Linear and SJonininear Frnaysisis 2
 Yokohama Publishers
 ISSN 2188-8167 Copyright 2016
 Volume 2, Number 2, 2016, 311-316
 ON THE VON NEUMANN-JORDAN CONSTANT OF GENERALIZED BANAŚ-FRA̧CZEK SPACES

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND YASUJI TAKAHASHI

Abstract

In this paper, we introduce a new class of two-dimensional normed spaces, which contains the Banaś-Frączek space \mathbb{R}_{λ}^{2}. For such a space X, the exact value of the von Neumann-Jordan constant $C_{\text {NJ }}(X)$ can be calculated by using the Banach-Mazur distance $d\left(X, \ell_{2}^{2}\right)$ between X and ℓ_{2}^{2}, where ℓ_{2}^{2} is the two-dimensional ℓ_{2}-space. As a consequence, the exact value of $d\left(X, \ell_{2}^{2}\right)$ is also determined.

1. Introduction

The von Neumann-Jordan (NJ-) constant of Banach spaces was introduced by Clarkson [3]. The NJ-constant, denoted by $C_{\mathrm{NJ}}(X)$, of a Banach space X is the smallest constant C for which

$$
\frac{1}{C} \leq \frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)} \leq C
$$

holds for all $x, y \in X$ not both 0 . It is known that $1 \leq C_{\mathrm{NJ}}(X) \leq 2$ for any Banach space X, and X is a Hilbert space if and only if $C_{\mathrm{NJ}}(X)=1$. Clarkson calculated the NJ-constant of L_{p} by using the so-called Clarkson inequality. Some relations between NJ-constant and geometrical properties in general Banach space setting have been discussed in many papers, see e.g., [4-6,9]. Moreover, the computation for concrete Banach spaces attracted the interest of several authors. In [5], Kato, Maligranda and Takahashi considered the Day-James $\ell_{p}-\ell_{q}$ spaces, i.e., \mathbb{R}^{2} with the norm $\|\cdot\|_{p, q}$ defined by

$$
\|(x, y)\|_{p, q}= \begin{cases}\|(x, y)\|_{p}, & x y \geq 0 \\ \|(x, y)\|_{q}, & x y \leq 0\end{cases}
$$

where $1 \leq p, q \leq \infty$ and $\|\cdot\|_{p}$ is the ℓ_{p}-norm on \mathbb{R}^{2} and posed a question: How to compute NJ-constant for Day-James spaces? Yang and Wang [12] introduced a new geometrical constant $\gamma_{X}(t)$ and calculated $C_{\mathrm{NJ}}(X)$ for X being $\ell_{2}-\ell_{1}$ space and $\ell_{\infty} \ell_{1}$ space by using $\gamma_{X}(t)$ (see also [1, $\left.8,11,13\right]$). Recently, Yang [10] studied

[^0]the Banaś-Frączek space \mathbb{R}_{λ}^{2} introduced in [2], i.e., the space \mathbb{R}^{2} with the norm $|\cdot|_{\lambda}$ defined by
$$
|(x, y)|_{\lambda}=\max \left\{\lambda|x|,\|(x, y)\|_{2}\right\}
$$
where $\lambda>1$. Note that this space may be considered as a generalization of $\ell_{2}-\ell_{1}$ space. Indeed, considering a rotation matrix
\[

T=\frac{1}{\sqrt{2}}\left($$
\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}
$$\right)
\]

we have $\|T(x, y)\|_{2,1}=\max \left\{\sqrt{2}|x|,\|(x, y)\|_{2}\right\}=|(x, y)|_{\sqrt{2}}$. Hence, $\mathbb{R}_{\sqrt{2}}^{2}$ is isometric to the $\ell_{2}-\ell_{1}$ space. In [10], the author showed that

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\mathbb{R}_{\lambda}^{2}\right)=2-\frac{1}{\lambda^{2}}, \tag{1.1}
\end{equation*}
$$

which implies that $C_{\mathrm{NJ}}\left(\ell_{2}-\ell_{1}\right)=\frac{3}{2}$. The calculation method for (1.1) is similar to that of $C_{\mathrm{NJ}}\left(\ell_{2}-\ell_{1}\right)$ in [12], but the computation is somewhat complicated.

In this paper, we shall establish a formula for the calculation method of the NJ-constant $C_{\mathrm{NJ}}(X)$ by using the Banach-Mazur distance $d\left(X, \ell_{2}^{2}\right)$, where X is a two-dimensional absolute normed space. By using this formula, we obtain a simple proof of (1.1). Moreover, we introduce a new class of two-dimensional normed spaces, which contains the Banaś-Frạczek space \mathbb{R}_{λ}^{2}, and calculate $C_{\mathrm{NJ}}(X)$ for such a space X by using this formula.

2. Results

For isomorphic Banach spaces X and Y, the Banach-Mazur distance between X and Y, denoted by $d(X, Y)$, is defined to be the infimum of $\|T\| \cdot\left\|T^{-1}\right\|$ taken over all bicontinuous linear operators T from X onto Y.

Lemma 2.1 ([5]). If X and Y are isomorphic Banach spaces, then

$$
\frac{C_{\mathrm{NJ}}(X)}{d(X, Y)^{2}} \leq C_{N J}(Y) \leq C_{\mathrm{NJ}}(X) d(X, Y)^{2}
$$

In particular, if X and Y are isometric, then $C_{\mathrm{NJ}}(X)=C_{\mathrm{NJ}}(Y)$.
Lemma 2.2 ([5]). Let $X=(X,\|\cdot\|)$ be a Banach space and let $X_{1}=\left(X,\|\cdot\|_{1}\right)$, where $\|\cdot\|_{1}$ is an equivalent norm on X satisfying, for $\alpha, \beta>0$,

$$
\alpha\|x\| \leq\|x\|_{1} \leq \beta\|x\|, \quad x \in X .
$$

Then

$$
\frac{\alpha^{2}}{\beta^{2}} C_{\mathrm{NJ}}(X) \leq C_{\mathrm{NJ}}\left(X_{1}\right) \leq \frac{\beta^{2}}{\alpha^{2}} C_{\mathrm{NJ}}(X) .
$$

Note here that Lemma 2.2 follows immediately from Lemma 2.1 and the fact that $d\left(X, X_{1}\right) \leq \beta / \alpha$. In particular, if $C_{\mathrm{NJ}}\left(X_{1}\right)=\frac{\beta^{2}}{\alpha^{2}} C_{\mathrm{NJ}}(X)$, then $d\left(X, X_{1}\right)=\beta / \alpha$.

Using Lemma 2.2 we establish a formula on NJ-constant for absolute norms on \mathbb{R}^{2}. A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(|x|,|y|)\|=\|(x, y)\|$ for any $x, y \in \mathbb{R}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. The ℓ_{p}-norms on \mathbb{R}^{2} are such examples.

Theorem 2.3 (cf. [7]). Let $\|\cdot\|,\|\cdot\|_{H}$ be absolute norms on \mathbb{R}^{2} satisfying the following conditions:
(i) $\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)$ is an inner product space.
(ii) $\|(x, y)\| \leq\|(x, y)\|_{H}$ for any $(x, y) \in \mathbb{R}^{2}$.
(iii) $\|(1,0)\|=\|(1,0)\|_{H}$ and $\|(0,1)\|=\|(0,1)\|_{H}$.

Then

$$
C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|\right)\right)=\beta^{2}, \text { where } \beta=\max \left\{\frac{\|(x, y)\|_{H}}{\|(x, y)\|}:(x, y) \in \mathbb{R}^{2},(x, y) \neq(0,0)\right\}
$$

Proof. By $(\mathrm{i}), C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)\right)=1$. Since $\|(u, v)\| \geq \frac{1}{\beta}\|(u, v)\|_{H}$ for any $(u, v) \in \mathbb{R}^{2}$, it follows from Lemma 2.2 that $C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|\right)\right) \leq \beta^{2}$. On the other hand, we take a non-zero element $x=\left(u^{\prime}, v^{\prime}\right)$ with $\|x\|_{H}=\beta\|x\|$ and put $y=\left(u^{\prime},-v^{\prime}\right)$. Since the norms $\|\cdot\|$ and $\|\cdot\|_{H}$ are absolute, by (iii),

$$
\|y\|_{H}=\beta\|y\|,\|x+y\|=\|x+y\|_{H},\|x-y\|=\|x-y\|_{H}
$$

Hence, we have

$$
\frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)}=\beta^{2} \frac{\|x+y\|_{H}^{2}+\|x-y\|_{H}^{2}}{2\left(\|x\|_{H}^{2}+\|y\|_{H}^{2}\right)}=\beta^{2}
$$

which completes the proof.

We now introduce a new class of two-dimensional normed spaces, which is a generalization of the Banaś-Fra̧czek space \mathbb{R}_{λ}^{2}. For $a \geq b \geq 1$ and $1 \leq p<\infty$ we define the norms $\|\cdot\|$ and $\|\cdot\|_{H}$ on \mathbb{R}^{2} by

$$
\begin{equation*}
\|(x, y)\|=\max \left\{a|x|, b|y|,\|(x, y)\|_{p}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|(x, y)\|_{H}=\|(a x, b y)\|_{2} \tag{2.2}
\end{equation*}
$$

The space $\left(\mathbb{R}^{2},\|\cdot\|\right)$ is denoted by $\mathbb{R}_{a, b, p}^{2}$. In the case where $a=\lambda, b=1, p=2$, we have $\mathbb{R}_{\lambda, 1,2}^{2}=\mathbb{R}_{\lambda}^{2}$. If $a=1$, then $b=1$ and $\|(x, y)\|=\|(x, y)\|_{p}$. Hence we have $C_{\mathrm{NJ}}\left(\mathbb{R}_{1,1, p}^{2}\right)=2^{2 / r-1}$, where $r=\min \left\{p, \frac{p}{p-1}\right\}([3])$. It is easy to see that if $\frac{1}{a^{p}}+\frac{1}{b^{p}} \leq 1$, then $\|(x, y)\|=\max \{a|x|, b|y|\}$ and $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=2$. Hence we may consider the case where $a>1$ and $\frac{1}{a^{p}}+\frac{1}{b^{p}}>1$. Using Theorem 2.3 we shall calculate $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)$. Note here that if $p \geq 2$, then the norms $\|\cdot\|$ and $\|\cdot\|_{H}$ are absolute and satisfy the conditions (i), (ii) and (iii) in Theorem 2.3 , that is, $\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)$ is an inner product space, $\|(x, y)\| \leq\|(x, y)\|_{H},\|(1,0)\|=\|(1,0)\|_{H}$ and $\|(0,1)\|=\|(0,1)\|_{H}$.
Lemma 2.4. Let $a>1, a \geq b \geq 1$ and $p \geq 2$ with $\frac{1}{a^{p}}+\frac{1}{b^{p}}>1$. Let $\|\cdot\|$ and $\|\cdot\|_{H}$ be the norms defined by (2.1) and (2.2), respectively, and let

$$
\beta=\max \left\{\frac{\|x\|_{H}}{\|x\|}: x \in \mathbb{R}^{2}, x \neq 0\right\}
$$

(i) If $b \leq a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
\beta=\left(1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}}\right)^{\frac{1}{2}} \quad\left(=\beta_{1}\right) .
$$

(ii) If $b>a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
\beta=b\left(1+\left(\frac{a}{b}\right)^{\frac{2 p}{p-2}}\right)^{\frac{1}{2}-\frac{1}{p}} \quad\left(=\beta_{2}\right) .
$$

Proof. We show (i) and (ii). Take any $(x, y) \in \mathbb{R}^{2}$. We first consider the case $\|(x, y)\|=a|x|$. Since $a|x| \geq\|(x, y)\|_{p}$, we have $\left(a^{p}-1\right)^{\frac{2}{p}} x^{2} \geq y^{2}$, from which it follows that

$$
\begin{aligned}
\beta_{1}^{2}\|(x, y)\|^{2}-\|(x, y)\|_{H}^{2} & =b^{2}\left(\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}} a^{2} x^{2}-y^{2}\right) \\
& =b^{2}\left(\left(a^{p}-1\right)^{\frac{2}{p}} x^{2}-y^{2}\right) \geq 0
\end{aligned}
$$

which proves $\|(x, y)\|_{H} \leq \beta_{1}\|(x, y)\|$.
We next consider the case $\|(x, y)\|=b|y|$. Since $b|y| \geq\|(x, y)\|_{p}$, we have $\left(b^{p}-\right.$ $1)^{\frac{2}{p}} y^{2} \geq x^{2}$. From the assumption and the following identity

$$
b^{p}\left(1-\frac{1}{a^{p}}\right)-a^{p}\left(1-\frac{1}{b^{p}}\right)=\left(a^{p}-b^{p}\right)\left(\frac{1}{a^{p}}+\frac{1}{b^{p}}-1\right),
$$

we also have

$$
b\left(1-\frac{1}{a^{p}}\right)^{\frac{1}{p}} \geq a\left(1-\frac{1}{b^{p}}\right)^{\frac{1}{p}} .
$$

By these two inequalities,

$$
\begin{aligned}
\beta_{1}^{2}\|(x, y)\|^{2}-\|(x, y)\|_{H}^{2} & =b^{2}\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}} b^{2} y^{2}-a^{2} x^{2} \\
& \geq a^{2}\left(\left(1-\frac{1}{b^{p}}\right)^{\frac{2}{p}} b^{2} y^{2}-x^{2}\right) \\
& =a^{2}\left(\left(b^{p}-1\right)^{\frac{2}{p}} y^{2}-x^{2}\right) \geq 0,
\end{aligned}
$$

which proves $\|(x, y)\|_{H} \leq \beta_{1}\|(x, y)\|$.
Finally we consider the case $\|(x, y)\|=\|(x, y)\|_{p}$. Since $\|(x, y)\|_{p} \geq a|x|$ and $\|(x, y)\|_{p} \geq b|y|$, we have $|x| \leq\left(a^{p}-1\right)^{-\frac{1}{p}}|y|$ and $\left(b^{p}-1\right)^{\frac{1}{p}}|y| \leq|x|$. Put $t=\frac{|x|}{|y|}$.
Then $t_{3} \leq t \leq t_{1}$, where $t_{1}=\left(a^{p}-1\right)^{-\frac{1}{p}}$ and $t_{3}=\left(b^{p}-1\right)^{\frac{1}{p}}$. From the assumption, we easily have $b^{p}<2$, and hence $t_{3}<1$. Let us put

$$
\frac{\|(x, y)\|_{H}}{\|(x, y)\|}=\frac{\left(a^{2} t^{2}+b^{2}\right)^{1 / 2}}{\left(t^{p}+1\right)^{1 / p}}=: f(t) .
$$

We shall calculate the maximum of f on $\left[t_{3}, t_{1}\right]$. When $p=2, f$ is non-decreasing and hence has the maximum at $t=t_{1}$. Let $p>2$. Since the derivative of f is

$$
f^{\prime}(t)=\left(a^{2} t^{2}+b^{2}\right)^{-1 / 2}\left(t^{p}+1\right)^{-1 / p-1} t\left(a^{2}-b^{2} t^{p-2}\right),
$$

f is non-decreasing on $\left(0, t_{2}\right)$ and non-increasing on $\left(t_{2}, \infty\right)$, where $t_{2}=\left(\frac{a}{b}\right)^{\frac{2}{p-2}}(\geq$ $1)$. If $t_{1} \leq t_{2}$, that is, $b \leq a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then f has the maximum β_{1} at $t=t_{1}$, and if $t_{1}>t_{2}\left(>t_{3}\right)$, then f has the maximum β_{2} at $t=t_{2}$. Note that $\beta_{1}<\beta_{2}$. When $t_{1} \leq t_{2}$, putting $x^{\prime}=\left(t_{1}, 1\right)$ we have $\left\|x^{\prime}\right\|_{H}=\beta_{1}\left\|x^{\prime}\right\|$. When $t_{1}>t_{2}$, putting $x^{\prime \prime}=\left(t_{2}, 1\right)$ we have $\left\|x^{\prime \prime}\right\|_{H}=\beta_{2}\left\|x^{\prime \prime}\right\|$. This completes the proof.

By Theorem 2.3 and Lemma 2.4, we obtain the main theorem.
Theorem 2.5. Let $a>1, a \geq b \geq 1$ and $p \geq 2$ with $\frac{1}{a^{p}}+\frac{1}{b^{p}}>1$.
(i) If $b \leq a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}}
$$

(ii) If $b>a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=b^{2}\left(1+\left(\frac{a}{b}\right)^{\frac{2 p}{p-2}}\right)^{1-\frac{2}{p}}
$$

In particular, $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=d\left(\mathbb{R}_{a, b, p}^{2}, \ell_{2}^{2}\right)^{2}$.
Corollary 2.6. Let $a \geq b \geq 1$ and $\frac{1}{a^{2}}+\frac{1}{b^{2}} \geq 1$. Then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, 2}^{2}\right)=1+b^{2}\left(1-\frac{1}{a^{2}}\right)
$$

Corollary 2.7 ([10]). For $\lambda>1$,

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{\lambda}^{2}\right)=2-\frac{1}{\lambda^{2}}
$$

Remark 2.8. (i) Let $1 \leq \lambda \leq 2^{1 / p}$ and $a=b=\lambda$. Then (2.1) can be written as

$$
\|(x, y)\|=\max \left\{\lambda\|(x, y)\|_{\infty},\|(x, y)\|_{p}\right\}
$$

From Theorem 2.5,

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{\lambda, \lambda, p}^{2}\right)=\lambda^{2} 2^{1-2 / p}
$$

(cf. Example 6 in [5]).
(ii) Takahashi [8] showed that for any Banach space X,

$$
1+\frac{\varepsilon_{0}(X)^{2}}{4} \leq C_{\mathrm{NJ}}(X)
$$

where $\varepsilon_{0}(X)=\sup \left\{\varepsilon \in[0,2]: \delta_{X}(\varepsilon)=0\right\}$ is the characteristic of convexity of X. In the case where $X=\mathbb{R}_{a, b, p}^{2}$, it is easy to see that

$$
\varepsilon_{0}\left(\mathbb{R}_{a, b, p}^{2}\right)=2 b\left(1-\frac{1}{a^{p}}\right)^{1 / p}
$$

Thus, if $b \leq a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
1+\frac{\varepsilon_{0}\left(\mathbb{R}_{a, b, p}^{2}\right)^{2}}{4}=C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)
$$

and if $b>a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
1+\frac{\varepsilon_{0}\left(\mathbb{R}_{a, b, p}^{2}\right)^{2}}{4}<C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)
$$

by the proof of Lemma 2.4.
Problem. Compute $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)$ when $p<2$.

References

[1] J. Alonso and P. Martín, A counterexample to a conjecture of G. Zbăganu about the NeumannJordan constant, Rev. Roum. Math. Pures Appl. 51 (2006), 135-141.
[2] J. Banaś and K. Frạczek, Deformation of Banach spaces, Comment. Math. Univ. Carolin. 34 (1993), 47-53.
[3] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114-115.
[4] A. Jiménez-Melado, E. Llorens-Fuster and S. Saejung, The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc. 134 (2006), 355-364.
[5] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275-295.
[6] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Am. Math. Soc. 125 (1997) 1055-1062.
[7] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normes on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[8] Y. Takahashi, Some geometric constants of Banach spaces-a unified approach, in: Banach and Function Spaces II, Yokohama Publ., Yokohama, 2008, pp. 191-220,
[9] Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly non-square Banach spaces, Nihonkai Math. J. 9 (1998), 155-169.
[10] C. Yang, Jordan-von Neumann constant for Banaś-Fraczek space, Banach J. Math. Anal. 8 (2014), 185-192.
[11] C. Yang, An inequality between the James type constant and the modulus of smoothness, J. Math. Anal. Appl. 398 (2013), 622-629.
[12] C. Yang and F. Wang, On a new geometric constant related to the von Neumann-Jordan constant, J. Math. Anal. Appl. 324 (2006), 555-565.
[13] C. Yang and F. Wang, The von Neumann-Jordan constant for a class of Day-James Spaces, Mediterr. J. Math. DOI 10.1007/s00009-015-0539-x (2015).

Manuscript received 29 February 2016 revised 16 June 2016

Ken-Ichi Mitani

Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail address: mitani@cse.oka-pu.ac.jp

Kichi-Suke Saito
Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
E-mail address: saito@math.sc.niigata-u.ac.jp
Yasuji Takahashi
Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail address: ym-takahashi@clear.ocn.ne.jp

[^0]: 2010 Mathematics Subject Classification. 46B20.
 Key words and phrases. Banach-Mazur distance, von Neumann-Jordan constant.
 The second author was supported in part by Grant-in-Aid for Scientific Research (No. 15K04920), Japan Society of the Promotion of Science.

