;ﬂ \\ Ef?ﬁdrﬁiz \%/;Zeﬁf ﬁdfeflef S ISSN 2188-8167 Copyright 2016
e

“”39‘ ? Volume 2, Number 2, 2016, 317-327

AN ITERATION SCHEME FINDING A COMMON FIXED POINT
OF COMMUTING TWO NONEXPANSIVE MAPPINGS IN
GENERAL BANACH SPACES

YUKIO TAKEUCHI

ABSTRACT. We present a new iteration scheme finding a common fixed point of
two nonexpansive mappings in a general Banach space.

1. INTRODUCTION

In 1979, Ishikawa [6] presented an excellent and complicated method finding a
common fixed point of a finite family {77, 75, ..., T}} of commuting nonexpansive
self-mappings on D, where D is a compact convex subset of a general Banach space.
It is not easy to read [6] and a long process is necessary to have his result. Then,
Kubota and Takeuchi [9] surveyed the article. They clarify details of his argument
and rewrite Ishikawa’s results by using a double sequence of mappings which is
generated by {71, Ty, ..., Ty}

In this article, we deal with common fixed points of commutative two nonexpan-
sive mappings in a general Banach space. In this setting, that is, in the case of
k = 2, Ishikawa’s method in [6] is simple as below; see [9].

Theorem 1.1. Let a € (0,1). Let D be a compact convez subset of a Banach space
E. Let T1,T5 be nonexpansive self-mappings on D with Ty = 15Ty, Fori=1,2,
let S; be a mapping on D defined by S; = aT; + (1 —a)I. Let x1 € D and define a
sequence {x,} in D by

Tpt1 = S25Txn for n e N.
Then {x,} converges strongly to a common fized point z of Th and Ts.

In 1998, Atsushiba and Takahashi [1] proved Theorem 1.2. Motivated by [6]
and [1], in 2002, Suzuki [15] proved Theorem 1.3 by using Atushiba—Takahashi
type iteration. Under the setting in Theorem 1.3, the iteration is not simpler than
Ishikawa’s. However, it is interesting in theory. In 2005, Suzuki [16] also presented
another interesting result related to this problem.

Theorem 1.2. Leta € (0,1) and {ay} be a sequence in [0,a]. Let E be a uniformly
conver Banach space which satisfies Opial’s condition or whose norm is Fréchet
differentiable. Let C' be a closed convexr subset of E. Let S and T be nonexpansive
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self-mappings on C such that ST = TS and F(T)NF(S) # 0. Let z1 € C and
define a sequence {x,} in C' by

n—1ln—1

a .
Tp4l = TZZZSZT]mn+(1_an)$n for n € N.
i=0 j=0

Then {x,} converges weakly to a common fized point z of S and T.
Theorem 1.3. Let {a,} be a sequence in [0, 1] with

0 < liminf a, < limsupa, < 1.
n n

Let C be a compact convex subset of a Banach space E. Let S, T be nonexpansive
self-mappings on C with ST = TS. Let x1 € C and define a sequence {x,} in C
by

a n n o
n Z STz, + (1 — ap)xy, for neN.
i=1 j=1

Tpyl = —5
n2

Then {x,} converges strongly to a common fized point z of S and T.
Motivated by these works as above, we are interested in having more simple
iteration in Suzuki’s direction. Then, we introduce a new iteration scheme and

prove a strong convergence theorem. Our arguments are essentially based on ideas
and techniques prepared in Suzuki [15].

2. PRELIMINARIES

In this article, N denotes the set of positive integers and N? denotes the product
N x N. For k,l € N, N;, Np<, Nl2 and N,fq denote the following:

NZZ{ZENZS’L}, NkSZZ{ZENkSZSZ},
N ={(i,j) e N*:i € N;, j€ Ni<is1},
N ={(i,§) € N*:i € Ny<y, j € Nicia}-

For a set B, #B denotes the cardinal number of B.

We denote by E a real Banach space with norm || - [|. Let C' be a subset of a
Banach space E and T be a mapping of C into E. F(T) denotes the set of fixed
points of T, that is, F(T) = {z € C : © = Tz}. T is said to be nonexpansive if
|7 — Tyl| < |l — g for any 2,y € C.

Let C be a subset of F and let S and T be nonexpansive self-mappings on C.
For each n € N, we define a mapping M (n) of C into E by

n i+1

(M) M(n)z = % DY 5T

i=1 j=i

1 <& .. 1 <&
=5 E S’TZJ:+2— g STy for x € C.
n n
i1 i=1
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Then, each M (n) is nonexpansive. Indeed, for each n € N, we have

n 141
1M (n)e — M(n)yll < - ZZ 15" T2 — S*Ty|
=1 j=1
1
< 5 X 2nflz —y| = [lz —y|| for z,ye€C.

2n

To prove Lemma 2.3, we need the following lemma due to Suzuki [16].

Lemma 2.1. Let {a,} be a sequence in [0,1]. Let {u,} and {wy,} be bounded
sequences in a Banach space E. Assume that

(1) wujp1 = aw; + (1 —a;)u; for i € N,
(2) 0 <liminf, a, <limsup, a, <1,
(3)  limsup,(|wn+1 — wall = [[uptr — unl]) <0
Then, lim,, ||w, — uy|| = 0.
Lemma 2.2. Let C be a bounded subset of a Banach space E. Let S and T be

nonexpansive self-mappings on C and each M(n) be the mapping defined by (M).

Let L = sup{||z|| : ® € C} < o0. Then, for each n,k € N,
2
HM(n—Fk)x—M(n)a:H_( fk:)L for zeC.

That is, for each k € N, lim,, ||M(n + k)x — M(n)z| = 0.
Proof. We easily have the result from the following: For x € C, n,k € N,

n+k i+1 n i+1
—H2n+k > S ST 33 S
i=1 j=t i=1 j=1
1 1 n 1+1 1 n+k i+1
<|({— = — ZTJ ZTJ
< (- gte) S e+ & S
k 1 2k
=— —x2nL+ ——— x2kL = ———1L.
k) T (n+ k)

Lemma 2.3. Let {a,} be a sequence in [0,1] such that
0 < liminf a,, < limsupa, < 1.
n n
Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive

self-mappings on C with ST =TS and each M(n) be the mapping defined by (M).
Let {z,,} be a sequence in C' defined by

x1 € C, Tnt1 = anM(n)x, + (1 —ay)z, for n € N.

Then, limy, ||M(n)z, — z,|| = 0. Furthermore, for a subsequence {xy,} of {xn}
which converges to z € C, limy, || M (ng)z — z|| = 0 holds.



320 YUKIO TAKEUCHI

Proof. Set wy, = M (n)x, for n € N. Then, by Lemma 2.2, we have
[wni1 = wall = [Znt1 — 2l
< [M(n+ 1)z — M(n+ 1)z, ||
+ M (n+ Dan — M(n)za| = 201 — 2nl
2
(n+1)
for n € N, where L = sup{||z| : « € C} < co. By Lemma 2.1, we have

Slener = @l + [[M (0 + D — M(n)2a| = [[2n1 — 24l < L

lién |wn — x| = li7rln |M(n)x, — x,|| = 0.

Suppose {zy, } is a subsequence of {z,} converging to some z € C. Then,

M (ng)z = z[| < |[M(ng)z = M (ng)zn, || + 1M (ng)zn, — 2o, || + [l2n, — 2|

<||M(ng)xn, — zn, || + 2||zn, — 2| for ke N.
This implies limy, | M (ng)z — z|| = 0. O
3. LEMMAS

To have the results in Lemma 2.3, the condition ST = T'S is unnecessary and we
can replace compactness of C' by boundedness of C'. However, in the same setting
as in Lemma 2.3, we are interested in seeing z € F'(S) N F(T).

In this direction, it is so important to show

d = limsup{||S"T7z — z|| : (i,5) € N’} =0 (Lemma 3.7).
n
To prove Lemma 3.7, we need Lemmas 3.1-3.6 below.

In Lemmas 3.1-3.7, we assume the following:

(A1) Cis a compact and convex subset of a Banach space E.
(A2) S and T are nonexpansive self-mappings on C with ST =T'S.
(Ag) {zn} is a sequence in C and {x,, } is a subsequence of {z,}.
(Ay) {zp,} converges to z € C' ({ny} is the index set of {z,, }).
(As)  limy [[M(ng)z — z[| = 0.

Moreover, we use the following notations:

L=sup{|jz|:x € C}, d=limsup{||S'T/z —z||: (i,5) € N*}.

It is obvious that 0 < d < co. Let A C N? and m € N. Then, we set
Am=NANA, Apcn, =Nicn, NA (Ai<n, = Nic,, NA),
where ni > m. Let € > 0 and w € C. Then, set
A(w,e) = {(i,7) € N2 : |S'TV 2 —w|| > d — €}
In this setting, we also use the following notations:
N2 (w,d —¢) = A(w, ) = {(i,5) € N2 : |ST7 2 — wl|| > d — €},
N2 e (w,d = ) = A(w, &),
={(i,j5) € anﬁnk STz —wl|| > d — e}
We note that, for ¢ > 0 with d — ¢ < 0, A(w, ¢),, and N2, are the same.
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Lemma 3.1. Assume d > 0. Then, there are u € C with |lu — z|| = d and a

sequence {(in, jn)} C N which satisfy the following:

(1) Forn € N, (in,jn) € N2(z,d — 1/n).
(2) {S"T7z} converges to u.

Furthermore, for arbitrary 6 > 0, there is ms € N such that
(3) ISPz —ul| <d+6  for (i,j) € Np, .

Proof. By the definition of d, for n € N, N2(z,d—1/n) contains an element (i, jy).
Then, we can generate a sequence {(in,jn)} C NZ. Since C is compact, by passing
to subsequence, we can consider {(in, jn)} C N? as a sequence such that {S™"T7n 2}
converges to u € C satisfying ||u — z|| = d.

We show (3). Let § > 0. By the definition of d, there is s € N such that

|S'T7 2 — 2| <d+6/2 for (i,j) € N2.

Furthermore, there is (i, jn,) € N2 satisfying either of the following:
(i) Jno = ngs HSinOTinOZ —ull <§/2,
(ii) G = in + 1, IS T2 —ul| <§/2  for (in,jn) € N7, -
Let ms = 2ip,. Then, i — iy, > iy, if ¢ > ms.

In case (i), we have (i —ipy,J —in,) € ano C NZ for (i,j) € N7, Then,
(A ||ST7z —u|| < ||S'T7 2 — SmoT™moz|| 4 || S0 Tm0 2 — |

<||STT T oy — 2| +6/2<d+06  for (i,j) € N, -

Thus, (3) holds. We consider case (ii). In this case, for (i,i + 1) € N2

mg
(B) STy — || < ||S'TH 2 — StroTino T z|| 4 || Sino Tiro Tl — |
< HSi_i”OTi_i”Oz —z||+d/2<d+6.
Let (i,i) € Np,,, that is, i > ms. Then, there is i,, € N satisfying i, > 2i. By
fny > iy — >0 > mg > ing and (in, —i,in, — i+ 1) € N2, we have
ST 2 — | < ||S'T 2 — St Timt || 4 || S Tim Ty — o
< || 8P I =0+ 2| +6/2 < d 4 0.
Then, the following holds:
(®) 15Tz —ul| <d+6  for (i,i) € Ny, .
By (B) and (C), (3) also holds. Thus, we have the result. O

Lemma 3.2. Assume d > 0. Let u € C satisfy |u — z|| = d. Then, for e € (0,d),
the following holds:
#(Nie,, (u,d —e))

li =1
11?1 2ny,
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Proof. Fix € € (0,d). Let 6 > 0 arbitrary and let ms € N satisfy conditions in
Lemma 3.1 (3). We deal with ny such that ng > mg.
It is obvious that #Nfgnk = 2ny. Set, for k € N satisfying ng > msg,

b, = #(ang—l-lgnk (ua d— 8))/27%, ag = #(legnk (’LL, d— 8))/2”’]6
Note that by depends on . However, a; does not depend on §. It is obvious that
0 <bp <ag <1ifng >mg. That is, the following inequalities hold:
(i) limkinf by, < limkinf ap <1, limsup by, < limsupay < 1.
k k
By b; < a; and Lemma 3.1, we have
ms 1+1 ng +1

]. Z' > 1 i >
M)z —ul € e S STz —ul 4 5 S S STz
kim1 =i (L
mg 1
< 0 _ _ _ _
<L+ (bk(d+6) n (an x 2(ng — mg) bk>(d 5))
<Mop MRS (g )k ag(e + ).
ng ng

Then, by d = ||u — z|| and limy | M (ng)z — z|| = 0, it follows that
d=|z—u| = limkinf |M(nk)z —ul| < (d—e¢)+ (limkinfak)(a +9).

Since § is arbitrary, we have a contradiction if lim infy ay < 1. Thus, liminfy a; > 1.

By (i), we have limy ay = 1. This completes the proof. O
A
Lemma 3.3. Let A C N2. Assume limy #2;5"’“ = 1. Then, for any m € N,

A
limg, ##f"’“ =1, where np > m. Moreover, the following hold:

(1) For each n € N, A, contains an element (i,17).
(2) For each n € N, A, contains an element (i,i+ 1).
Proof. Let m € N and nx > m. Set, for such k € N,

ar = #A1<n,, /20, k(M) = #Apm<n, /20
By lim; ap = 1 and 0 < aj, — cx(m) < (m — 1)/ng, we have limy, cx(m) = 1.
Confirm A, = N2NA forn € N and #(N%Snk) = 2ny. We show that A,, contains
(i,7) satisfying ¢ = j. Arguing by contradiction, assume that there is ng € N such
that A,, contains no element (4, j) satisfying i = j. Then, it is obvious that

LA%S”’“ <1/2 for k.

Ck(no) - an

However, we know limy, c;(ng) = 1. We have a contradiction.
In the same way, A,, contains (i, ) satisfying j =i + 1. O

Lemma 3.4. Let A and B be subsets of N?. Assume that

A B
lim P g gy #Di
k 2ny, k 2ny,

# (Alﬁnk mBlSnk)
2ny

=1.

Then, limy, =1.
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Proof. For k € N, we know #(legnk) = 2ny and
#(A1<pn, N Bi<n,,) (#A1<n, — #(A1<n, N Bi<n,)) + #Bi<n,

<1, <1.

2nk 2nk

Then, it is easy to see that
A NnB
#Algnk + #Blénk 1 S #( 1<ny 1Snk) S 1 fOl" k c N.
2nk an an
A B

By limy, #éjink = limy, #Eze;ink =1, we have limy, #( IS"Q’;Z 1§"’“) =1. O

Lemma 3.5. Assume d > 0. Then, there are v € C and a sequence {(i},il)} ¢ N?
such that ||v — z|| = d and {S"Tnz} converges to v.
Proof. We show that, for 6 € (0,d) and m € N, N2 (z,d—§) contains (i, j) satisfying
i = j. Arguing by contradiction, assume the existence of 6y € (0,d) and my € N
such that N2, (z,d —dp) contains no element (i, j) satisfying i = j. By Lemma 3.1,
there are u € C with ||u — z|| = d and a sequence {(in,jn)} C NZ which satisfy the
following:

(1) For n € N, (in, jn) € N2(z,d — 1/n).

(2) {S"T7"z} converges to u.
Then, there is (in,, jn,) € Ngo(z, d — 1/ng) satisfying the following:

“Si"OTj"O — 'LLH < 50/2, 1/77,0 < &g, ng > my, ino > myg.
By (ings jng) € N,%O(z,d —1/ng) C N%O(z,d —d0), we have j,, = in, + 1.
On the other hand, by Lemma 3.2, we know

 # (Vi (,d — 00/2))
lim =1
k 2ny,
By Lemma 3.3 (2), for any n € N, there is (i,5) € N2(u,d — §/2) satisfying
j=1i+1 Let =2, and (i,i+1) € Nf(u,d — 60/2). Then, i — i, > in, > mo,
(i +1) = (ing + 1) =4 —ing, |S°T 2 —u| >d— /2, and
| ST im0 T 0 5 — z|| > || STz — StroTimo Ty
> ||1S'T 1y — | — || S0 Timo Tz — u|
>d—390/2 —00/2 =d— dp.

Thus, we have (i — ing,i — iny) € N, (z,d — ). This is a contradiction.
By taking (i},il) € N2(z,d — 1/n) for n, we have {(il,il)} C NZ. By passing to

n’n
subsequence, we can regard {(i},il)} as a sequence such that {ST%n 2} converges
to some v € C satisfying [|v — z| = d.

[l
Lemma 3.6. Assume d > 0. Then, for e € (0,d), the following holds:

N? ,d—
k 2ny,
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Proof. By Lemma 3.5, there are v € C and {(i},iL)} € N? such that |[v — z|| = d

and {SinT'nz} converges to v. Fix e € (0,d) arbitrarily. Then, by [[v — z| = d and
Lemma 3.2,
#(legnk (’U, d— 5/2)) _

lim =1
k 2ng

Let m € N, np > m and set, for k,
#(Nfgnk (Ua d— 6/2>)

ap = T ; cp(m) =

# (N, (V4 — €/2))
an '

Then, by Lemma 3.3, we know limy, cx(m) = limy ag, = 1.

It is obvious that there is i, satisfying HS"}LO Tigloz—UH < e/2. Let my = 2, and
consider ng > my. Confirm that (i,7) € N2, ., (v,d—¢/2) implies (4,j) € N7, <,
and [|S"TVz —v|| > d —¢/2.

Then, for (i,j) € N2 L<n, (V,d —€/2), it is easy to see that

m
1S 0TI "m0 2 — z|| > ||S'TV 2 — S0 T0 2
> ||S'T9z — v]| — S0 T™oz — v
>d—¢c/2—¢/2=d—e.
That is, we have
#(Nin, (5 d =€) _ #({ = iby 5= %)+ (i3) € N2, o, (v.d—£/2)})

1>

an

_ #(Ngnlgnk ('U, d - 8/2)) _
= o = cp(mq).
k

2nk

” (Nfgnk (z.d—2))

2ny

We know limyg ¢ (m1) = 1. Then, we have limy =1. O

Lemma 3.7. d=0.

Proof. Arguing by contradiction, assume d > 0. Then, by Lemma 3.5, there is
v € C satisfying ||v; — z|| = d. Let ¢ € (0,d). By Lemmas 3.2, 3.6, we know the
following:

#(N]?Snk(v:l?d_g)) #(N]?Snk(’z?d_g))

1) i =1 2) i =1
( ) llgn 2nk ’ ( ) 1]?1 27”Lk

Set A(vy,e) = NE(vi,d—¢), A(z,e) = N}(z,d—e¢), and B (g) = A(vy, )N A(z,¢).
Note that

BW(1/n), = N2(v1,d —1/n) N N2(z,d —1/n) for n e N.
Then, (1) and (2) are rewritten to the following:
o FAWL€)1<n, #A(2,€)1<n,

li —1, lim —1.
k 2nyg k 2ny,
. #BW (e)1<n . . .
By Lemma 3.4, we have limy, W—’“ = 1. Since ¢ is arbitrary, by Lemma 3.3,
there is (i2,i2) € BY(1/n), for n € N. That is, we have a sequence {(i2,i2)} C N?

such that (i2,i2) € B(l)(l/n)n for n € N. By passing to subsequences, we can

n»'n
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regard {(i2,i2)} as a sequence such that {S"Tinz} converges to some vy € C
and (i2,i2) € BM(1/n), for n € N. That is, ||vs — v1]| = d and |Jvy — 2| = d.

Furthermore, by Lemma 3.2,

: #(leﬁnk(v2’d_6))
lim =1
k 2ng

Set A(vg,€) = NZ(vo,d —¢) and BP(e) = A(vg,e) N BW () = A(wa,) N A(vy,€) N
A(z,¢e). Note that, for n € N,

B®(1/n), = N2(va,d —1/n) N N2(v1,d — 1/n) N N2(z,d — 1/n).
We already know the following:

A B
lim # A2, Eh<ny (v2, €)1m =1, lim #BE)1<m, (1<n, =1.
k 2nyg k 2ng
#B(2)(€)1§nk

Then, by Lemma 3.4, we have limy T = 1. Since ¢ is arbitrary, by

Lemma 3.3, there is (i3,i3) € B®)(1/n),, for n € N. That is, we have {(i3,i3)} C

n)»'n
N} such that (i3,i3) € B®(1/n), for n € N. By passing to subsequences, we
can regard {(i3,i3)} as a sequence such that {S™Tnz} converges to some vg € C

and (i3,i3) € B®(1/n),, for n € N. That is, ||v3 — v2| = d, ||v3 — v1| = d and

n»’n
|lvs — z|| = d. Furthermore, by Lemma 3.2,

#(N12§nk (v, d — 6))
2np

=1.

lim
k

By induction, we have {v,} in C such that ||v; —v;|| =d > 0if i # j. That is, {v,}
can not have a convergent subsequence. However, since C' is compact, {v,} must
have a convergent subsequence. This is a contradiction. O

4. MAIN RESULT
Theorem 4.1. Let {a,} be a sequence in [0,1] such that

0 < liminf a, <limsupa, < 1.
n n

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive
self-mappings on C with ST =TS and each M(n) be the mapping defined by (M).
Let 1 € C and define a sequence {x,} in C' by

Tnt1 = ap M)z, + (1 — ap)zy for n € N.
Then {x,} converges strongly to some common fized point z of S and T.

Proof. Since C'is compact, there is a subsequence {z,, } of {x,} which converges to
some z € C. Under our assumptions, by Lemma 2.3, it is obvious that (A1)—(Ajs)
are satisfied. Then, by Lemma 3.7,

d = limsup{||S'T?z — z| : (4,5) € N2} = 0.
n

We know that {S™T"z} has a convergent subsequence. By d = 0, any convergent
subsequence of {S"T"z} converges to z. That is, {S™T"z} itself converges to z.
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In the same way, we have that {S"T"*!z} converges to z. Since S and T are
continuous mappings with ST = TS, the following hold:

Sz = S(lim S"T™"2) = lim(S" 1T 2) = 2,

Tz =T(lim S"T"z) = lim(S"T""'2) = 2.

That is, z € F(S) N F(T'). Then, we easily have z € N, F'(M(n)) and

[Zn+1 = 2| = llan M (n)zn + (1 = an)zn — 2|
< an|[M(n)azn — 2| + (1 = an)llzn — 2| < [lzn — 2]

for n € N. This implies that {||z,, — 2|} converges. Since {|zy, — z||} converges to
0, {||xn, — 2|} itself converges to 0. Thus, we have the result. O
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