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the Banaś-Fra̧czek space R2
λ introduced in [2], i.e., the space R2 with the norm | · |λ

defined by

|(x, y)|λ = max
{
λ|x|, ∥(x, y)∥2

}
,

where λ > 1. Note that this space may be considered as a generalization of ℓ2-ℓ1
space. Indeed, considering a rotation matrix

T =
1√
2

(
1 1
−1 1

)
we have ∥T (x, y)∥2,1 = max{

√
2|x|, ∥(x, y)∥2} = |(x, y)|√2. Hence, R2√

2
is isometric

to the ℓ2-ℓ1 space. In [10], the author showed that

CNJ(R2
λ) = 2− 1

λ2
,(1.1)

which implies that CNJ(ℓ2-ℓ1) =
3
2 . The calculation method for (1.1) is similar to

that of CNJ(ℓ2-ℓ1) in [12], but the computation is somewhat complicated.
In this paper, we shall establish a formula for the calculation method of the

NJ-constant CNJ(X) by using the Banach-Mazur distance d(X, ℓ22), where X is a
two-dimensional absolute normed space. By using this formula, we obtain a simple
proof of (1.1). Moreover, we introduce a new class of two-dimensional normed
spaces, which contains the Banaś-Fra̧czek space R2

λ, and calculate CNJ(X) for such
a space X by using this formula.

2. Results

For isomorphic Banach spaces X and Y , the Banach-Mazur distance between X
and Y , denoted by d(X,Y ), is defined to be the infimum of ∥T∥ · ∥T−1∥ taken over
all bicontinuous linear operators T from X onto Y .

Lemma 2.1 ( [5]). If X and Y are isomorphic Banach spaces, then

CNJ(X)

d(X,Y )2
≤ CNJ(Y ) ≤ CNJ(X)d(X,Y )2

In particular, if X and Y are isometric, then CNJ(X) = CNJ(Y ).

Lemma 2.2 ( [5]). Let X = (X, ∥ · ∥) be a Banach space and let X1 = (X, ∥ · ∥1),
where ∥ · ∥1 is an equivalent norm on X satisfying, for α, β > 0,

α∥x∥ ≤ ∥x∥1 ≤ β∥x∥, x ∈ X.

Then
α2

β2
CNJ(X) ≤ CNJ(X1) ≤

β2

α2
CNJ(X).

Note here that Lemma 2.2 follows immediately from Lemma 2.1 and the fact that

d(X,X1) ≤ β/α. In particular, if CNJ(X1) =
β2

α2CNJ(X), then d(X,X1) = β/α.
Using Lemma 2.2 we establish a formula on NJ-constant for absolute norms on

R2. A norm ∥·∥ on R2 is said to be absolute if ∥(|x|, |y|)∥ = ∥(x, y)∥ for any x, y ∈ R,
and normalized if ∥(1, 0)∥ = ∥(0, 1)∥ = 1. The ℓp-norms on R2 are such examples.
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Theorem 2.3 (cf. [7]). Let ∥ · ∥, ∥ · ∥H be absolute norms on R2 satisfying the
following conditions:
(i) (R2, ∥ · ∥H) is an inner product space.
(ii) ∥(x, y)∥ ≤ ∥(x, y)∥H for any (x, y) ∈ R2.
(iii) ∥(1, 0)∥ = ∥(1, 0)∥H and ∥(0, 1)∥ = ∥(0, 1)∥H .
Then

CNJ((R2, ∥ · ∥)) = β2, where β = max
{∥(x, y)∥H

∥(x, y)∥
: (x, y) ∈ R2, (x, y) ̸= (0, 0)

}
.

Proof. By (i), CNJ((R2, ∥·∥H)) = 1. Since ∥(u, v)∥ ≥ 1
β∥(u, v)∥H for any (u, v) ∈ R2,

it follows from Lemma 2.2 that CNJ((R2, ∥ · ∥)) ≤ β2. On the other hand, we take
a non-zero element x = (u′, v′) with ∥x∥H = β∥x∥ and put y = (u′,−v′). Since the
norms ∥ · ∥ and ∥ · ∥H are absolute, by (iii),

∥y∥H = β∥y∥, ∥x+ y∥ = ∥x+ y∥H , ∥x− y∥ = ∥x− y∥H .

Hence, we have

∥x+ y∥2 + ∥x− y∥2

2(∥x∥2 + ∥y∥2)
= β2 ∥x+ y∥2H + ∥x− y∥2H

2(∥x∥2H + ∥y∥2H)
= β2,

which completes the proof.
□

We now introduce a new class of two-dimensional normed spaces, which is a
generalization of the Banaś-Fra̧czek space R2

λ. For a ≥ b ≥ 1 and 1 ≤ p < ∞ we
define the norms ∥ · ∥ and ∥ · ∥H on R2 by

∥(x, y)∥ = max{a|x|, b|y|, ∥(x, y)∥p}(2.1)

and

∥(x, y)∥H = ∥(ax, by)∥2.(2.2)

The space (R2, ∥ · ∥) is denoted by R2
a,b,p. In the case where a = λ, b = 1, p = 2,

we have R2
λ,1,2 = R2

λ. If a = 1, then b = 1 and ∥(x, y)∥ = ∥(x, y)∥p. Hence we

have CNJ(R2
1,1,p) = 22/r−1, where r = min{p, p

p−1} ( [3]). It is easy to see that if
1
ap + 1

bp ≤ 1, then ∥(x, y)∥ = max{a|x|, b|y|} and CNJ(R2
a,b,p) = 2. Hence we may

consider the case where a > 1 and 1
ap +

1
bp > 1. Using Theorem 2.3 we shall calculate

CNJ(R2
a,b,p). Note here that if p ≥ 2, then the norms ∥ ·∥ and ∥ ·∥H are absolute and

satisfy the conditions (i), (ii) and (iii) in Theorem 2.3, that is, (R2, ∥·∥H) is an inner
product space, ∥(x, y)∥ ≤ ∥(x, y)∥H , ∥(1, 0)∥ = ∥(1, 0)∥H and ∥(0, 1)∥ = ∥(0, 1)∥H .

Lemma 2.4. Let a > 1, a ≥ b ≥ 1 and p ≥ 2 with
1

ap
+

1

bp
> 1. Let ∥ · ∥ and ∥ · ∥H

be the norms defined by (2.1) and (2.2), respectively, and let

β = max
{∥x∥H

∥x∥
: x ∈ R2, x ̸= 0

}
.
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(i) If b ≤ a(ap − 1)
p−2
2p , then

β =
(
1 + b2

(
1− 1

ap

) 2
p
) 1

2
(= β1).

(ii) If b > a(ap − 1)
p−2
2p , then

β = b
(
1 +

(a
b

) 2p
p−2

) 1
2
− 1

p
(= β2).

Proof. We show (i) and (ii). Take any (x, y) ∈ R2. We first consider the case

∥(x, y)∥ = a|x|. Since a|x| ≥ ∥(x, y)∥p, we have (ap − 1)
2
px2 ≥ y2, from which it

follows that

β2
1∥(x, y)∥2 − ∥(x, y)∥2H = b2

((
1− 1

ap

) 2
p
a2x2 − y2

)
= b2

((
ap − 1

) 2
p
x2 − y2

)
≥ 0,

which proves ∥(x, y)∥H ≤ β1∥(x, y)∥.
We next consider the case ∥(x, y)∥ = b|y|. Since b|y| ≥ ∥(x, y)∥p, we have (bp −

1)
2
p y2 ≥ x2. From the assumption and the following identity

bp
(
1− 1

ap

)
− ap

(
1− 1

bp

)
= (ap − bp)

( 1

ap
+

1

bp
− 1

)
,

we also have

b
(
1− 1

ap

) 1
p ≥ a

(
1− 1

bp

) 1
p
.

By these two inequalities,

β2
1∥(x, y)∥2 − ∥(x, y)∥2H = b2

(
1− 1

ap

) 2
p
b2y2 − a2x2

≥ a2
((

1− 1

bp

) 2
p
b2y2 − x2

)
= a2

(
(bp − 1)

2
p y2 − x2

)
≥ 0,

which proves ∥(x, y)∥H ≤ β1∥(x, y)∥.
Finally we consider the case ∥(x, y)∥ = ∥(x, y)∥p. Since ∥(x, y)∥p ≥ a|x| and

∥(x, y)∥p ≥ b|y|, we have |x| ≤ (ap − 1)
− 1

p |y| and (bp − 1)
1
p |y| ≤ |x|. Put t =

|x|
|y|

.

Then t3 ≤ t ≤ t1, where t1 = (ap − 1)
− 1

p and t3 = (bp − 1)
1
p . From the assumption,

we easily have bp < 2, and hence t3 < 1. Let us put

∥(x, y)∥H
∥(x, y)∥

=
(a2t2 + b2)1/2

(tp + 1)1/p
=: f(t).

We shall calculate the maximum of f on [t3, t1]. When p = 2, f is non-decreasing
and hence has the maximum at t = t1. Let p > 2. Since the derivative of f is

f ′(t) = (a2t2 + b2)−1/2(tp + 1)−1/p−1t(a2 − b2tp−2),
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f is non-decreasing on (0, t2) and non-increasing on (t2,∞), where t2 =
(a
b

) 2
p−2

(≥

1). If t1 ≤ t2, that is, b ≤ a(ap − 1)
p−2
2p , then f has the maximum β1 at t = t1,

and if t1 > t2 (> t3), then f has the maximum β2 at t = t2. Note that β1 < β2.
When t1 ≤ t2, putting x′ = (t1, 1) we have ∥x′∥H = β1∥x′∥. When t1 > t2, putting
x′′ = (t2, 1) we have ∥x′′∥H = β2∥x′′∥. This completes the proof. □

By Theorem 2.3 and Lemma 2.4, we obtain the main theorem.

Theorem 2.5. Let a > 1, a ≥ b ≥ 1 and p ≥ 2 with
1

ap
+

1

bp
> 1.

(i) If b ≤ a(ap − 1)
p−2
2p , then

CNJ(R2
a,b,p) = 1 + b2

(
1− 1

ap

) 2
p
.

(ii) If b > a(ap − 1)
p−2
2p , then

CNJ(R2
a,b,p) = b2

(
1 +

(a
b

) 2p
p−2

)1− 2
p
.

In particular, CNJ(R2
a,b,p) = d(R2

a,b,p, ℓ
2
2)

2.

Corollary 2.6. Let a ≥ b ≥ 1 and
1

a2
+

1

b2
≥ 1. Then

CNJ(R2
a,b,2) = 1 + b2

(
1− 1

a2

)
.

Corollary 2.7 ( [10]). For λ > 1,

CNJ(R2
λ) = 2− 1

λ2
.

Remark 2.8. (i) Let 1 ≤ λ ≤ 21/p and a = b = λ. Then (2.1) can be written as

∥(x, y)∥ = max{λ∥(x, y)∥∞, ∥(x, y)∥p}.
From Theorem 2.5,

CNJ(R2
λ,λ,p) = λ221−2/p

(cf. Example 6 in [5]).
(ii) Takahashi [8] showed that for any Banach space X,

1 +
ε0(X)2

4
≤ CNJ(X),

where ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0} is the characteristic of convexity of X.
In the case where X = R2

a,b,p, it is easy to see that

ε0(R2
a,b,p) = 2b

(
1− 1

ap

)1/p
.

Thus, if b ≤ a(ap − 1)
p−2
2p , then

1 +
ε0(R2

a,b,p)
2

4
= CNJ(R2

a,b,p),
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and if b > a(ap − 1)
p−2
2p , then

1 +
ε0(R2

a,b,p)
2

4
< CNJ(R2

a,b,p)

by the proof of Lemma 2.4.

Problem. Compute CNJ(R2
a,b,p) when p < 2.
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