

AN ITERATION SCHEME FINDING A COMMON FIXED POINT OF COMMUTING TWO NONEXPANSIVE MAPPINGS IN GENERAL BANACH SPACES

YUKIO TAKEUCHI

ABSTRACT. We present a new iteration scheme finding a common fixed point of two nonexpansive mappings in a general Banach space.

1. INTRODUCTION

In 1979, Ishikawa [6] presented an excellent and complicated method finding a common fixed point of a finite family $\{T_1, T_2, \ldots, T_k\}$ of commuting nonexpansive self-mappings on D, where D is a compact convex subset of a general Banach space. It is not easy to read [6] and a long process is necessary to have his result. Then, Kubota and Takeuchi [9] surveyed the article. They clarify details of his argument and rewrite Ishikawa's results by using a double sequence of mappings which is generated by $\{T_1, T_2, \ldots, T_k\}$.

In this article, we deal with common fixed points of commutative two nonexpansive mappings in a general Banach space. In this setting, that is, in the case of k = 2, Ishikawa's method in [6] is simple as below; see [9].

Theorem 1.1. Let $a \in (0, 1)$. Let D be a compact convex subset of a Banach space E. Let T_1, T_2 be nonexpansive self-mappings on D with $T_1T_2 = T_2T_1$. For i = 1, 2, let S_i be a mapping on D defined by $S_i = aT_i + (1 - a)I$. Let $x_1 \in D$ and define a sequence $\{x_n\}$ in D by

$$x_{n+1} = S_2 S_1^n x_n \qquad \text{for} \quad n \in N.$$

Then $\{x_n\}$ converges strongly to a common fixed point z of T_1 and T_2 .

In 1998, Atsushiba and Takahashi [1] proved Theorem 1.2. Motivated by [6] and [1], in 2002, Suzuki [15] proved Theorem 1.3 by using Atushiba–Takahashi type iteration. Under the setting in Theorem 1.3, the iteration is not simpler than Ishikawa's. However, it is interesting in theory. In 2005, Suzuki [16] also presented another interesting result related to this problem.

Theorem 1.2. Let $a \in (0,1)$ and $\{a_n\}$ be a sequence in [0,a]. Let E be a uniformly convex Banach space which satisfies Opial's condition or whose norm is Fréchet differentiable. Let C be a closed convex subset of E. Let S and T be nonexpansive

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10.

Key words and phrases. Commuting two nonexpansive mappings, common fixed point, Atushiba–Takahashi type iteration, Suzuki's common fixed point theorem.

self-mappings on C such that ST = TS and $F(T) \cap F(S) \neq \emptyset$. Let $x_1 \in C$ and define a sequence $\{x_n\}$ in C by

$$x_{n+1} = \frac{a_n}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^i T^j x_n + (1-a_n) x_n \quad \text{for} \quad n \in N.$$

Then $\{x_n\}$ converges weakly to a common fixed point z of S and T.

Theorem 1.3. Let $\{a_n\}$ be a sequence in [0,1] with

$$0 < \liminf_{n} a_n \le \limsup_{n} a_n < 1.$$

Let C be a compact convex subset of a Banach space E. Let S, T be nonexpansive self-mappings on C with ST = TS. Let $x_1 \in C$ and define a sequence $\{x_n\}$ in C by

$$x_{n+1} = \frac{a_n}{n^2} \sum_{i=1}^n \sum_{j=1}^n S^i T^j x_n + (1 - a_n) x_n \quad \text{for} \quad n \in N.$$

Then $\{x_n\}$ converges strongly to a common fixed point z of S and T.

Motivated by these works as above, we are interested in having more simple iteration in Suzuki's direction. Then, we introduce a new iteration scheme and prove a strong convergence theorem. Our arguments are essentially based on ideas and techniques prepared in Suzuki [15].

2. Preliminaries

In this article, N denotes the set of positive integers and N^2 denotes the product $N \times N$. For $k, l \in N, N_l, N_{k \leq l}, N_l^2$ and $N_{k \leq l}^2$ denote the following:

$$N_{l} = \{i \in N : l \leq i\}, \quad N_{k \leq l} = \{i \in N : k \leq i \leq l\},$$

$$N_{l}^{2} = \{(i, j) \in N^{2} : i \in N_{l}, \quad j \in N_{i \leq i+1}\},$$

$$N_{k < l}^{2} = \{(i, j) \in N^{2} : i \in N_{k \leq l}, \quad j \in N_{i \leq i+1}\}.$$

For a set B, #B denotes the cardinal number of B.

We denote by E a real Banach space with norm $\|\cdot\|$. Let C be a subset of a Banach space E and T be a mapping of C into E. F(T) denotes the set of fixed points of T, that is, $F(T) = \{x \in C : x = Tx\}$. T is said to be nonexpansive if $\|Tx - Ty\| \le \|x - y\|$ for any $x, y \in C$.

Let C be a subset of E and let S and T be nonexpansive self-mappings on C. For each $n \in N$, we define a mapping M(n) of C into E by

(M)
$$M(n)x = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=i}^{i+1} S^{i}T^{j}x$$
$$= \frac{1}{2n} \sum_{i=1}^{n} S^{i}T^{i}x + \frac{1}{2n} \sum_{i=1}^{n} S^{i}T^{i+1}x \quad \text{for } x \in C.$$

Then, each M(n) is nonexpansive. Indeed, for each $n \in N$, we have

$$||M(n)x - M(n)y|| \le \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=i}^{i+1} ||S^{i}T^{j}x - S^{i}T^{j}y||$$

$$\le \frac{1}{2n} \times 2n ||x - y|| = ||x - y|| \quad \text{for} \quad x, y \in C.$$

To prove Lemma 2.3, we need the following lemma due to Suzuki [16].

Lemma 2.1. Let $\{a_n\}$ be a sequence in [0,1]. Let $\{u_n\}$ and $\{w_n\}$ be bounded sequences in a Banach space E. Assume that

- (1) $u_{i+1} = a_i w_i + (1 a_i) u_i$ for $i \in N$,
- (2) $0 < \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n < 1,$
- (3) $\limsup_{n \to \infty} (\|w_{n+1} w_n\| \|u_{n+1} u_n\|) \le 0.$

Then, $\lim_{n \to \infty} ||w_n - u_n|| = 0.$

Lemma 2.2. Let C be a bounded subset of a Banach space E. Let S and T be nonexpansive self-mappings on C and each M(n) be the mapping defined by (M). Let $L = \sup\{||x|| : x \in C\} < \infty$. Then, for each $n, k \in N$,

$$||M(n+k)x - M(n)x|| \le \frac{2k}{(n+k)}L \quad \text{for} \quad x \in C.$$

That is, for each $k \in N$, $\lim_{n \to \infty} ||M(n+k)x - M(n)x|| = 0$.

Proof. We easily have the result from the following: For $x \in C$, $n, k \in N$,

$$\begin{split} \|M(n+k)x - M(n)x\| \\ &= \left\|\frac{1}{2(n+k)}\sum_{i=1}^{n+k}\sum_{j=i}^{i+1}S^{i}T^{j}x - \frac{1}{2n}\sum_{i=1}^{n}\sum_{j=i}^{i+1}S^{i}T^{j}x\right\| \\ &\leq \left(\frac{1}{2n} - \frac{1}{2(n+k)}\right)\sum_{i=1}^{n}\sum_{j=i}^{i+1}\|S^{i}T^{j}x\| + \frac{1}{2(n+k)}\sum_{i=n+1}^{n+k}\sum_{j=i}^{i+1}\|S^{i}T^{j}x\| \\ &= \frac{k}{2n(n+k)} \times 2nL + \frac{1}{2(n+k)} \times 2kL = \frac{2k}{(n+k)}L. \end{split}$$

Lemma 2.3. Let $\{a_n\}$ be a sequence in [0,1] such that

$$0 < \liminf_{n} a_n \le \limsup_{n} a_n < 1.$$

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive self-mappings on C with ST = TS and each M(n) be the mapping defined by (M). Let $\{x_n\}$ be a sequence in C defined by

$$x_1 \in C$$
, $x_{n+1} = a_n M(n) x_n + (1 - a_n) x_n$ for $n \in N$.

Then, $\lim_n ||M(n)x_n - x_n|| = 0$. Furthermore, for a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ which converges to $z \in C$, $\lim_k ||M(n_k)z - z|| = 0$ holds.

Proof. Set $w_n = M(n)x_n$ for $n \in N$. Then, by Lemma 2.2, we have

$$||w_{n+1} - w_n|| - ||x_{n+1} - x_n||$$

$$\leq ||M(n+1)x_{n+1} - M(n+1)x_n||$$

$$+ ||M(n+1)x_n - M(n)x_n|| - ||x_{n+1} - x_n||$$

$$\leq ||x_{n+1} - x_n|| + ||M(n+1)x_n - M(n)x_n|| - ||x_{n+1} - x_n|| \leq \frac{2}{(n+1)}L$$

for $n \in N$, where $L = \sup\{||x|| : x \in C\} < \infty$. By Lemma 2.1, we have

$$\lim_{n} \|w_n - x_n\| = \lim_{n} \|M(n)x_n - x_n\| = 0.$$

Suppose $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$ converging to some $z \in C$. Then,

$$||M(n_k)z - z|| \le ||M(n_k)z - M(n_k)x_{n_k}|| + ||M(n_k)x_{n_k} - x_{n_k}|| + ||x_{n_k} - z||$$

$$\le ||M(n_k)x_{n_k} - x_{n_k}|| + 2||x_{n_k} - z|| \quad \text{for} \quad k \in N.$$

This implies $\lim_k ||M(n_k)z - z|| = 0.$

3. Lemmas

To have the results in Lemma 2.3, the condition ST = TS is unnecessary and we can replace compactness of C by boundedness of C. However, in the same setting as in Lemma 2.3, we are interested in seeing $z \in F(S) \cap F(T)$.

In this direction, it is so important to show

$$d = \lim_{n} \sup\{\|S^{i}T^{j}z - z\| : (i,j) \in N_{n}^{2}\} = 0 \quad \text{(Lemma 3.7)}.$$

To prove Lemma 3.7, we need Lemmas 3.1–3.6 below.

In Lemmas 3.1–3.7, we assume the following:

- (A_1) C is a compact and convex subset of a Banach space E.
- (A₂) S and T are nonexpansive self-mappings on C with ST = TS.
- (A₃) $\{x_n\}$ is a sequence in C and $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$.
- (A₄) $\{x_{n_k}\}$ converges to $z \in C$ ($\{n_k\}$ is the index set of $\{x_{n_k}\}$).
- (A₅) $\lim_{k} ||M(n_k)z z|| = 0.$

Moreover, we use the following notations:

$$L = \sup\{\|x\| : x \in C\}, \quad d = \lim_{n} \sup\{\|S^{i}T^{j}z - z\| : (i,j) \in N_{n}^{2}\}.$$

It is obvious that $0 \leq d < \infty$. Let $A \subset N_1^2$ and $m \in N$. Then, we set

$$A_m = N_m^2 \cap A, \quad A_{m \le n_k} = N_{m \le n_k}^2 \cap A \quad (A_{1 \le n_k} = N_{1 \le n_k}^2 \cap A),$$

where $n_k \ge m$. Let $\varepsilon > 0$ and $w \in C$. Then, set

$$A(w,\varepsilon) = \{(i,j) \in N_1^2 : \|S^i T^j z - w\| \ge d - \varepsilon\}.$$

In this setting, we also use the following notations:

$$\begin{split} N_m^2(w, d-\varepsilon) &= A(w, \varepsilon)_m = \{(i, j) \in N_m^2 : \|S^i T^j z - w\| \ge d - \varepsilon\},\\ N_{m \le n_k}^2(w, d-\varepsilon) &= A(w, \varepsilon)_{m \le n_k} \\ &= \{(i, j) \in N_{m \le n_k}^2 : \|S^i T^j z - w\| \ge d - \varepsilon\}. \end{split}$$

We note that, for $\varepsilon > 0$ with $d - \varepsilon \le 0$, $A(w, \varepsilon)_m$ and N_m^2 are the same.

320

Lemma 3.1. Assume d > 0. Then, there are $u \in C$ with ||u - z|| = d and a sequence $\{(i_n, j_n)\} \subset N_1^2$ which satisfy the following:

- (1) For $n \in N$, $(i_n, j_n) \in N_n^2(z, d 1/n)$. (2) $\{S^{i_n}T^{j_n}z\}$ converges to u.

Furthermore, for arbitrary $\delta > 0$, there is $m_{\delta} \in N$ such that

(3) $||S^i T^j z - u|| \le d + \delta$ for $(i, j) \in N^2_{m_\delta}$.

Proof. By the definition of d, for $n \in N$, $N_n^2(z, d-1/n)$ contains an element (i_n, j_n) . Then, we can generate a sequence $\{(i_n, j_n)\} \subset N_1^2$. Since C is compact, by passing to subsequence, we can consider $\{(i_n, j_n)\} \subset N_1^2$ as a sequence such that $\{S^{i_n}T^{j_n}z\}$ converges to $u \in C$ satisfying ||u - z|| = d.

We show (3). Let $\delta > 0$. By the definition of d, there is $s \in N$ such that

 $||S^i T^j z - z|| \le d + \delta/2 \text{ for } (i, j) \in N_s^2.$

Furthermore, there is $(i_{n_0}, j_{n_0}) \in N_s^2$ satisfying either of the following:

(i)
$$j_{n_0} = i_{n_0}, \qquad ||S^{i_{n_0}}T^{i_{n_0}}z - u|| < \delta/2,$$

(ii)
$$j_n = i_n + 1$$
, $||S^{i_n}T^{i_n+1}z - u|| < \delta/2$ for $(i_n, j_n) \in N^2_{i_{n_0}}$.

Let $m_{\delta} = 2i_{n_0}$. Then, $i - i_{n_0} \ge i_{n_0}$ if $i \ge m_{\delta}$. In case (i), we have $(i - i_{n_0}, j - i_{n_0}) \in N_{i_{n_0}}^2 \subset N_s^2$ for $(i, j) \in N_{m_{\delta}}^2$. Then,

(A)
$$||S^{i}T^{j}z - u|| \le ||S^{i}T^{j}z - S^{i_{n_{0}}}T^{i_{n_{0}}}z|| + ||S^{i_{n_{0}}}T^{i_{n_{0}}}z - u||$$

 $\le ||S^{i-i_{n_{0}}}T^{j-i_{n_{0}}}z - z|| + \delta/2 \le d + \delta \quad \text{for} \quad (i,j) \in N^{2}_{m_{\delta}}.$

Thus, (3) holds. We consider case (ii). In this case, for $(i, i + 1) \in N_{m_{\delta}}^2$,

(B)
$$||S^{i}T^{i+1}z - u|| \le ||S^{i}T^{i+1}z - S^{i_{n_{0}}}T^{i_{n_{0}}+1}z|| + ||S^{i_{n_{0}}}T^{i_{n_{0}}+1}z - u|| \le ||S^{i-i_{n_{0}}}T^{i-i_{n_{0}}}z - z|| + \delta/2 \le d + \delta$$
.

Let $(i,i) \in N_{m_{\delta}}^2$, that is, $i \ge m_{\delta}$. Then, there is $i_{n_1} \in N$ satisfying $i_{n_1} \ge 2i$. By $i_{n_1} > i_{n_1} - i \ge i \ge m_{\delta} > i_{n_0}$ and $(i_{n_1} - i, i_{n_1} - i + 1) \in N_{m_{\delta}}^2$, we have

$$||S^{i}T^{i}z - u|| \leq ||S^{i}T^{i}z - S^{i_{n_{1}}}T^{i_{n_{1}}+1}z|| + ||S^{i_{n_{1}}}T^{i_{n_{1}}+1}z - u||$$
$$\leq ||S^{i_{n_{1}}-i}T^{(i_{n_{1}}-i)+1}z - z|| + \delta/2 \leq d + \delta.$$

Then, the following holds:

(C)
$$||S^iT^iz - u|| \le d + \delta$$
 for $(i,i) \in N^2_{m_\delta}$.

By (B) and (C), (3) also holds. Thus, we have the result.

Lemma 3.2. Assume d > 0. Let $u \in C$ satisfy ||u - z|| = d. Then, for $\varepsilon \in (0, d)$, the following holds:

$$\lim_{k} \frac{\# \left(N_{1 \le n_k}^2(u, d - \varepsilon) \right)}{2n_k} = 1$$

Proof. Fix $\varepsilon \in (0, d)$. Let $\delta > 0$ arbitrary and let $m_{\delta} \in N$ satisfy conditions in Lemma 3.1 (3). We deal with n_k such that $n_k > m_{\delta}$.

It is obvious that $\#N_{1\leq n_k}^2 = 2n_k$. Set, for $k \in N$ satisfying $n_k > m_{\delta}$,

$$b_k = \#(N_{m_\delta+1 \le n_k}^2(u, d-\varepsilon))/2n_k, \quad a_k = \#(N_{1 \le n_k}^2(u, d-\varepsilon))/2n_k.$$

Note that b_k depends on δ . However, a_k does not depend on δ . It is obvious that $0 \leq b_k \leq a_k \leq 1$ if $n_k > m_{\delta}$. That is, the following inequalities hold:

 $\liminf_{k} b_k \leq \liminf_{k} a_k \leq 1, \qquad \limsup_{k} b_k \leq \limsup_{k} a_k \leq 1.$ and Lemma 3.1. we have (i)

By $b_k \leq a_k$ and Lemma 3.1, we have

$$\begin{split} \|M(n_k)z - u\| &\leq \frac{1}{2n_k} \sum_{i=1}^{m_{\delta}} \sum_{j=i}^{i+1} \|S^i T^j z - u\| + \frac{1}{2n_k} \sum_{i=m_{\delta}+1}^{n_k} \sum_{j=i}^{i+1} \|S^i T^j z - u\| \\ &\leq \frac{m_{\delta}}{n_k} L + \left(b_k (d+\delta) + \left(\frac{1}{2n_k} \times 2(n_k - m_{\delta}) - b_k\right) (d-\varepsilon) \right) \\ &\leq \frac{m_{\delta}}{n_k} L + \frac{n_k - m_{\delta}}{n_k} (d-\varepsilon) + a_k (\varepsilon+\delta). \end{split}$$

Then, by d = ||u - z|| and $\lim_k ||M(n_k)z - z|| = 0$, it follows that

$$d = \|z - u\| = \liminf_{k} \|M(n_k)z - u\| \le (d - \varepsilon) + (\liminf_{k} a_k)(\varepsilon + \delta)$$

Since δ is arbitrary, we have a contradiction if $\liminf_k a_k < 1$. Thus, $\liminf_k a_k \ge 1$. By (i), we have $\lim_k a_k = 1$. This completes the proof. \square

Lemma 3.3. Let $A \subset N_1^2$. Assume $\lim_k \frac{\#A_{1 \leq n_k}}{2n_k} = 1$. Then, for any $m \in N$, $\lim_k \frac{\#A_{m \le n_k}}{2n_k} = 1$, where $n_k \ge m$. Moreover, the following hold:

- (1) For each $n \in N$, A_n contains an element (i, i).
- (2) For each $n \in N$, A_n contains an element (i, i + 1).

Proof. Let $m \in N$ and $n_k \geq m$. Set, for such $k \in N$,

$$a_k = #A_{1 \le n_k}/2n_k, \qquad c_k(m) = #A_{m \le n_k}/2n_k$$

By $\lim_k a_k = 1$ and $0 \le a_k - c_k(m) \le (m-1)/n_k$, we have $\lim_k c_k(m) = 1$. Confirm $A_n = N_n^2 \cap A$ for $n \in N$ and $\#(N_{1\le n_k}^2) = 2n_k$. We show that A_n contains

(i, j) satisfying i = j. Arguing by contradiction, assume that there is $n_0 \in N$ such that A_{n_0} contains no element (i, j) satisfying i = j. Then, it is obvious that

$$c_k(n_0) = \frac{\#A_{n_0 \le n_k}}{2n_k} \le 1/2$$
 for k

However, we know $\lim_{k} c_k(n_0) = 1$. We have a contradiction. In the same way, A_n contains (i, j) satisfying j = i + 1.

Lemma 3.4. Let A and B be subsets of N_1^2 . Assume that

$$\lim_{k} \frac{\#A_{1 \le n_k}}{2n_k} = 1, \qquad \lim_{k} \frac{\#B_{1 \le n_k}}{2n_k} = 1.$$

Then, $\lim_k \frac{\#(A_{1 \le n_k} \cap B_{1 \le n_k})}{2n_k} = 1.$

Proof. For $k \in N$, we know $\#(N_{1 \le n_k}^2) = 2n_k$ and

$$\frac{\#(A_{1 \le n_k} \cap B_{1 \le n_k})}{2n_k} \le 1, \quad \frac{(\#A_{1 \le n_k} - \#(A_{1 \le n_k} \cap B_{1 \le n_k})) + \#B_{1 \le n_k}}{2n_k} \le 1.$$

Then, it is easy to see that

$$\frac{\#A_{1\leq n_k}}{2n_k} + \frac{\#B_{1\leq n_k}}{2n_k} - 1 \leq \frac{\#(A_{1\leq n_k} \cap B_{1\leq n_k})}{2n_k} \leq 1 \quad \text{for } k \in N.$$

By $\lim_{k \to \infty} |k| = 0$ $\underline{k} = 1$, we have $\lim_k k$ $\frac{-}{2n\nu}$ $\lim_k \frac{-2n_k}{2n_k}$ $\frac{n}{2n}$

Lemma 3.5. Assume d > 0. Then, there are $v \in C$ and a sequence $\{(i_n^1, i_n^1)\} \subset N_1^2$ such that ||v - z|| = d and $\{S^{i_n^1}T^{i_n^1}z\}$ converges to v.

Proof. We show that, for $\delta \in (0, d)$ and $m \in N$, $N_m^2(z, d-\delta)$ contains (i, j) satisfying i = j. Arguing by contradiction, assume the existence of $\delta_0 \in (0, d)$ and $m_0 \in N$ such that $N_{m_0}^2(z, d-\delta_0)$ contains no element (i, j) satisfying i = j. By Lemma 3.1, there are $u \in C$ with ||u - z|| = d and a sequence $\{(i_n, j_n)\} \subset N_1^2$ which satisfy the following

- (1) For $n \in N$, $(i_n, j_n) \in N_n^2(z, d-1/n)$. (2) $\{S^{i_n}T^{j_n}z\}$ converges to u.

Then, there is $(i_{n_0}, j_{n_0}) \in N_{n_0}^2(z, d-1/n_0)$ satisfying the following:

$$||S^{i_{n_0}}T^{j_{n_0}} - u|| < \delta_0/2, \quad 1/n_0 < \delta_0, \quad n_0 > m_0, \quad i_{n_0} > m_0.$$

By $(i_{n_0}, j_{n_0}) \in N^2_{n_0}(z, d-1/n_0) \subset N^2_{m_0}(z, d-\delta_0)$, we have $j_{n_0} = i_{n_0} + 1$. On the other hand, by Lemma 3.2, we know

$$\lim_{k} \frac{\# \left(N_{1 \le n_k}^2 (u, d - \delta_0 / 2) \right)}{2n_k} = 1.$$

By Lemma 3.3 (2), for any $n \in N$, there is $(i,j) \in N_n^2(u,d-\delta_0/2)$ satisfying j = i + 1. Let $l = 2i_{n_0}$ and $(i, i + 1) \in N_l^2(u, d - \delta_0/2)$. Then, $i - i_{n_0} \ge i_{n_0} > m_0$, $(i + 1) - (i_{n_0} + 1) = i - i_{n_0}$, $||S^i T^{i+1} z - u|| \ge d - \delta_0/2$, and

$$||S^{i-i_{n_0}}T^{i-i_{n_0}}z - z|| \ge ||S^iT^{i+1}z - S^{i_{n_0}}T^{i_{n_0}+1}z||$$

$$\ge ||S^iT^{i+1}z - u|| - ||S^{i_{n_0}}T^{i_{n_0}+1}z - u||$$

$$\ge d - \delta_0/2 - \delta_0/2 = d - \delta_0.$$

Thus, we have $(i - i_{n_0}, i - i_{n_0}) \in N^2_{m_0}(z, d - \delta_0)$. This is a contradiction. By taking $(i_n^1, i_n^1) \in N^2_n(z, d - 1/n)$ for n, we have $\{(i_n^1, i_n^1)\} \subset N^2_1$. By passing to subsequence, we can regard $\{(i_n^1, i_n^1)\}$ as a sequence such that $\{S^{i_n^1}T^{i_n^1}z\}$ converges to some $v \in C$ satisfying ||v - z|| = d.

Lemma 3.6. Assume d > 0. Then, for $\varepsilon \in (0, d)$, the following holds:

$$\lim_{k} \frac{\# \left(N_{1 \le n_k}^2(z, d - \varepsilon) \right)}{2n_k} = 1.$$

Proof. By Lemma 3.5, there are $v \in C$ and $\{(i_n^1, i_n^1)\} \subset N_1^2$ such that ||v - z|| = dand $\{S^{i_n^1}T^{i_n^1}z\}$ converges to v. Fix $\varepsilon \in (0, d)$ arbitrarily. Then, by ||v - z|| = d and Lemma 3.2,

$$\lim_k \frac{\# \left(N_{1 \le n_k}^2(v, d - \varepsilon/2) \right)}{2n_k} = 1$$

Let $m \in N$, $n_k \geq m$ and set, for k,

$$a_{k} = \frac{\# \left(N_{1 \le n_{k}}^{2}(v, d - \varepsilon/2) \right)}{2n_{k}}, \qquad c_{k}(m) = \frac{\# \left(N_{m \le n_{k}}^{2}(v, d - \varepsilon/2) \right)}{2n_{k}}.$$

Then, by Lemma 3.3, we know $\lim_k c_k(m) = \lim_k a_k = 1$. It is obvious that there is $i_{n_0}^1$ satisfying $\|S^{i_{n_0}^1}T^{i_{n_0}^1}z - v\| < \varepsilon/2$. Let $m_1 = 2i_{n_0}^1$ and consider $n_k \ge m_1$. Confirm that $(i, j) \in N_{m_1 \le n_k}^2(v, d - \varepsilon/2)$ implies $(i, j) \in N_{m_1 \le n_k}^2$ and $||S^iT^jz - v|| \ge d - \varepsilon/2.$

Then, for $(i, j) \in N^2_{m_1 \leq n_k}(v, d - \varepsilon/2)$, it is easy to see that

$$||S^{i-i_{n_0}^1}T^{j-i_{n_0}^1}z - z|| \ge ||S^iT^jz - S^{i_{n_0}^1}T^{i_{n_0}^1}z||$$

$$\ge ||S^iT^jz - v|| - ||S^{i_{n_0}^1}T^{i_{n_0}^1}z - v||$$

$$\ge d - \varepsilon/2 - \varepsilon/2 = d - \varepsilon.$$

That is, we have

$$1 \ge \frac{\# \left(N_{1 \le n_k}^2(z, d - \varepsilon) \right)}{2n_k} \ge \frac{\# \left(\left\{ (i - i_{n_0}^1, j - i_{n_0}^1) : (i, j) \in N_{m_1 \le n_k}^2(v, d - \varepsilon/2) \right\} \right)}{2n_k}$$
$$= \frac{\# \left(N_{m_1 \le n_k}^2(v, d - \varepsilon/2) \right)}{2n_k} = c_k(m_1).$$

We know $\lim_{k} c_k(m_1) = 1$. Then, we have $\lim_{k} \frac{\# (N_{1 \le n_k}^2(z, d-\varepsilon))}{2n_k} = 1$.

Lemma 3.7. d=0.

Proof. Arguing by contradiction, assume d > 0. Then, by Lemma 3.5, there is $v_1 \in C$ satisfying $||v_1 - z|| = d$. Let $\varepsilon \in (0, d)$. By Lemmas 3.2, 3.6, we know the following:

(1)
$$\lim_{k} \frac{\# \left(N_{1 \le n_k}^2 (v_1, d - \varepsilon) \right)}{2n_k} = 1, \qquad (2) \quad \lim_{k} \frac{\# \left(N_{1 \le n_k}^2 (z, d - \varepsilon) \right)}{2n_k} = 1.$$

Set $A(v_1,\varepsilon) = N_1^2(v_1,d-\varepsilon), A(z,\varepsilon) = N_1^2(z,d-\varepsilon)$, and $B^{(1)}(\varepsilon) = A(v_1,\varepsilon) \cap A(z,\varepsilon)$. Note that

$$B^{(1)}(1/n)_n = N_n^2(v_1, d-1/n) \cap N_n^2(z, d-1/n) \text{ for } n \in N.$$

Then, (1) and (2) are rewritten to the following:

$$\lim_{k} \frac{\#A(v_1,\varepsilon)_{1 \le n_k}}{2n_k} = 1, \quad \lim_{k} \frac{\#A(z,\varepsilon)_{1 \le n_k}}{2n_k} = 1$$

By Lemma 3.4, we have $\lim_k \frac{\#B^{(1)}(\varepsilon)_{1\leq n_k}}{2n_k} = 1$. Since ε is arbitrary, by Lemma 3.3, there is $(i_n^2, i_n^2) \in B^{(1)}(1/n)_n$ for $n \in N$. That is, we have a sequence $\{(i_n^2, i_n^2)\} \subset N_1^2$ such that $(i_n^2, i_n^2) \in B^{(1)}(1/n)_n$ for $n \in N$. By passing to subsequences, we can

regard $\{(i_n^2, i_n^2)\}$ as a sequence such that $\{S^{i_n^2}T^{i_n^2}z\}$ converges to some $v_2 \in C$ and $(i_n^2, i_n^2) \in B^{(1)}(1/n)_n$ for $n \in N$. That is, $||v_2 - v_1|| = d$ and $||v_2 - z|| = d$. Furthermore, by Lemma 3.2,

$$\lim_{k} \frac{\# \left(N_{1 \le n_k}^2 (v_2, d - \varepsilon) \right)}{2n_k} = 1$$

Set $A(v_2,\varepsilon) = N_1^2(v_2, d-\varepsilon)$ and $B^{(2)}(\varepsilon) = A(v_2,\varepsilon) \cap B^{(1)}(\varepsilon) = A(v_2,\varepsilon) \cap A(v_1,\varepsilon) \cap A(z,\varepsilon)$. Note that, for $n \in N$,

$$B^{(2)}(1/n)_n = N_n^2(v_2, d-1/n) \cap N_n^2(v_1, d-1/n) \cap N_n^2(z, d-1/n).$$

We already know the following:

$$\lim_{k} \frac{\#A(v_2,\varepsilon)_{1 \le n_k}}{2n_k} = 1, \qquad \lim_{k} \frac{\#B^{(1)}(\varepsilon)_{1 \le n_k}}{2n_k} = 1.$$

Then, by Lemma 3.4, we have $\lim_k \frac{\#B^{(2)}(\varepsilon)_{1\leq n_k}}{2n_k} = 1$. Since ε is arbitrary, by Lemma 3.3, there is $(i_n^3, i_n^3) \in B^{(2)}(1/n)_n$ for $n \in N$. That is, we have $\{(i_n^3, i_n^3)\} \subset N_1^2$ such that $(i_n^3, i_n^3) \in B^{(2)}(1/n)_n$ for $n \in N$. By passing to subsequences, we can regard $\{(i_n^3, i_n^3)\}$ as a sequence such that $\{S^{i_n^3}T^{i_n^3}z\}$ converges to some $v_3 \in C$ and $(i_n^3, i_n^3) \in B^{(2)}(1/n)_n$ for $n \in N$. That is, $||v_3 - v_2|| = d$, $||v_3 - v_1|| = d$ and $||v_3 - z|| = d$. Furthermore, by Lemma 3.2,

$$\lim_{k} \frac{\# \left(N_{1 \le n_k}^2 (v_3, d - \varepsilon) \right)}{2n_k} = 1.$$

By induction, we have $\{v_n\}$ in C such that $||v_i - v_j|| = d > 0$ if $i \neq j$. That is, $\{v_n\}$ can not have a convergent subsequence. However, since C is compact, $\{v_n\}$ must have a convergent subsequence. This is a contradiction.

4. MAIN RESULT

Theorem 4.1. Let $\{a_n\}$ be a sequence in [0,1] such that

$$0 < \liminf_{n} a_n \le \limsup_{n} a_n < 1$$

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive self-mappings on C with ST = TS and each M(n) be the mapping defined by (M). Let $x_1 \in C$ and define a sequence $\{x_n\}$ in C by

$$x_{n+1} = a_n M(n) x_n + (1 - a_n) x_n \quad \text{for } n \in N.$$

Then $\{x_n\}$ converges strongly to some common fixed point z of S and T.

Proof. Since C is compact, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ which converges to some $z \in C$. Under our assumptions, by Lemma 2.3, it is obvious that $(A_1)-(A_5)$ are satisfied. Then, by Lemma 3.7,

$$d = \limsup_{n \to \infty} \sup \{ \|S^{i}T^{j}z - z\| : (i,j) \in N_{n}^{2} \} = 0.$$

We know that $\{S^nT^nz\}$ has a convergent subsequence. By d = 0, any convergent subsequence of $\{S^nT^nz\}$ converges to z. That is, $\{S^nT^nz\}$ itself converges to z.

In the same way, we have that $\{S^nT^{n+1}z\}$ converges to z. Since S and T are continuous mappings with ST = TS, the following hold:

$$Sz = S(\lim_{n} S^{n}T^{n+1}z) = \lim_{n} (S^{n+1}T^{n+1}z) = z$$
$$Tz = T(\lim_{n} S^{n}T^{n}z) = \lim_{n} (S^{n}T^{n+1}z) = z.$$

That is, $z \in F(S) \cap F(T)$. Then, we easily have $z \in \bigcap_n F(M(n))$ and

$$||x_{n+1} - z|| = ||a_n M(n)x_n + (1 - a_n)x_n - z||$$

$$\leq a_n ||M(n)x_n - z|| + (1 - a_n)||x_n - z|| \leq ||x_n - z||$$

for $n \in N$. This implies that $\{||x_n - z||\}$ converges. Since $\{||x_{n_k} - z||\}$ converges to 0, $\{||x_n - z||\}$ itself converges to 0. Thus, we have the result.

Acknowledgment

The author is grateful to the referees for their careful reading and helpful suggestions to improve the exposition of the article.

References

- S. Atsushiba and W. Takahashi, Approximating common fixed points of two nonexpansive mappings in Banach spaces, Bull. Austral. Math. Soc. 57 (1998), 117–127.
- R. E. Bruck, A simple proof of the mean ergodic theorems for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1974), 107–116.
- [3] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), 304–314.
- [4] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139–1141.
- [5] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65–71.
- S. Ishikawa, Common fixed points and iteration of commuting nonexpansive mappings, Pacific J. Math. 80 (1979), 493–501.
- [7] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), 123–127 (Russian).
- [8] R. Kubota and Y. Takaeuchi, On Ishikawa's strong convergence theorem, in: Proceedings of the Fourth International Symposium on Banach and Function Spaces 2012, Kitakyushu, Japan, M. Kato, L. Maligranda and T. Suzuki (eds.), Yokohama Publishers, Yokohama, 2014, pp. 377–389.
- R. Kubota and Y. Takeuchi, Strong convergence theorems for finite families of nonexpansive mappings in Banach spaces, in: Proceedings of the 3th Asian Conference on Nonlinear Analysis and Optimization, Matsue, Japan, 2012,
- [10] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration, Pacific J. Math. 97 (1981), 137–139.
- J. Linhart, Beiträge zur Fixpunkttheorie nichtexpandierender Operatoren, Monatsh. Math. 76 (1972), 239–249 (German).
- [12] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [13] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71–83.
- [14] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387–404.
- [15] T. Suzuki, Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces, J. Nonlinear Convex Anal. 3 (2002), 381–391.

- [16] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. (2005), 103–123.
- [17] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

Manuscript received 13 January 2016 revised 12 December 2016

Yukio Takeuchi

Takahashi Institute for Nonlinear Analysis, 1-11-11 Nakazato, Minami, Yokohama 232-0063, Japan *E-mail address*: aho31415@yahoo.co.jp