Linear and SJoninear Annaysisis
Yokohama Publishers

Volume 2, Number 2, 2016, 317-327

AN ITERATION SCHEME FINDING A COMMON FIXED POINT OF COMMUTING TWO NONEXPANSIVE MAPPINGS IN GENERAL BANACH SPACES

YUKIO TAKEUCHI

Abstract

We present a new iteration scheme finding a common fixed point of two nonexpansive mappings in a general Banach space.

1. Introduction

In 1979, Ishikawa [6] presented an excellent and complicated method finding a common fixed point of a finite family $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ of commuting nonexpansive self-mappings on D, where D is a compact convex subset of a general Banach space. It is not easy to read [6] and a long process is necessary to have his result. Then, Kubota and Takeuchi [9] surveyed the article. They clarify details of his argument and rewrite Ishikawa's results by using a double sequence of mappings which is generated by $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$.

In this article, we deal with common fixed points of commutative two nonexpansive mappings in a general Banach space. In this setting, that is, in the case of $k=2$, Ishikawa's method in [6] is simple as below; see [9].

Theorem 1.1. Let $a \in(0,1)$. Let D be a compact convex subset of a Banach space E. Let T_{1}, T_{2} be nonexpansive self-mappings on D with $T_{1} T_{2}=T_{2} T_{1}$. For $i=1,2$, let S_{i} be a mapping on D defined by $S_{i}=a T_{i}+(1-a) I$. Let $x_{1} \in D$ and define a sequence $\left\{x_{n}\right\}$ in D by

$$
x_{n+1}=S_{2} S_{1}^{n} x_{n} \quad \text { for } \quad n \in N .
$$

Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point z of T_{1} and T_{2}.
In 1998, Atsushiba and Takahashi [1] proved Theorem 1.2. Motivated by [6] and [1], in 2002, Suzuki [15] proved Theorem 1.3 by using Atushiba-Takahashi type iteration. Under the setting in Theorem 1.3, the iteration is not simpler than Ishikawa's. However, it is interesting in theory. In 2005, Suzuki [16] also presented another interesting result related to this problem.

Theorem 1.2. Let $a \in(0,1)$ and $\left\{a_{n}\right\}$ be a sequence in $[0, a]$. Let E be a uniformly convex Banach space which satisfies Opial's condition or whose norm is Fréchet differentiable. Let C be a closed convex subset of E. Let S and T be nonexpansive

[^0]self-mappings on C such that $S T=T S$ and $F(T) \cap F(S) \neq \emptyset$. Let $x_{1} \in C$ and define a sequence $\left\{x_{n}\right\}$ in C by
$$
x_{n+1}=\frac{a_{n}}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j} x_{n}+\left(1-a_{n}\right) x_{n} \quad \text { for } \quad n \in N .
$$

Then $\left\{x_{n}\right\}$ converges weakly to a common fixed point z of S and T.
Theorem 1.3. Let $\left\{a_{n}\right\}$ be a sequence in $[0,1]$ with

$$
0<\lim \inf _{n} a_{n} \leq \lim \sup _{n} a_{n}<1
$$

Let C be a compact convex subset of a Banach space E. Let S, T be nonexpansive self-mappings on C with $S T=T S$. Let $x_{1} \in C$ and define a sequence $\left\{x_{n}\right\}$ in C by

$$
x_{n+1}=\frac{a_{n}}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} S^{i} T^{j} x_{n}+\left(1-a_{n}\right) x_{n} \quad \text { for } \quad n \in N
$$

Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point z of S and T.
Motivated by these works as above, we are interested in having more simple iteration in Suzuki's direction. Then, we introduce a new iteration scheme and prove a strong convergence theorem. Our arguments are essentially based on ideas and techniques prepared in Suzuki [15].

2. Preliminaries

In this article, N denotes the set of positive integers and N^{2} denotes the product $N \times N$. For $k, l \in N, N_{l}, N_{k \leq l}, N_{l}^{2}$ and $N_{k \leq l}^{2}$ denote the following:

$$
\begin{aligned}
& N_{l}=\{i \in N: l \leq i\}, \quad N_{k \leq l}=\{i \in N: k \leq i \leq l\}, \\
& N_{l}^{2}=\left\{(i, j) \in N^{2}: i \in N_{l}, \quad j \in N_{i \leq i+1}\right\}, \\
& N_{k \leq l}^{2}=\left\{(i, j) \in N^{2}: i \in N_{k \leq l}, \quad j \in N_{i \leq i+1}\right\} .
\end{aligned}
$$

For a set $B, \# B$ denotes the cardinal number of B.
We denote by E a real Banach space with norm $\|\cdot\|$. Let C be a subset of a Banach space E and T be a mapping of C into $E . F(T)$ denotes the set of fixed points of T, that is, $F(T)=\{x \in C: x=T x\}$. T is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for any $x, y \in C$.

Let C be a subset of E and let S and T be nonexpansive self-mappings on C. For each $n \in N$, we define a mapping $M(n)$ of C into E by

$$
\begin{align*}
M(n) x & =\frac{1}{2 n} \sum_{i=1}^{n} \sum_{j=i}^{i+1} S^{i} T^{j} x \tag{M}\\
& =\frac{1}{2 n} \sum_{i=1}^{n} S^{i} T^{i} x+\frac{1}{2 n} \sum_{i=1}^{n} S^{i} T^{i+1} x \quad \text { for } \quad x \in C
\end{align*}
$$

Then, each $M(n)$ is nonexpansive. Indeed, for each $n \in N$, we have

$$
\begin{aligned}
\|M(n) x-M(n) y\| & \leq \frac{1}{2 n} \sum_{i=1}^{n} \sum_{j=i}^{i+1}\left\|S^{i} T^{j} x-S^{i} T^{j} y\right\| \\
& \leq \frac{1}{2 n} \times 2 n\|x-y\|=\|x-y\| \quad \text { for } \quad x, y \in C
\end{aligned}
$$

To prove Lemma 2.3, we need the following lemma due to Suzuki [16].
Lemma 2.1. Let $\left\{a_{n}\right\}$ be a sequence in $[0,1]$. Let $\left\{u_{n}\right\}$ and $\left\{w_{n}\right\}$ be bounded sequences in a Banach space E. Assume that
(1) $u_{i+1}=a_{i} w_{i}+\left(1-a_{i}\right) u_{i} \quad$ for $i \in N$,
(2) $0<\liminf _{n} a_{n} \leq \limsup \sup _{n} a_{n}<1$,
(3) $\quad \lim \sup _{n}\left(\left\|w_{n+1}-w_{n}\right\|-\left\|u_{n+1}-u_{n}\right\|\right) \leq 0$.

Then, $\lim _{n}\left\|w_{n}-u_{n}\right\|=0$.
Lemma 2.2. Let C be a bounded subset of a Banach space E. Let S and T be nonexpansive self-mappings on C and each $M(n)$ be the mapping defined by (M). Let $L=\sup \{\|x\|: x \in C\}<\infty$. Then, for each $n, k \in N$,

$$
\|M(n+k) x-M(n) x\| \leq \frac{2 k}{(n+k)} L \quad \text { for } \quad x \in C
$$

That is, for each $k \in N, \lim _{n}\|M(n+k) x-M(n) x\|=0$.
Proof. We easily have the result from the following: For $x \in C, n, k \in N$,

$$
\begin{aligned}
\| M(n & +k) x-M(n) x \| \\
& =\left\|\frac{1}{2(n+k)} \sum_{i=1}^{n+k} \sum_{j=i}^{i+1} S^{i} T^{j} x-\frac{1}{2 n} \sum_{i=1}^{n} \sum_{j=i}^{i+1} S^{i} T^{j} x\right\| \\
& \leq\left(\frac{1}{2 n}-\frac{1}{2(n+k)}\right) \sum_{i=1}^{n} \sum_{j=i}^{i+1}\left\|S^{i} T^{j} x\right\|+\frac{1}{2(n+k)} \sum_{i=n+1}^{n+k} \sum_{j=i}^{i+1}\left\|S^{i} T^{j} x\right\| \\
& =\frac{k}{2 n(n+k)} \times 2 n L+\frac{1}{2(n+k)} \times 2 k L=\frac{2 k}{(n+k)} L
\end{aligned}
$$

Lemma 2.3. Let $\left\{a_{n}\right\}$ be a sequence in $[0,1]$ such that

$$
0<\lim \inf _{n} a_{n} \leq \lim \sup _{n} a_{n}<1
$$

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive self-mappings on C with $S T=T S$ and each $M(n)$ be the mapping defined by (M). Let $\left\{x_{n}\right\}$ be a sequence in C defined by

$$
x_{1} \in C, \quad x_{n+1}=a_{n} M(n) x_{n}+\left(1-a_{n}\right) x_{n} \quad \text { for } n \in N .
$$

Then, $\lim _{n}\left\|M(n) x_{n}-x_{n}\right\|=0$. Furthermore, for a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ which converges to $z \in C, \lim _{k}\left\|M\left(n_{k}\right) z-z\right\|=0$ holds.

Proof. Set $w_{n}=M(n) x_{n}$ for $n \in N$. Then, by Lemma 2.2, we have

$$
\begin{aligned}
& \left\|w_{n+1}-w_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
& \quad \leq\left\|M(n+1) x_{n+1}-M(n+1) x_{n}\right\| \\
& \quad \quad+\left\|M(n+1) x_{n}-M(n) x_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
& \quad \leq\left\|x_{n+1}-x_{n}\right\|+\left\|M(n+1) x_{n}-M(n) x_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \frac{2}{(n+1)} L
\end{aligned}
$$

for $n \in N$, where $L=\sup \{\|x\|: x \in C\}<\infty$. By Lemma 2.1, we have

$$
\lim _{n}\left\|w_{n}-x_{n}\right\|=\lim _{n}\left\|M(n) x_{n}-x_{n}\right\|=0
$$

Suppose $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ converging to some $z \in C$. Then,

$$
\begin{aligned}
\left\|M\left(n_{k}\right) z-z\right\| & \leq\left\|M\left(n_{k}\right) z-M\left(n_{k}\right) x_{n_{k}}\right\|+\left\|M\left(n_{k}\right) x_{n_{k}}-x_{n_{k}}\right\|+\left\|x_{n_{k}}-z\right\| \\
& \leq\left\|M\left(n_{k}\right) x_{n_{k}}-x_{n_{k}}\right\|+2\left\|x_{n_{k}}-z\right\| \quad \text { for } \quad k \in N .
\end{aligned}
$$

This implies $\lim _{k}\left\|M\left(n_{k}\right) z-z\right\|=0$.

3. Lemmas

To have the results in Lemma 2.3, the condition $S T=T S$ is unnecessary and we can replace compactness of C by boundedness of C. However, in the same setting as in Lemma 2.3, we are interested in seeing $z \in F(S) \cap F(T)$.

In this direction, it is so important to show

$$
d=\lim _{n} \sup \left\{\left\|S^{i} T^{j} z-z\right\|:(i, j) \in N_{n}^{2}\right\}=0 \quad(\text { Lemma 3.7 })
$$

To prove Lemma 3.7, we need Lemmas 3.1-3.6 below.
In Lemmas 3.1-3.7, we assume the following:
$\left(\mathrm{A}_{1}\right) \quad C$ is a compact and convex subset of a Banach space E.
$\left(\mathrm{A}_{2}\right) \quad S$ and T are nonexpansive self-mappings on C with $S T=T S$.
$\left(\mathrm{A}_{3}\right) \quad\left\{x_{n}\right\}$ is a sequence in C and $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$.
$\left(\mathrm{A}_{4}\right) \quad\left\{x_{n_{k}}\right\}$ converges to $z \in C\left(\left\{n_{k}\right\}\right.$ is the index set of $\left.\left\{x_{n_{k}}\right\}\right)$.
$\left(\mathrm{A}_{5}\right) \quad \lim _{k}\left\|M\left(n_{k}\right) z-z\right\|=0$.
Moreover, we use the following notations:

$$
L=\sup \{\|x\|: x \in C\}, \quad d=\lim _{n} \sup \left\{\left\|S^{i} T^{j} z-z\right\|:(i, j) \in N_{n}^{2}\right\}
$$

It is obvious that $0 \leq d<\infty$. Let $A \subset N_{1}^{2}$ and $m \in N$. Then, we set

$$
A_{m}=N_{m}^{2} \cap A, \quad A_{m \leq n_{k}}=N_{m \leq n_{k}}^{2} \cap A \quad\left(A_{1 \leq n_{k}}=N_{1 \leq n_{k}}^{2} \cap A\right)
$$

where $n_{k} \geq m$. Let $\varepsilon>0$ and $w \in C$. Then, set

$$
A(w, \varepsilon)=\left\{(i, j) \in N_{1}^{2}:\left\|S^{i} T^{j} z-w\right\| \geq d-\varepsilon\right\}
$$

In this setting, we also use the following notations:

$$
\begin{aligned}
& N_{m}^{2}(w, d-\varepsilon)=A(w, \varepsilon)_{m}=\left\{(i, j) \in N_{m}^{2}:\left\|S^{i} T^{j} z-w\right\| \geq d-\varepsilon\right\} \\
& N_{m \leq n_{k}}^{2}(w, d-\varepsilon)=A(w, \varepsilon)_{m \leq n_{k}} \\
& \quad=\left\{(i, j) \in N_{m \leq n_{k}}^{2}:\left\|S^{i} T^{j} z-w\right\| \geq d-\varepsilon\right\}
\end{aligned}
$$

We note that, for $\varepsilon>0$ with $d-\varepsilon \leq 0, A(w, \varepsilon)_{m}$ and N_{m}^{2} are the same.

Lemma 3.1. Assume $d>0$. Then, there are $u \in C$ with $\|u-z\|=d$ and a sequence $\left\{\left(i_{n}, j_{n}\right)\right\} \subset N_{1}^{2}$ which satisfy the following:
(1) For $n \in N,\left(i_{n}, j_{n}\right) \in N_{n}^{2}(z, d-1 / n)$.
(2) $\left\{S^{i_{n}} T^{j_{n}} z\right\}$ converges to u.

Furthermore, for arbitrary $\delta>0$, there is $m_{\delta} \in N$ such that
(3) $\left\|S^{i} T^{j} z-u\right\| \leq d+\delta \quad$ for $\quad(i, j) \in N_{m_{\delta}}^{2}$.

Proof. By the definition of d, for $n \in N, N_{n}^{2}(z, d-1 / n)$ contains an element $\left(i_{n}, j_{n}\right)$. Then, we can generate a sequence $\left\{\left(i_{n}, j_{n}\right)\right\} \subset N_{1}^{2}$. Since C is compact, by passing to subsequence, we can consider $\left\{\left(i_{n}, j_{n}\right)\right\} \subset N_{1}^{2}$ as a sequence such that $\left\{S^{i_{n}} T^{j_{n}} z\right\}$ converges to $u \in C$ satisfying $\|u-z\|=d$.

We show (3). Let $\delta>0$. By the definition of d, there is $s \in N$ such that

$$
\left\|S^{i} T^{j} z-z\right\| \leq d+\delta / 2 \quad \text { for } \quad(i, j) \in N_{s}^{2}
$$

Furthermore, there is $\left(i_{n_{0}}, j_{n_{0}}\right) \in N_{s}^{2}$ satisfying either of the following:

$$
\begin{equation*}
j_{n_{0}}=i_{n_{0}}, \quad\left\|S^{i_{n_{0}}} T^{i_{n_{0}}} z-u\right\|<\delta / 2 \tag{i}
\end{equation*}
$$

(ii) $\quad j_{n}=i_{n}+1, \quad\left\|S^{i_{n}} T^{i_{n}+1} z-u\right\|<\delta / 2 \quad$ for $\quad\left(i_{n}, j_{n}\right) \in N_{i_{n_{0}}}^{2}$.

Let $m_{\delta}=2 i_{n_{0}}$. Then, $i-i_{n_{0}} \geq i_{n_{0}}$ if $i \geq m_{\delta}$.
In case (i), we have $\left(i-i_{n_{0}}, j-i_{n_{0}}\right) \in N_{i_{n_{0}}}^{2} \subset N_{s}^{2}$ for $(i, j) \in N_{m_{\delta}}^{2}$. Then,

$$
\begin{align*}
\| S^{i} T^{j} z & -u\|\leq\| S^{i} T^{j} z-S^{i_{n_{0}}} T^{i_{n_{0}}} z\|+\| S^{i_{n_{0}}} T^{i_{n_{0}}} z-u \| \tag{A}\\
& \leq\left\|S^{i-i_{n_{0}}} T^{j-i_{n_{0}}} z-z\right\|+\delta / 2 \leq d+\delta \quad \text { for } \quad(i, j) \in N_{m_{\delta}}^{2}
\end{align*}
$$

Thus, (3) holds. We consider case (ii). In this case, for $(i, i+1) \in N_{m_{\delta}}^{2}$,

$$
\begin{align*}
\left\|S^{i} T^{i+1} z-u\right\| & \leq\left\|S^{i} T^{i+1} z-S^{i_{n_{0}}} T^{i_{n_{0}}+1} z\right\|+\left\|S^{i_{n_{0}}} T^{i_{n_{0}}+1} z-u\right\| \tag{B}\\
& \leq\left\|S^{i-i_{n_{0}}} T^{i-i_{n_{0}}} z-z\right\|+\delta / 2 \leq d+\delta
\end{align*}
$$

Let $(i, i) \in N_{m_{\delta}}^{2}$, that is, $i \geq m_{\delta}$. Then, there is $i_{n_{1}} \in N$ satisfying $i_{n_{1}} \geq 2 i$. By $i_{n_{1}}>i_{n_{1}}-i \geq i \geq m_{\delta}>i_{n_{0}}$ and $\left(i_{n_{1}}-i, i_{n_{1}}-i+1\right) \in N_{m_{\delta}}^{2}$, we have

$$
\begin{aligned}
\left\|S^{i} T^{i} z-u\right\| & \leq\left\|S^{i} T^{i} z-S^{i_{n_{1}}} T^{i_{n_{1}}+1} z\right\|+\left\|S^{i_{n_{1}}} T^{i_{n_{1}}+1} z-u\right\| \\
& \leq\left\|S^{i_{n_{1}}-i} T^{\left(i_{n_{1}}-i\right)+1} z-z\right\|+\delta / 2 \leq d+\delta
\end{aligned}
$$

Then, the following holds:
(C)

$$
\left\|S^{i} T^{i} z-u\right\| \leq d+\delta \quad \text { for } \quad(i, i) \in N_{m_{\delta}}^{2}
$$

By (B) and (C), (3) also holds. Thus, we have the result.
Lemma 3.2. Assume $d>0$. Let $u \in C$ satisfy $\|u-z\|=d$. Then, for $\varepsilon \in(0, d)$, the following holds:

$$
\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}(u, d-\varepsilon)\right)}{2 n_{k}}=1
$$

Proof. Fix $\varepsilon \in(0, d)$. Let $\delta>0$ arbitrary and let $m_{\delta} \in N$ satisfy conditions in Lemma 3.1 (3). We deal with n_{k} such that $n_{k}>m_{\delta}$.
It is obvious that $\# N_{1 \leq n_{k}}^{2}=2 n_{k}$. Set, for $k \in N$ satisfying $n_{k}>m_{\delta}$,

$$
b_{k}=\#\left(N_{m_{\delta}+1 \leq n_{k}}^{2}(u, d-\varepsilon)\right) / 2 n_{k}, \quad a_{k}=\#\left(N_{1 \leq n_{k}}^{2}(u, d-\varepsilon)\right) / 2 n_{k} .
$$

Note that b_{k} depends on δ. However, a_{k} does not depend on δ. It is obvious that $0 \leq b_{k} \leq a_{k} \leq 1$ if $n_{k}>m_{\delta}$. That is, the following inequalities hold:

$$
\begin{equation*}
\underset{k}{\liminf _{k}} b_{k} \leq \liminf _{k} a_{k} \leq 1, \quad \limsup _{k} b_{k} \leq \limsup _{k} a_{k} \leq 1 . \tag{i}
\end{equation*}
$$

By $b_{k} \leq a_{k}$ and Lemma 3.1, we have

$$
\begin{aligned}
\left\|M\left(n_{k}\right) z-u\right\| & \leq \frac{1}{2 n_{k}} \sum_{i=1}^{m_{\delta}} \sum_{j=i}^{i+1}\left\|S^{i} T^{j} z-u\right\|+\frac{1}{2 n_{k}} \sum_{i=m_{\delta}+1}^{n_{k}} \sum_{j=i}^{i+1}\left\|S^{i} T^{j} z-u\right\| \\
& \leq \frac{m_{\delta}}{n_{k}} L+\left(b_{k}(d+\delta)+\left(\frac{1}{2 n_{k}} \times 2\left(n_{k}-m_{\delta}\right)-b_{k}\right)(d-\varepsilon)\right) \\
& \leq \frac{m_{\delta}}{n_{k}} L+\frac{n_{k}-m_{\delta}}{n_{k}}(d-\varepsilon)+a_{k}(\varepsilon+\delta) .
\end{aligned}
$$

Then, by $d=\|u-z\|$ and $\lim _{k}\left\|M\left(n_{k}\right) z-z\right\|=0$, it follows that

$$
d=\|z-u\|=\underset{k}{\liminf }\left\|M\left(n_{k}\right) z-u\right\| \leq(d-\varepsilon)+\left(\underset{k}{\liminf } a_{k}\right)(\varepsilon+\delta) .
$$

Since δ is arbitrary, we have a contradiction if $\liminf _{k} a_{k}<1$. Thus, $\liminf _{k} a_{k} \geq 1$. By (i), we have $\lim _{k} a_{k}=1$. This completes the proof.
Lemma 3.3. Let $A \subset N_{1}^{2}$. Assume $\lim _{k} \frac{\# A_{1 \leq n_{k}}}{2 n_{k}}=1$. Then, for any $m \in N$, $\lim _{k} \frac{\# A_{m \leq n_{k}}}{2 n_{k}}=1$, where $n_{k} \geq m$. Moreover, the following hold:
(1) For each $n \in N, A_{n}$ contains an element (i, i).
(2) For each $n \in N, A_{n}$ contains an element $(i, i+1)$.

Proof. Let $m \in N$ and $n_{k} \geq m$. Set, for such $k \in N$,

$$
a_{k}=\# A_{1 \leq n_{k}} / 2 n_{k}, \quad c_{k}(m)=\# A_{m \leq n_{k}} / 2 n_{k} .
$$

By $\lim _{k} a_{k}=1$ and $0 \leq a_{k}-c_{k}(m) \leq(m-1) / n_{k}$, we have $\lim _{k} c_{k}(m)=1$.
Confirm $A_{n}=N_{n}^{2} \cap A$ for $n \in N$ and $\#\left(N_{1 \leq n_{k}}^{2}\right)=2 n_{k}$. We show that A_{n} contains (i, j) satisfying $i=j$. Arguing by contradiction, assume that there is $n_{0} \in N$ such that $A_{n_{0}}$ contains no element (i, j) satisfying $i=j$. Then, it is obvious that

$$
c_{k}\left(n_{0}\right)=\frac{\# A_{n_{0} \leq n_{k}}}{2 n_{k}} \leq 1 / 2 \quad \text { for } \quad k .
$$

However, we know $\lim _{k} c_{k}\left(n_{0}\right)=1$. We have a contradiction.
In the same way, A_{n} contains (i, j) satisfying $j=i+1$.
Lemma 3.4. Let A and B be subsets of N_{1}^{2}. Assume that

$$
\lim _{k} \frac{\# A_{1 \leq n_{k}}}{2 n_{k}}=1, \quad \lim _{k} \frac{\# B_{1 \leq n_{k}}}{2 n_{k}}=1 .
$$

Then, $\lim _{k} \frac{\#\left(A_{\left.1 \leq n_{k} \cap B_{1 \leq n_{k}}\right)}^{2 n_{k}}\right)}{}=1$.

Proof. For $k \in N$, we know $\#\left(N_{1 \leq n_{k}}^{2}\right)=2 n_{k}$ and

$$
\frac{\#\left(A_{1 \leq n_{k}} \cap B_{1 \leq n_{k}}\right)}{2 n_{k}} \leq 1, \quad \frac{\left(\# A_{1 \leq n_{k}}-\#\left(A_{1 \leq n_{k}} \cap B_{1 \leq n_{k}}\right)\right)+\# B_{1 \leq n_{k}}}{2 n_{k}} \leq 1
$$

Then, it is easy to see that

$$
\frac{\# A_{1 \leq n_{k}}}{2 n_{k}}+\frac{\# B_{1 \leq n_{k}}}{2 n_{k}}-1 \leq \frac{\#\left(A_{1 \leq n_{k}} \cap B_{1 \leq n_{k}}\right)}{2 n_{k}} \leq 1 \quad \text { for } k \in N
$$

Lemma 3.5. Assume $d>0$. Then, there are $v \in C$ and a sequence $\left\{\left(i_{n}^{1}, i_{n}^{1}\right)\right\} \subset N_{1}^{2}$ such that $\|v-z\|=d$ and $\left\{S^{i_{n}^{1}} T^{i_{n}^{1}} z\right\}$ converges to v.

Proof. We show that, for $\delta \in(0, d)$ and $m \in N, N_{m}^{2}(z, d-\delta)$ contains (i, j) satisfying $i=j$. Arguing by contradiction, assume the existence of $\delta_{0} \in(0, d)$ and $m_{0} \in N$ such that $N_{m_{0}}^{2}\left(z, d-\delta_{0}\right)$ contains no element (i, j) satisfying $i=j$. By Lemma 3.1, there are $u \in C$ with $\|u-z\|=d$ and a sequence $\left\{\left(i_{n}, j_{n}\right)\right\} \subset N_{1}^{2}$ which satisfy the following:
(1) For $n \in N,\left(i_{n}, j_{n}\right) \in N_{n}^{2}(z, d-1 / n)$.
(2) $\left\{S^{i_{n}} T^{j_{n}} z\right\}$ converges to u.

Then, there is $\left(i_{n_{0}}, j_{n_{0}}\right) \in N_{n_{0}}^{2}\left(z, d-1 / n_{0}\right)$ satisfying the following:

$$
\left\|S^{i_{n}} T^{j_{n_{0}}}-u\right\|<\delta_{0} / 2, \quad 1 / n_{0}<\delta_{0}, \quad n_{0}>m_{0}, \quad i_{n_{0}}>m_{0}
$$

By $\left(i_{n_{0}}, j_{n_{0}}\right) \in N_{n_{0}}^{2}\left(z, d-1 / n_{0}\right) \subset N_{m_{0}}^{2}\left(z, d-\delta_{0}\right)$, we have $j_{n_{0}}=i_{n_{0}}+1$.
On the other hand, by Lemma 3.2, we know

$$
\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}\left(u, d-\delta_{0} / 2\right)\right)}{2 n_{k}}=1
$$

By Lemma 3.3 (2), for any $n \in N$, there is $(i, j) \in N_{n}^{2}\left(u, d-\delta_{0} / 2\right)$ satisfying $j=i+1$. Let $l=2 i_{n_{0}}$ and $(i, i+1) \in N_{l}^{2}\left(u, d-\delta_{0} / 2\right)$. Then, $i-i_{n_{0}} \geq i_{n_{0}}>m_{0}$, $(i+1)-\left(i_{n_{0}}+1\right)=i-i_{n_{0}},\left\|S^{i} T^{i+1} z-u\right\| \geq d-\delta_{0} / 2$, and

$$
\begin{aligned}
\left\|S^{i-i_{n_{0}}} T^{i-i_{n_{0}}} z-z\right\| & \geq\left\|S^{i} T^{i+1} z-S^{i_{n_{0}}} T^{i_{n_{0}}+1} z\right\| \\
& \geq\left\|S^{i} T^{i+1} z-u\right\|-\left\|S^{i_{n_{0}}} T^{i_{n_{0}}+1} z-u\right\| \\
& \geq d-\delta_{0} / 2-\delta_{0} / 2=d-\delta_{0}
\end{aligned}
$$

Thus, we have $\left(i-i_{n_{0}}, i-i_{n_{0}}\right) \in N_{m_{0}}^{2}\left(z, d-\delta_{0}\right)$. This is a contradiction.
By taking $\left(i_{n}^{1}, i_{n}^{1}\right) \in N_{n}^{2}(z, d-1 / n)$ for n, we have $\left\{\left(i_{n}^{1}, i_{n}^{1}\right)\right\} \subset N_{1}^{2}$. By passing to subsequence, we can regard $\left\{\left(i_{n}^{1}, i_{n}^{1}\right)\right\}$ as a sequence such that $\left\{S^{i_{n}^{1}} T^{i_{n}^{1}} z\right\}$ converges to some $v \in C$ satisfying $\|v-z\|=d$.

Lemma 3.6. Assume $d>0$. Then, for $\varepsilon \in(0, d)$, the following holds:

$$
\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}(z, d-\varepsilon)\right)}{2 n_{k}}=1
$$

Proof. By Lemma 3.5, there are $v \in C$ and $\left\{\left(i_{n}^{1}, i_{n}^{1}\right)\right\} \subset N_{1}^{2}$ such that $\|v-z\|=d$ and $\left\{S^{i_{n}^{1}} T^{i_{n}^{1}} z\right\}$ converges to v. Fix $\varepsilon \in(0, d)$ arbitrarily. Then, by $\|v-z\|=d$ and Lemma 3.2,

$$
\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}(v, d-\varepsilon / 2)\right)}{2 n_{k}}=1
$$

Let $m \in N, n_{k} \geq m$ and set, for k,

$$
a_{k}=\frac{\#\left(N_{1 \leq n_{k}}^{2}(v, d-\varepsilon / 2)\right)}{2 n_{k}}, \quad c_{k}(m)=\frac{\#\left(N_{m \leq n_{k}}^{2}(v, d-\varepsilon / 2)\right)}{2 n_{k}} .
$$

Then, by Lemma 3.3, we know $\lim _{k} c_{k}(m)=\lim _{k} a_{k}=1$.
It is obvious that there is $i_{n_{0}}^{1}$ satisfying $\left\|S^{i_{n_{0}}^{1}} T^{i_{n_{0}}^{1}} z-v\right\|<\varepsilon / 2$. Let $m_{1}=2 i_{n_{0}}^{1}$ and consider $n_{k} \geq m_{1}$. Confirm that $(i, j) \in N_{m_{1} \leq n_{k}}^{2}(v, d-\varepsilon / 2)$ implies $(i, j) \in N_{m_{1} \leq n_{k}}^{2}$ and $\left\|S^{i} T^{j} z-v\right\| \geq d-\varepsilon / 2$.

Then, for $(i, j) \in N_{m_{1} \leq n_{k}}^{2}(v, d-\varepsilon / 2)$, it is easy to see that

$$
\begin{aligned}
\left\|S^{i-i_{n_{0}}^{1}} T^{j-i_{n_{0}}^{1}} z-z\right\| & \geq\left\|S^{i} T^{j} z-S^{i_{n_{0}}^{1}} T^{i_{n_{0}}^{1}} z\right\| \\
& \geq\left\|S^{i} T^{j} z-v\right\|-\left\|S^{i_{n_{0}}^{1}} T^{i_{n_{0}}^{1}} z-v\right\| \\
& \geq d-\varepsilon / 2-\varepsilon / 2=d-\varepsilon .
\end{aligned}
$$

That is, we have

$$
\begin{aligned}
1 \geq \frac{\#\left(N_{1 \leq n_{k}}^{2}(z, d-\varepsilon)\right)}{2 n_{k}} & \geq \frac{\#\left(\left\{\left(i-i_{n_{0}}^{1}, j-i_{n_{0}}^{1}\right):(i, j) \in N_{m_{1} \leq n_{k}}^{2}(v, d-\varepsilon / 2)\right\}\right)}{2 n_{k}} \\
& =\frac{\#\left(N_{m_{1} \leq n_{k}}^{2}(v, d-\varepsilon / 2)\right)}{2 n_{k}}=c_{k}\left(m_{1}\right) .
\end{aligned}
$$

We know $\lim _{k} c_{k}\left(m_{1}\right)=1$. Then, we have $\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}(z, d-\varepsilon)\right)}{2 n_{k}}=1$.
Lemma 3.7. $d=0$.
Proof. Arguing by contradiction, assume $d>0$. Then, by Lemma 3.5, there is $v_{1} \in C$ satisfying $\left\|v_{1}-z\right\|=d$. Let $\varepsilon \in(0, d)$. By Lemmas 3.2, 3.6, we know the following:

$$
\text { (1) } \quad \lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}\left(v_{1}, d-\varepsilon\right)\right)}{2 n_{k}}=1, \quad \text { (2) } \quad \lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}(z, d-\varepsilon)\right)}{2 n_{k}}=1 \text {. }
$$

Set $A\left(v_{1}, \varepsilon\right)=N_{1}^{2}\left(v_{1}, d-\varepsilon\right), A(z, \varepsilon)=N_{1}^{2}(z, d-\varepsilon)$, and $B^{(1)}(\varepsilon)=A\left(v_{1}, \varepsilon\right) \cap A(z, \varepsilon)$. Note that

$$
B^{(1)}(1 / n)_{n}=N_{n}^{2}\left(v_{1}, d-1 / n\right) \cap N_{n}^{2}(z, d-1 / n) \quad \text { for } n \in N .
$$

Then, (1) and (2) are rewritten to the following:

$$
\lim _{k} \frac{\# A\left(v_{1}, \varepsilon\right)_{1 \leq n_{k}}}{2 n_{k}}=1, \quad \lim _{k} \frac{\# A(z, \varepsilon)_{1 \leq n_{k}}}{2 n_{k}}=1
$$

By Lemma 3.4, we have $\lim _{k} \frac{\# B^{(1)}(\varepsilon)_{1 \leq n_{k}}}{2 n_{k}}=1$. Since ε is arbitrary, by Lemma 3.3, there is $\left(i_{n}^{2}, i_{n}^{2}\right) \in B^{(1)}(1 / n)_{n}$ for $n \in N$. That is, we have a sequence $\left\{\left(i_{n}^{2}, i_{n}^{2}\right)\right\} \subset N_{1}^{2}$ such that $\left(i_{n}^{2}, i_{n}^{2}\right) \in B^{(1)}(1 / n)_{n}$ for $n \in N$. By passing to subsequences, we can
regard $\left\{\left(i_{n}^{2}, i_{n}^{2}\right)\right\}$ as a sequence such that $\left\{S^{i_{n}^{2}} T^{i_{n}^{2}} z\right\}$ converges to some $v_{2} \in C$ and $\left(i_{n}^{2}, i_{n}^{2}\right) \in B^{(1)}(1 / n)_{n}$ for $n \in N$. That is, $\left\|v_{2}-v_{1}\right\|=d$ and $\left\|v_{2}-z\right\|=d$. Furthermore, by Lemma 3.2,

$$
\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}\left(v_{2}, d-\varepsilon\right)\right)}{2 n_{k}}=1
$$

Set $A\left(v_{2}, \varepsilon\right)=N_{1}^{2}\left(v_{2}, d-\varepsilon\right)$ and $B^{(2)}(\varepsilon)=A\left(v_{2}, \varepsilon\right) \cap B^{(1)}(\varepsilon)=A\left(v_{2}, \varepsilon\right) \cap A\left(v_{1}, \varepsilon\right) \cap$ $A(z, \varepsilon)$. Note that, for $n \in N$,

$$
B^{(2)}(1 / n)_{n}=N_{n}^{2}\left(v_{2}, d-1 / n\right) \cap N_{n}^{2}\left(v_{1}, d-1 / n\right) \cap N_{n}^{2}(z, d-1 / n)
$$

We already know the following:

$$
\lim _{k} \frac{\# A\left(v_{2}, \varepsilon\right)_{1 \leq n_{k}}}{2 n_{k}}=1, \quad \lim _{k} \frac{\# B^{(1)}(\varepsilon)_{1 \leq n_{k}}}{2 n_{k}}=1
$$

Then, by Lemma 3.4, we have $\lim _{k} \frac{\# B^{(2)}(\varepsilon)_{1 \leq n_{k}}}{2 n_{k}}=1$. Since ε is arbitrary, by Lemma 3.3, there is $\left(i_{n}^{3}, i_{n}^{3}\right) \in B^{(2)}(1 / n)_{n}$ for $n \in N$. That is, we have $\left\{\left(i_{n}^{3}, i_{n}^{3}\right)\right\} \subset$ N_{1}^{2} such that $\left(i_{n}^{3}, i_{n}^{3}\right) \in B^{(2)}(1 / n)_{n}$ for $n \in N$. By passing to subsequences, we can regard $\left\{\left(i_{n}^{3}, i_{n}^{3}\right)\right\}$ as a sequence such that $\left\{S^{i_{n}^{3}} T^{i_{n}^{3}} z\right\}$ converges to some $v_{3} \in C$ and $\left(i_{n}^{3}, i_{n}^{3}\right) \in B^{(2)}(1 / n)_{n}$ for $n \in N$. That is, $\left\|v_{3}-v_{2}\right\|=d,\left\|v_{3}-v_{1}\right\|=d$ and $\left\|v_{3}-z\right\|=d$. Furthermore, by Lemma 3.2,

$$
\lim _{k} \frac{\#\left(N_{1 \leq n_{k}}^{2}\left(v_{3}, d-\varepsilon\right)\right)}{2 n_{k}}=1
$$

By induction, we have $\left\{v_{n}\right\}$ in C such that $\left\|v_{i}-v_{j}\right\|=d>0$ if $i \neq j$. That is, $\left\{v_{n}\right\}$ can not have a convergent subsequence. However, since C is compact, $\left\{v_{n}\right\}$ must have a convergent subsequence. This is a contradiction.

4. Main result

Theorem 4.1. Let $\left\{a_{n}\right\}$ be a sequence in $[0,1]$ such that

$$
0<\lim \inf _{n} a_{n} \leq \lim \sup _{n} a_{n}<1
$$

Let C be a compact convex subset of a Banach space E. Let S and T be nonexpansive self-mappings on C with $S T=T S$ and each $M(n)$ be the mapping defined by (M). Let $x_{1} \in C$ and define a sequence $\left\{x_{n}\right\}$ in C by

$$
x_{n+1}=a_{n} M(n) x_{n}+\left(1-a_{n}\right) x_{n} \quad \text { for } n \in N
$$

Then $\left\{x_{n}\right\}$ converges strongly to some common fixed point z of S and T.
Proof. Since C is compact, there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ which converges to some $z \in C$. Under our assumptions, by Lemma 2.3, it is obvious that $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ are satisfied. Then, by Lemma 3.7,

$$
d=\lim _{n} \sup \left\{\left\|S^{i} T^{j} z-z\right\|:(i, j) \in N_{n}^{2}\right\}=0
$$

We know that $\left\{S^{n} T^{n} z\right\}$ has a convergent subsequence. By $d=0$, any convergent subsequence of $\left\{S^{n} T^{n} z\right\}$ converges to z. That is, $\left\{S^{n} T^{n} z\right\}$ itself converges to z.

In the same way, we have that $\left\{S^{n} T^{n+1} z\right\}$ converges to z. Since S and T are continuous mappings with $S T=T S$, the following hold:

$$
\begin{aligned}
& S z=S\left(\lim _{n} S^{n} T^{n+1} z\right)=\lim _{n}\left(S^{n+1} T^{n+1} z\right)=z, \\
& T z=T\left(\lim _{n} S^{n} T^{n} z\right)=\lim _{n}\left(S^{n} T^{n+1} z\right)=z
\end{aligned}
$$

That is, $z \in F(S) \cap F(T)$. Then, we easily have $z \in \cap_{n} F(M(n))$ and

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|a_{n} M(n) x_{n}+\left(1-a_{n}\right) x_{n}-z\right\| \\
& \leq a_{n}\left\|M(n) x_{n}-z\right\|+\left(1-a_{n}\right)\left\|x_{n}-z\right\| \leq\left\|x_{n}-z\right\|
\end{aligned}
$$

for $n \in N$. This implies that $\left\{\left\|x_{n}-z\right\|\right\}$ converges. Since $\left\{\left\|x_{n_{k}}-z\right\|\right\}$ converges to $0,\left\{\left\|x_{n}-z\right\|\right\}$ itself converges to 0 . Thus, we have the result.

Acknowledgment

The author is grateful to the referees for their careful reading and helpful suggestions to improve the exposition of the article.

References

[1] S. Atsushiba and W. Takahashi, Approximating common fixed points of two nonexpansive mappings in Banach spaces, Bull. Austral. Math. Soc. 57 (1998), 117-127.
[2] R. E. Bruck, A simple proof of the mean ergodic theorems for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1974), 107-116.
[3] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), 304-314.
[4] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139-1141.
[5] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71.
[6] S. Ishikawa, Common fixed points and iteration of commuting nonexpansive mappings, Pacific J. Math. 80 (1979), 493-501.
[7] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), 123-127 (Russian).
[8] R. Kubota and Y. Takaeuchi, On Ishikawa's strong convergence theorem, in: Proceedings of the Fourth International Symposium on Banach and Function Spaces 2012, Kitakyushu, Japan, M. Kato, L. Maligranda and T. Suzuki (eds.), Yokohama Publishers, Yokohama, 2014, pp. 377-389.
[9] R. Kubota and Y. Takeuchi, Strong convergence theorems for finite families of nonexpansive mappings in Banach spaces, in: Proceedings of the 3th Asian Conference on Nonlinear Analysis and Optimization, Matsue, Japan, 2012,
[10] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration, Pacific J. Math. 97 (1981), 137-139.
[11] J. Linhart, Beiträge zur Fixpunkttheorie nichtexpandierender Operatoren, Monatsh. Math. 76 (1972), 239-249 (German).
[12] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[13] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83.
[14] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387-404.
[15] T. Suzuki, Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces, J. Nonlinear Convex Anal. 3 (2002), 381-391.
[16] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. (2005), 103-123.
[17] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

Manuscript received 13 January 2016 revised 12 December 2016

Yukio Takeuchi
Takahashi Institute for Nonlinear Analysis, 1-11-11 Nakazato, Minami, Yokohama 232-0063, Japan E-mail address: aho31415@yahoo.co.jp

[^0]: 2010 Mathematics Subject Classification. 47H09, 47H10.
 Key words and phrases. Commuting two nonexpansive mappings, common fixed point, Atushiba-Takahashi type iteration, Suzuki's common fixed point theorem.

