0 < lim inf
n

an ≤ lim sup
n

an < 1.

Let C be a compact convex subset of a Banach space E. Let S, T be nonexpansive
self–mappings on C with ST = TS. Let x1 ∈ C and define a sequence {xn} in C
by

xn+1 =
an

n2

n∑
i=1

n∑
j=1

SiT jxn + (1− an)xn for n ∈ N.

Then {xn} converges strongly to a common fixed point z of S and T .

Motivated by these works as above, we are interested in having more simple
iteration in Suzuki’s direction. Then, we introduce a new iteration scheme and
prove a strong convergence theorem. Our arguments are essentially based on ideas
and techniques prepared in Suzuki [15].

2. Preliminaries

In this article, N denotes the set of positive integers and N2 denotes the product
N ×N . For k, l ∈ N , Nl, Nk≤l, N

2
l and N2

k≤l denote the following:

Nl = {i ∈ N : l ≤ i}, Nk≤l = {i ∈ N : k ≤ i ≤ l},
N2

l = {(i, j) ∈ N2 : i ∈ Nl, j ∈ Ni≤i+1},
N2

k≤l = {(i, j) ∈ N2 : i ∈ Nk≤l, j ∈ Ni≤i+1}.

For a set B, #B denotes the cardinal number of B.
We denote by E a real Banach space with norm ∥ · ∥. Let C be a subset of a

Banach space E and T be a mapping of C into E. F (T ) denotes the set of fixed
points of T , that is, F (T ) = {x ∈ C : x = Tx}. T is said to be nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥ for any x, y ∈ C.

Let C be a subset of E and let S and T be nonexpansive self–mappings on C.
For each n ∈ N , we define a mapping M(n) of C into E by

M(n)x =
1

2n

n∑
i=1

i+1∑
j=i

SiT jx(M)

=
1

2n

n∑
i=1

SiT ix+
1

2n

n∑
i=1

SiT i+1x for x ∈ C.
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Then, each M(n) is nonexpansive. Indeed, for each n ∈ N , we have

∥M(n)x−M(n)y∥ ≤ 1

2n

n∑
i=1

i+1∑
j=i

∥SiT jx− SiT jy∥

≤ 1

2n
× 2n∥x− y∥ = ∥x− y∥ for x, y ∈ C.

To prove Lemma 2.3, we need the following lemma due to Suzuki [16].

Lemma 2.1. Let {an} be a sequence in [0, 1]. Let {un} and {wn} be bounded
sequences in a Banach space E. Assume that

(1) ui+1 = aiwi + (1− ai)ui for i ∈ N ,
(2) 0 < lim infn an ≤ lim supn an < 1,
(3) lim supn(∥wn+1 − wn∥ − ∥un+1 − un∥) ≤ 0.

Then, limn ∥wn − un∥ = 0.

Lemma 2.2. Let C be a bounded subset of a Banach space E. Let S and T be
nonexpansive self–mappings on C and each M(n) be the mapping defined by (M).
Let L = sup{∥x∥ : x ∈ C} < ∞. Then, for each n, k ∈ N ,

∥M(n+ k)x−M(n)x∥ ≤ 2k

(n+ k)
L for x ∈ C.

That is, for each k ∈ N , limn ∥M(n+ k)x−M(n)x∥ = 0.

Proof. We easily have the result from the following: For x ∈ C, n, k ∈ N ,

∥M(n+ k)x−M(n)x∥

=
∥∥∥ 1

2(n+ k)

n+k∑
i=1

i+1∑
j=i

SiT jx− 1

2n

n∑
i=1

i+1∑
j=i

SiT jx
∥∥∥

≤
( 1

2n
− 1

2(n+ k)

) n∑
i=1

i+1∑
j=i

∥SiT jx∥+ 1

2(n+ k)

n+k∑
i=n+1

i+1∑
j=i

∥SiT jx∥

=
k

2n(n+ k)
× 2nL+

1

2(n+ k)
× 2kL =

2k

(n+ k)
L.

□

Lemma 2.3. Let {an} be a sequence in [0, 1] such that

0 < lim inf
n

an ≤ lim sup
n

an < 1.

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive
self–mappings on C with ST = TS and each M(n) be the mapping defined by (M).
Let {xn} be a sequence in C defined by

x1 ∈ C, xn+1 = anM(n)xn + (1− an)xn for n ∈ N.

Then, limn ∥M(n)xn − xn∥ = 0. Furthermore, for a subsequence {xnk
} of {xn}

which converges to z ∈ C, limk ∥M(nk)z − z∥ = 0 holds.
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Proof. Set wn = M(n)xn for n ∈ N . Then, by Lemma 2.2, we have

∥wn+1 − wn∥ − ∥xn+1 − xn∥
≤ ∥M(n+ 1)xn+1 −M(n+ 1)xn∥
+ ∥M(n+ 1)xn −M(n)xn∥ − ∥xn+1 − xn∥

≤ ∥xn+1 − xn∥+ ∥M(n+ 1)xn −M(n)xn∥ − ∥xn+1 − xn∥ ≤ 2

(n+ 1)
L

for n ∈ N , where L = sup{∥x∥ : x ∈ C} < ∞. By Lemma 2.1, we have

lim
n

∥wn − xn∥ = lim
n

∥M(n)xn − xn∥ = 0.

Suppose {xnk
} is a subsequence of {xn} converging to some z ∈ C. Then,

∥M(nk)z − z∥ ≤ ∥M(nk)z −M(nk)xnk
∥+ ∥M(nk)xnk

− xnk
∥+ ∥xnk

− z∥
≤ ∥M(nk)xnk

− xnk
∥+ 2∥xnk

− z∥ for k ∈ N.

This implies limk ∥M(nk)z − z∥ = 0. □

3. Lemmas

To have the results in Lemma 2.3, the condition ST = TS is unnecessary and we
can replace compactness of C by boundedness of C. However, in the same setting
as in Lemma 2.3, we are interested in seeing z ∈ F (S) ∩ F (T ).

In this direction, it is so important to show

d = lim
n

sup{∥SiT jz − z∥ : (i, j) ∈ N2
n} = 0 (Lemma 3.7).

To prove Lemma 3.7, we need Lemmas 3.1–3.6 below.
In Lemmas 3.1–3.7, we assume the following:

(A1) C is a compact and convex subset of a Banach space E.
(A2) S and T are nonexpansive self–mappings on C with ST = TS.
(A3) {xn} is a sequence in C and {xnk

} is a subsequence of {xn}.
(A4) {xnk

} converges to z ∈ C ({nk} is the index set of {xnk
}).

(A5) limk ∥M(nk)z − z∥ = 0.

Moreover, we use the following notations:

L = sup{∥x∥ : x ∈ C}, d = lim
n

sup{∥SiT jz − z∥ : (i, j) ∈ N2
n}.

It is obvious that 0 ≤ d < ∞. Let A ⊂ N2
1 and m ∈ N . Then, we set

Am = N2
m ∩A, Am≤nk

= N2
m≤nk

∩A ( A1≤nk
= N2

1≤nk
∩A ),

where nk ≥ m. Let ε > 0 and w ∈ C. Then, set

A(w, ε) = {(i, j) ∈ N2
1 : ∥SiT jz − w∥ ≥ d− ε}.

In this setting, we also use the following notations:

N2
m(w, d− ε) = A(w, ε)m = {(i, j) ∈ N2

m : ∥SiT jz − w∥ ≥ d− ε},
N2

m≤nk
(w, d− ε) = A(w, ε)m≤nk

= {(i, j) ∈ N2
m≤nk

: ∥SiT jz − w∥ ≥ d− ε}.

We note that, for ε > 0 with d− ε ≤ 0, A(w, ε)m and N2
m are the same.
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Lemma 3.1. Assume d > 0. Then, there are u ∈ C with ∥u − z∥ = d and a
sequence {(in, jn)} ⊂ N2

1 which satisfy the following:

(1) For n ∈ N , (in, jn) ∈ N2
n(z, d− 1/n).

(2) {SinT jnz} converges to u.

Furthermore, for arbitrary δ > 0, there is mδ ∈ N such that

(3) ∥SiT jz − u∥ ≤ d+ δ for (i, j) ∈ N2
mδ

.

Proof. By the definition of d, for n ∈ N , N2
n(z, d−1/n) contains an element (in, jn).

Then, we can generate a sequence {(in, jn)} ⊂ N2
1 . Since C is compact, by passing

to subsequence, we can consider {(in, jn)} ⊂ N2
1 as a sequence such that {SinT jnz}

converges to u ∈ C satisfying ∥u− z∥ = d.
We show (3). Let δ > 0. By the definition of d, there is s ∈ N such that

∥SiT jz − z∥ ≤ d+ δ/2 for (i, j) ∈ N2
s .

Furthermore, there is (in0 , jn0) ∈ N2
s satisfying either of the following:

jn0 = in0 , ∥Sin0T in0z − u∥ < δ/2,(i)

jn = in + 1, ∥SinT in+1z − u∥ < δ/2 for (in, jn) ∈ N2
in0

.(ii)

Let mδ = 2in0 . Then, i− in0 ≥ in0 if i ≥ mδ.
In case (i), we have (i− in0 , j − in0) ∈ N2

in0
⊂ N2

s for (i, j) ∈ N2
mδ

. Then,

∥SiT jz − u∥ ≤ ∥SiT jz − Sin0T in0z∥+ ∥Sin0T in0z − u∥(A)

≤ ∥Si−in0T j−in0z − z∥+ δ/2 ≤ d+ δ for (i, j) ∈ N2
mδ

.

Thus, (3) holds. We consider case (ii). In this case, for (i, i+ 1) ∈ N2
mδ

,

∥SiT i+1z − u∥ ≤ ∥SiT i+1z − Sin0T in0+1z∥+ ∥Sin0T in0+1z − u∥(B)

≤ ∥Si−in0T i−in0z − z∥+ δ/2 ≤ d+ δ .

Let (i, i) ∈ N2
mδ

, that is, i ≥ mδ. Then, there is in1 ∈ N satisfying in1 ≥ 2i. By

in1 > in1 − i ≥ i ≥ mδ > in0 and (in1 − i, in1 − i+ 1) ∈ N2
mδ

, we have

∥SiT iz − u∥ ≤ ∥SiT iz − Sin1T in1+1z∥+ ∥Sin1T in1+1z − u∥

≤ ∥Sin1−iT (in1−i)+1z − z∥+ δ/2 ≤ d+ δ.

Then, the following holds:

(C) ∥SiT iz − u∥ ≤ d+ δ for (i, i) ∈ N2
mδ

.

By (B) and (C), (3) also holds. Thus, we have the result. □

Lemma 3.2. Assume d > 0. Let u ∈ C satisfy ∥u − z∥ = d. Then, for ε ∈ (0, d),
the following holds:

lim
k

#
(
N2

1≤nk
(u, d− ε)

)
2nk

= 1.
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Proof. Fix ε ∈ (0, d). Let δ > 0 arbitrary and let mδ ∈ N satisfy conditions in
Lemma 3.1 (3). We deal with nk such that nk > mδ.

It is obvious that #N2
1≤nk

= 2nk. Set, for k ∈ N satisfying nk > mδ,

bk = #(N2
mδ+1≤nk

(u, d− ε))/2nk, ak = #(N2
1≤nk

(u, d− ε))/2nk.

Note that bk depends on δ. However, ak does not depend on δ. It is obvious that
0 ≤ bk ≤ ak ≤ 1 if nk > mδ. That is, the following inequalities hold:

(i) lim inf
k

bk ≤ lim inf
k

ak ≤ 1, lim sup
k

bk ≤ lim sup
k

ak ≤ 1.

By bk ≤ ak and Lemma 3.1, we have

∥M(nk)z − u∥ ≤ 1

2nk

mδ∑
i=1

i+1∑
j=i

∥SiT jz − u∥+ 1

2nk

nk∑
i=mδ+1

i+1∑
j=i

∥SiT jz − u∥

≤ mδ

nk
L+

(
bk(d+ δ) +

( 1

2nk
× 2(nk −mδ)− bk

)
(d− ε)

)
≤ mδ

nk
L+

nk −mδ

nk
(d− ε) + ak(ε+ δ).

Then, by d = ∥u− z∥ and limk ∥M(nk)z − z∥ = 0, it follows that

d = ∥z − u∥ = lim inf
k

∥M(nk)z − u∥ ≤ (d− ε) + (lim inf
k

ak)(ε+ δ).

Since δ is arbitrary, we have a contradiction if lim infk ak < 1. Thus, lim infk ak ≥ 1.
By (i), we have limk ak = 1. This completes the proof. □

Lemma 3.3. Let A ⊂ N2
1 . Assume limk

#A1≤nk
2nk

= 1. Then, for any m ∈ N ,

limk
#Am≤nk

2nk
= 1, where nk ≥ m. Moreover, the following hold:

(1) For each n ∈ N , An contains an element (i, i).
(2) For each n ∈ N , An contains an element (i, i+ 1).

Proof. Let m ∈ N and nk ≥ m. Set, for such k ∈ N ,

ak = #A1≤nk
/2nk, ck(m) = #Am≤nk

/2nk.

By limk ak = 1 and 0 ≤ ak − ck(m) ≤ (m− 1)/nk, we have limk ck(m) = 1.
Confirm An = N2

n∩A for n ∈ N and #
(
N2

1≤nk

)
= 2nk. We show that An contains

(i, j) satisfying i = j. Arguing by contradiction, assume that there is n0 ∈ N such
that An0 contains no element (i, j) satisfying i = j. Then, it is obvious that

ck(n0) =
#An0≤nk

2nk
≤ 1/2 for k.

However, we know limk ck(n0) = 1. We have a contradiction.
In the same way, An contains (i, j) satisfying j = i+ 1. □

Lemma 3.4. Let A and B be subsets of N2
1 . Assume that

lim
k

#A1≤nk

2nk
= 1, lim

k

#B1≤nk

2nk
= 1.

Then, limk
#
(
A1≤nk

∩B1≤nk

)
2nk

= 1.
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Proof. For k ∈ N , we know #
(
N2

1≤nk

)
= 2nk and

#
(
A1≤nk

∩B1≤nk

)
2nk

≤ 1,

(
#A1≤nk

−#
(
A1≤nk

∩B1≤nk

))
+#B1≤nk

2nk
≤ 1.

Then, it is easy to see that

#A1≤nk

2nk
+

#B1≤nk

2nk
− 1 ≤

#
(
A1≤nk

∩B1≤nk

)
2nk

≤ 1 for k ∈ N.

By limk
#A1≤nk

2nk
= limk

#B1≤nk
2nk

= 1, we have limk
#
(
A1≤nk

∩B1≤nk

)
2nk

= 1. □

Lemma 3.5. Assume d > 0. Then, there are v ∈ C and a sequence {(i1n, i1n)} ⊂ N2
1

such that ∥v − z∥ = d and {Si1nT i1nz} converges to v.

Proof. We show that, for δ ∈ (0, d) andm ∈ N , N2
m(z, d−δ) contains (i, j) satisfying

i = j. Arguing by contradiction, assume the existence of δ0 ∈ (0, d) and m0 ∈ N
such that N2

m0
(z, d− δ0) contains no element (i, j) satisfying i = j. By Lemma 3.1,

there are u ∈ C with ∥u− z∥ = d and a sequence {(in, jn)} ⊂ N2
1 which satisfy the

following:

(1) For n ∈ N , (in, jn) ∈ N2
n(z, d− 1/n).

(2) {SinT jnz} converges to u.

Then, there is (in0 , jn0) ∈ N2
n0
(z, d− 1/n0) satisfying the following:

∥Sin0T jn0 − u∥ < δ0/2, 1/n0 < δ0, n0 > m0, in0 > m0.

By (in0 , jn0) ∈ N2
n0
(z, d− 1/n0) ⊂ N2

m0
(z, d− δ0), we have jn0 = in0 + 1.

On the other hand, by Lemma 3.2, we know

lim
k

#
(
N2

1≤nk
(u, d− δ0/2)

)
2nk

= 1.

By Lemma 3.3 (2), for any n ∈ N , there is (i, j) ∈ N2
n(u, d − δ0/2) satisfying

j = i + 1. Let l = 2in0 and (i, i + 1) ∈ N2
l (u, d − δ0/2). Then, i − in0 ≥ in0 > m0,

(i+ 1)− (in0 + 1) = i− in0 , ∥SiT i+1z − u∥ ≥ d− δ0/2, and

∥Si−in0T i−in0z − z∥ ≥ ∥SiT i+1z − Sin0T in0+1z∥
≥ ∥SiT i+1z − u∥ − ∥Sin0T in0+1z − u∥
≥ d− δ0/2− δ0/2 = d− δ0.

Thus, we have (i− in0 , i− in0) ∈ N2
m0

(z, d− δ0). This is a contradiction.

By taking (i1n, i
1
n) ∈ N2

n(z, d− 1/n) for n, we have {(i1n, i1n)} ⊂ N2
1 . By passing to

subsequence, we can regard {(i1n, i1n)} as a sequence such that {Si1nT i1nz} converges
to some v ∈ C satisfying ∥v − z∥ = d.

□

Lemma 3.6. Assume d > 0. Then, for ε ∈ (0, d), the following holds:

lim
k

#
(
N2

1≤nk
(z, d− ε)

)
2nk

= 1.
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Proof. By Lemma 3.5, there are v ∈ C and {(i1n, i1n)} ⊂ N2
1 such that ∥v − z∥ = d

and {Si1nT i1nz} converges to v. Fix ε ∈ (0, d) arbitrarily. Then, by ∥v − z∥ = d and
Lemma 3.2,

lim
k

#
(
N2

1≤nk
(v, d− ε/2)

)
2nk

= 1.

Let m ∈ N , nk ≥ m and set, for k,

ak =
#
(
N2

1≤nk
(v, d− ε/2)

)
2nk

, ck(m) =
#
(
N2

m≤nk
(v, d− ε/2)

)
2nk

.

Then, by Lemma 3.3, we know limk ck(m) = limk ak = 1.

It is obvious that there is i1n0
satisfying ∥Si1n0T i1n0z−v∥ < ε/2. Let m1 = 2i1n0

and

consider nk ≥ m1. Confirm that (i, j) ∈ N2
m1≤nk

(v, d− ε/2) implies (i, j) ∈ N2
m1≤nk

and ∥SiT jz − v∥ ≥ d− ε/2.
Then, for (i, j) ∈ N2

m1≤nk
(v, d− ε/2), it is easy to see that

∥Si−i1n0T j−i1n0z − z∥ ≥ ∥SiT jz − Si1n0T i1n0z∥

≥ ∥SiT jz − v∥ − ∥Si1n0T i1n0z − v∥
≥ d− ε/2− ε/2 = d− ε.

That is, we have

1 ≥
#
(
N2

1≤nk
(z, d− ε)

)
2nk

≥
#
({

(i− i1n0
, j − i1n0

) : (i, j) ∈ N2
m1≤nk

(v, d− ε/2)
})

2nk

=
#
(
N2

m1≤nk
(v, d− ε/2)

)
2nk

= ck(m1).

We know limk ck(m1) = 1. Then, we have limk

#
(
N2

1≤nk
(z,d−ε)

)
2nk

= 1. □

Lemma 3.7. d = 0.

Proof. Arguing by contradiction, assume d > 0. Then, by Lemma 3.5, there is
v1 ∈ C satisfying ∥v1 − z∥ = d. Let ε ∈ (0, d). By Lemmas 3.2, 3.6, we know the
following:

(1) lim
k

#
(
N2

1≤nk
(v1, d− ε)

)
2nk

= 1, (2) lim
k

#
(
N2

1≤nk
(z, d− ε)

)
2nk

= 1.

Set A(v1, ε) = N2
1 (v1, d−ε), A(z, ε) = N2

1 (z, d−ε), and B(1)(ε) = A(v1, ε)∩A(z, ε).
Note that

B(1)(1/n)n = N2
n(v1, d− 1/n) ∩N2

n(z, d− 1/n) for n ∈ N.

Then, (1) and (2) are rewritten to the following:

lim
k

#A(v1, ε)1≤nk

2nk
= 1, lim

k

#A(z, ε)1≤nk

2nk
= 1.

By Lemma 3.4, we have limk
#B(1)(ε)1≤nk

2nk
= 1. Since ε is arbitrary, by Lemma 3.3,

there is (i2n, i
2
n) ∈ B(1)(1/n)n for n ∈ N . That is, we have a sequence {(i2n, i2n)} ⊂ N2

1

such that (i2n, i
2
n) ∈ B(1)(1/n)n for n ∈ N . By passing to subsequences, we can
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regard {(i2n, i2n)} as a sequence such that {Si2nT i2nz} converges to some v2 ∈ C

and (i2n, i
2
n) ∈ B(1)(1/n)n for n ∈ N . That is, ∥v2 − v1∥ = d and ∥v2 − z∥ = d.

Furthermore, by Lemma 3.2,

lim
k

#
(
N2

1≤nk
(v2, d− ε)

)
2nk

= 1.

Set A(v2, ε) = N2
1 (v2, d− ε) and B(2)(ε) = A(v2, ε)∩B(1)(ε) = A(v2, ε)∩A(v1, ε)∩

A(z, ε). Note that, for n ∈ N ,

B(2)(1/n)n = N2
n(v2, d− 1/n) ∩N2

n(v1, d− 1/n) ∩N2
n(z, d− 1/n).

We already know the following:

lim
k

#A(v2, ε)1≤nk

2nk
= 1, lim

k

#B(1)(ε)1≤nk

2nk
= 1.

Then, by Lemma 3.4, we have limk
#B(2)(ε)1≤nk

2nk
= 1. Since ε is arbitrary, by

Lemma 3.3, there is (i3n, i
3
n) ∈ B(2)(1/n)n for n ∈ N . That is, we have {(i3n, i3n)} ⊂

N2
1 such that (i3n, i

3
n) ∈ B(2)(1/n)n for n ∈ N . By passing to subsequences, we

can regard {(i3n, i3n)} as a sequence such that {Si3nT i3nz} converges to some v3 ∈ C

and (i3n, i
3
n) ∈ B(2)(1/n)n for n ∈ N . That is, ∥v3 − v2∥ = d, ∥v3 − v1∥ = d and

∥v3 − z∥ = d. Furthermore, by Lemma 3.2,

lim
k

#
(
N2

1≤nk
(v3, d− ε)

)
2nk

= 1.

By induction, we have {vn} in C such that ∥vi− vj∥ = d > 0 if i ̸= j. That is, {vn}
can not have a convergent subsequence. However, since C is compact, {vn} must
have a convergent subsequence. This is a contradiction. □

4. Main result

Theorem 4.1. Let {an} be a sequence in [0, 1] such that

0 < lim inf
n

an ≤ lim sup
n

an < 1.

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive
self–mappings on C with ST = TS and each M(n) be the mapping defined by (M).
Let x1 ∈ C and define a sequence {xn} in C by

xn+1 = anM(n)xn + (1− an)xn for n ∈ N.

Then {xn} converges strongly to some common fixed point z of S and T .

Proof. Since C is compact, there is a subsequence {xnk
} of {xn} which converges to

some z ∈ C. Under our assumptions, by Lemma 2.3, it is obvious that (A1)–(A5)
are satisfied. Then, by Lemma 3.7,

d = lim
n

sup{∥SiT jz − z∥ : (i, j) ∈ N2
n} = 0.

We know that {SnTnz} has a convergent subsequence. By d = 0, any convergent
subsequence of {SnTnz} converges to z. That is, {SnTnz} itself converges to z.
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In the same way, we have that {SnTn+1z} converges to z. Since S and T are
continuous mappings with ST = TS, the following hold:

Sz = S(lim
n

SnTn+1z) = lim
n
(Sn+1Tn+1z) = z,

Tz = T (lim
n

SnTnz) = lim
n
(SnTn+1z) = z.

That is, z ∈ F (S) ∩ F (T ). Then, we easily have z ∈ ∩nF (M(n)) and

∥xn+1 − z∥ = ∥anM(n)xn + (1− an)xn − z∥
≤ an∥M(n)xn − z∥+ (1− an)∥xn − z∥ ≤ ∥xn − z∥

for n ∈ N . This implies that {∥xn − z∥} converges. Since {∥xnk
− z∥} converges to

0, {∥xn − z∥} itself converges to 0. Thus, we have the result. □
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