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space including firmly nonexpansive mappings. Following [1], we call them mappings
of type (P), (Q), and (R); see the next section.

In the metric fixed point theory, approximation method of a fixed point of a
nonlinear mapping is one of the most important topics and it has been rapidly
developed in the recent research. In particular, the shrinking projection method
proposed by Takahashi, Takeuchi, and Kubota [15] is a remarkable result.

Theorem 1.1 (Takahashi-Takeuchi-Kubota [15]). Let H be a real Hilbert space and
C a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C
into itself such that F (T ) = {z ∈ C : z = Tz} is nonempty. Let {αn} be a sequence
in [0, a], where 0 < a < 1. For a point x ∈ H chosen arbitrarily, generate a sequence
{xn} by the following iterative scheme: x1 ∈ C, C0 = C, and

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ∥z − yn∥ ≤ ∥z − xn∥} ∩ Cn−1,

xn+1 = PCnx

for n ∈ N. Then, {xn} converges strongly to PF (T )x ∈ C, where PK is the metric
projection of H onto a nonempty closed convex subset K of H.

We note that the original result of this theorem is a convergence theorem to a
common fixed point of a family of nonexpansive mappings. Since they proved this
theorem, a large number of researchers have proposed various types of generalized
results of this method in the setting of Banach spaces; see Kimura, Nakajo, and
Takahashi [10], Kimura and Takahashi [11] and references therein.

In this paper, we study an iterative scheme for three different types of nonlinear
mappings defined on a uniformly convex Banach space. Each of these mappings is
a generalization of firmly nonexpansive mappings on a Hilbert space, however, their
nonlienar structures are different from each other.

The approximating sequences we proposed are generated by the shrinking pro-
jection method with errors. In the original shrinking projection method, we need to
obtain the exact value of the metric projection to generate a sequence in every step,
and it is a task of difficulty. We consider an error for obtaining the value of metric
projections and prove that the sequence still has a nice property for approximating
a fixed point of the mapping. Namely, even if the error sequence does not converges
to 0, it is possible to estimate an upper bound of the approximate distance between
the point in the sequence and its image by the mapping.

The technique we adopted in the results has been proposed in [7, 8].

2. Preliminaries

Let E be a real Banach space with its dual E∗. The normalized duality mapping
J : E → E∗ defined by

Jx = {y∗ ∈ E∗ : ∥x∥2 = ⟨x, y∗⟩ = ∥y∗∥2}
for x ∈ E. If E is smooth, strictly convex and reflexive, then J is a single-valued
bijection. Let C be a nonempty closed convex subset of a smooth Banach space E.
A mapping T : C → E is said to be of type (P) [1] if

⟨Tx− Ty, J(x− Tx)− J(y − Ty)⟩ ≥ 0
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for each x, y ∈ C. A mapping T : C → E is said to be of type (Q) [1, 12] if

⟨Tx− Ty, (Jx− JTx)− (Jy − JTy)⟩ ≥ 0

for each x, y ∈ C. A mapping T : C → E is said to be of type (R) [1, 5] if

⟨JTx− JTy, (x− Tx)− (y − Ty)⟩ ≥ 0

for each x, y ∈ C. We denote by F (T ) the set of fixed points of T . A point p in C
is said to be an asymptotic fixed point of T if C contains a sequence {xn} such that
xn ⇀ p and xn − Txn → 0. The set of all asymptotic fixed points of T is denoted
by F̂ (T ). It is clear that if T : C → E is of type (P) and F (T ) is nonempty, then

(2.1) ⟨Tx− p, J(x− Tx)⟩ ≥ 0

for each x ∈ C and p ∈ F (T ). Let E be a reflexive, smooth and strictly convex
Banach space and let C be a nonempty closed convex subset of E. It is known that
the metric projection PC of E onto C is a mapping of type (P). We also know that
if T : C → E is of type (Q) and F (T ) is nonempty, then

(2.2) ⟨Tx− p, Jx− JTx⟩ ≥ 0

for each x ∈ C and p ∈ F (T ). If T : C → E is of type (R) and F (T ) is nonempty,
then

(2.3) ⟨JTx− Jp, x− Tx⟩ ≥ 0

for each x ∈ C and p ∈ F (T ).
The following results describe the relation between the set of fixed points and

that of asymptotic fixed points for each type of mapping.

Lemma 2.1 (Aoyama-Kohsaka-Takahashi [2]). Let E be a smooth Banach space,
let C be a nonempty closed convex subset of E and let T : C → E be a mapping of
type (P). If F (T ) is nonempty, then F (T ) is closed and convex and F (T ) = F̂ (T ).

Lemma 2.2 (Kohsaka-Takahashi [12]). Let E be a strictly convex Banach space
whose norm is uniformly Gâteaux differentiable, let C be a nonempty closed convex
subset of E and let T : C → E be a mapping of type (Q). If F (T ) is nonempty, then

F (T ) is closed and convex and F (T ) = F̂ (T ).

Lemma 2.3 (Takahashi-Yao [16]). Let E be a strictly convex Banach space and E∗

has a uniformly Gâteaux differentiable norm, let C be a nonempty subset of E such
that JC is closed and convex and let T : C → E be a mapping of type (R). If F (T )
is nonempty, F (T ) is closed, JF (T ) is closed and convex and F (T ) = F̌ (T ), where
F̌ (T ) is the set of generalized asymptotic fixed points of T .

The mappings of types (Q) and (R) are strongly related to each other; it is a kind
of duality in the following sense. Let E be a reflexive, smooth and strictly convex
Banach space, let C be a nonempty subset of E and, let T be a mapping form C
into E. Define a mapping T ∗ as follows:

(2.4) T ∗x∗ := JTJ−1x∗

for each x∗ ∈ JC, where J is the duality mapping on E and J−1 is the duality
mapping on E∗. We know that JF (T ) = F (T ∗); see [16]. Further, we have the
following result.
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Lemma 2.4 (Aoyama-Kohsaka-Takahashi [1]). Let E be a reflexive, smooth and
strictly convex Banach space, let C be a nonempty subset of E and let T : C → E
be a mapping of type (R). Let T ∗ : JC → E∗ be a mapping defined by (2.4). Then
T ∗ is of type (Q) in E∗.

In 1984, Tsukada [17] proved the following theorem for the metric projections in
a Banach space. For the exact definition of Mosco limit M-limnCn, see [13].

Theorem 2.5 (Tsukada [17]). Let E be a reflexive and strictly convex Banach
space and let {Cn} be a sequence of nonempty closed convex subsets of E. If C0 =
M-limnCn exists and nonempty, then for each x ∈ E, {PCnx} converges weakly to
PC0x, where PCn is the metric projection of E onto Cn. Moreover, if E has the
Kadec-Klee property, the convergence is in the strong topology.

Let E be a smooth Banach space and consider the following function V : E×E →
R defined by

(2.5) V (x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for each x, y ∈ E. We know the following properties;

(1) (∥x∥ − ∥y∥)2 ≤ V (x, y) ≤ (∥x∥+ ∥y∥)2 for each x, y ∈ E;
(2) V (x, y) + V (y, x) = 2⟨x− y, Jx− Jy⟩ for each x, y ∈ E;
(3) V (x, y) = V (x, z) + V (z, y) + 2⟨x− z, Jz − Jy⟩ for each x, y, z ∈ E;
(4) if E is additionally assumed to be strictly convex, then V (x, y) = 0 if and

only if x = y.

Lemma 2.6 (Kamimura-Takahashi [6]). Let E be a smooth and uniformly convex
Banach space and let {xn} and {yn} be sequences in E such that either {xn} or
{yn} is bounded. If limn V (xn, yn) = 0, then limn ∥xn − yn∥ = 0.

The following results show that the existence of mappings g
r
, gr, g∗

r
, and g∗r,

related to the convex structures of a Banach space E and its dual space. These
mappings play important roles in our result.

Theorem 2.7 (Xu [18]). Let E be a Banach space, r ∈ ]0,∞[ and Br = {x ∈ E :
∥x∥ ≤ r}. Then,

(i) if E is uniformly convex, then there exists a continuous, strictly increasing
and convex function g

r
: [0, 2r] → [0,∞[ with g

r
(0) = 0 such that

∥αx+ (1− α)y∥2 ≤ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g
r
(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1];
(ii) if E is uniformly smooth, then there exists a continuous, strictly increasing

and convex function gr : [0, 2r] → [0,∞[ with gr(0) = 0 such that

∥αx+ (1− α)y∥2 ≥ α∥x∥2 + (1− α)∥y∥2 − α(1− α)gr(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1].

From this theorem, we can show the following result; For the proof, see Kimura [9].

Theorem 2.8. Let E be a smooth Banach space and let r > 0. Then,
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(i) if E is uniformly convex, then the function g
r
in Theorem 2.7 (i) satisfies

g
r
(∥x− y∥) ≤ V (x, y)

for all x, y ∈ Br;
(ii) if E is uniformly smooth, then the function gr in Theorem 2.7 (ii) satisfies

V (x, y) ≤ gr(∥x− y∥)

for all x, y ∈ Br.

Similar results for the mappings g∗
r
and g∗r also hold as follows:

Theorem 2.9. Let E be a reflexive, smooth and strictly convex Banach space and
let r > 0. Then,

(i) if E is uniformly smooth, then there exists a continuous, strictly increasing
and convex function g∗

r
: [0, 2r] → [0,∞[ with g∗

r
(0) = 0 such that

g∗
r
(∥Jx− Jy∥) ≤ V (x, y)

for all x, y ∈ Br;
(ii) if E is uniformly convex, then there exists a continuous, strictly increasing

and convex function g∗r : [0, 2r] → [0,∞[ with g∗r(0) = 0 such that

V (x, y) ≤ g∗r(∥Jx− Jy∥)

for all x, y ∈ Br.

Proof. (i) Since E is uniformly smooth, we have that E∗ is uniformly convex. From
Theorem 2.7 (i), we have that for any x∗, y∗ ∈ B∗

r and α ∈ ]0, 1[, there exists
a continuous, strictly increasing and convex function g∗

r
: [0, 2r] → [0,∞[ with

g∗
r
(0) = 0 such that

(2.6) ∥αx∗ + (1− α)y∗∥2 ≤ α∥x∗∥2 + (1− α)∥y∗∥2 − α(1− α)g∗
r
(∥x∗ − y∗∥).

For any x, y ∈ Br, it is clear that Jx, Jy ∈ B∗
r . From (2.6) we obtain that

(1− α)g∗
r
(∥Jy − Jx∥) ≤ ∥Jy∥2 − ∥Jx∥2 − ∥Jx+ α(Jy − Jx)∥2 − ∥Jx∥2

α
.

Tending α → 0, we obtain that

g∗
r
(∥Jy − Jx∥) ≤ ∥Jy∥2 − ∥Jx∥2 − 2⟨J−1Jx, Jy − Jx⟩

= ∥y∥2 − ∥x∥2 − 2⟨x, Jy − Jx⟩ = V (x, y).

(ii) In the same way as in the proof of (i), we have the desired result by Theo-
rem 2.7 (ii). □

3. Approximation theorem for the mappings of type (P)

In this section, we propose an approximation theorem for a mapping of type
(P), which includes the metric projections onto nonempty closed convex subset of
a uniformly convex Banach space.
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Theorem 3.1. Let E be a smooth and uniformly convex Banach space, let C be a
nonempty bounded closed convex subset of E, and let r ∈ ]0,∞[ such that C ⊂ Br.
Let T : C → E be a mapping of type (P) such that F (T ) is nonempty. Let {δn}
be a nonnegative real sequence and let δ0 = lim supn δn. For a given point u ∈ E,
generate a sequence {xn} by x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨Txn − z, J(xn − Txn)⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : ∥u− z∥2 ≤ d(u,Cn+1)
2 + δn+1} ∩ Cn+1,

for all n ∈ N. Then,
lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(δ0).

Moreover, if δ0 = 0, then {xn} converges strongly to PF (T )u.

Proof. Since Cn includes F (T ) ̸= ∅ for all n ∈ N, {Cn} is a seqence of nonempty
closed convex subsets and, by definition, it is decreasing with respect to inclusion.
Let pn = PCnu for all n ∈ N. Then, by Theorem 2.5, we have that {pn} converges
strongly to p0 = PC0u, where C0 =

∩∞
n=1Cn. Since xn ∈ Cn and d(u,Cn) =

∥u− pn∥, we have that

∥u− xn∥2 ≤ ∥u− pn∥2 + δn

for every n ∈ N \ {1}. From Theorem 2.7 (i), we have that for α ∈ ]0, 1[,

∥pn − u∥2 ≤ ∥αpn + (1− α)xn − u∥2

≤ α∥pn − u∥2 + (1− α)∥xn − u∥2 − α(1− α)g
r
(∥pn − xn∥)

and thus
αg

r
(∥pn − xn∥) ≤ ∥xn − u∥2 − ∥pn − u∥2 ≤ δn.

Tending α → 1, we have that g
r
(∥pn − xn∥) ≤ δn and thus ∥pn − xn∥ ≤ g−1

r
(δn).

Using the definition of pn, we have that pn+1 ∈ Cn+1 and thus

⟨Txn − pn+1, J(xn − Txn)⟩ ≥ 0,

or equivalently,
⟨xn − pn+1, J(xn − Txn)⟩ ≥ ∥xn − Txn∥2.

Hence we obtain that

∥xn − Txn∥ ≤ ∥xn − pn+1∥ ≤ ∥xn − pn∥+ ∥pn − pn+1∥ ≤ g−1
r

(δn) + ∥pn − pn+1∥

for every n ∈ N \ {1}. Since limn pn = p0 and lim supn δn = δ0, we have that

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(δ0).

For the latter part of the theorem, suppose that δ0 = 0. Then we have that

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(0) = 0

and
lim sup
n→∞

g
r
(∥xn − pn∥) ≤ lim sup

n→∞
δn = 0.

Therefore, we obtain that

lim
n→∞

∥xn − Txn∥ = 0 and lim
n→∞

∥xn − pn∥ = 0.
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Then, by Lemma 2.1 and since pn → p0, we have that xn → p0 ∈ F̂ (T ) = F (T ).
Since F (T ) ⊂ C0, we get that p0 = PC0u = PF (T )u, which completes the proof. □

4. Approximation theorem for the mappings of type (Q)

We next consider an approximation theorem for a mapping of type (Q). This
type of mappings includes the generalized projections onto nonempty closed convex
subset of a uniformly convex Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space,
let C be a nonempty bounded closed convex subset of E, and let r ∈ ]0,∞[ such that
C ⊂ Br. Let T : C → E be a mapping of type (Q) such that F (T ) is nonempty.
Let {δn} be a nonnegative real sequence and let δ0 = lim supn δn. For a given point
u ∈ E, generate a sequence {xn} by x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨Txn − z, Jxn − JTxn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : ∥u− z∥2 ≤ d(u,Cn+1)
2 + δn+1} ∩ Cn+1,

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(gr(g
−1
r

(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to PF (T )u.

Proof. Since Cn includes F (T ) ̸= ∅ for all n ∈ N, {Cn} is a seqence of nonempty
closed convex subsets and, by definition, it is decreasing with respect to inclusion.
Let pn = PCnu for all n ∈ N. Then, by Theorem 2.5, we have that {pn} converges
strongly to p0 = PC0u, where C0 =

∩∞
n=1Cn. Since xn ∈ Cn and d(u,Cn) =

∥u− pn∥, we have that
∥u− xn∥2 ≤ ∥u− pn∥2 + δn

for every n ∈ N \ {1}. From Theorem 2.7 (i), we have that for α ∈]0, 1[,
∥pn − u∥2 ≤ ∥αpn + (1− α)xn − u∥2

≤ α∥pn − u∥2 + (1− α)∥xn − u∥2 − α(1− α)g
r
(∥pn − xn∥)

and thus
αg

r
(∥pn − xn∥) ≤ ∥xn − u∥2 − ∥pn − u∥2 ≤ δn.

Tending α → 1, we have that g
r
(∥pn − xn∥) ≤ δn and thus ∥pn − xn∥ ≤ g−1

r
(δn).

Using the definition of pn, we have that pn+1 ∈ Cn+1 and thus

⟨Txn − pn+1, Jxn − JTxn⟩ ≥ 0

From the property of the function V , we have that

0 ≤ 2⟨Txn − pn+1, Jxn − JTxn⟩
= 2⟨pn+1 − Txn, JTxn − Jxn⟩
= V (pn+1, xn)− V (pn+1, Txn)− V (Txn, xn)

≤ V (pn+1, xn)− V (Txn, xn).

By Theorem 2.8 (ii), we obtain that

V (Txn, xn) ≤ V (pn+1, xn)
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= V (pn+1, pn) + V (pn, xn) + 2⟨pn+1 − pn, Jpn − Jxn⟩
≤ V (pn+1, pn) + gr(∥pn − xn∥) + 2⟨pn+1 − pn, Jpn − Jxn⟩
≤ V (pn+1, pn) + gr(g

−1
r

(δn)) + 2⟨pn+1 − pn, Jpn − Jxn⟩.
Since lim supn δn = δ0 and pn → p0, we have that

lim sup
n→∞

V (Txn, xn) ≤ gr(g
−1
r

(δ0)).

Therefore, by Theorem 2.8 (i), we have that

lim sup
n→∞

∥xn − Txn∥ ≤ lim sup
n→∞

g−1
r

(V (Txn, xn)) ≤ g−1
r

(gr(g
−1
r

(δ0)))

For the latter part of the theorem, suppose that δ0 = 0. Then we have that

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(gr(g
−1
r

(0))) = 0

and
lim sup
n→∞

g
r
(∥xn − pn∥) ≤ lim sup

n→∞
δn = 0.

Therefore, we obtain that

lim
n→∞

∥xn − Txn∥ = 0 and lim
n→∞

∥xn − pn∥ = 0.

Then, by Lemma 2.2 and pn → p0, we have that xn → p0 ∈ F̂ (T ) = F (T ). Since
F (T ) ⊂ C0, we get that p0 = PC0u = PF (T )u, which completes the proof. □

5. Approximation theorem for the mappings of type (R)

The mappings of type (R) is, in a sense, the dual of the mappings of type (Q). By
using this fact, we obtain the following an approximation theorem for this mapping.

Theorem 5.1. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty bounded of E with JC is closed and convex and r ∈]0,∞[
such that C ⊂ Br. Let T : C → E be a mapping of type (R) such that F (T ) is
nonempty. Let {δn} be a nonnegative real sequence and let δ0 = lim supn δn. For a
given point u ∈ E, generate a sequence {xn} by x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨JTxn − Jz, xn − Txn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : ∥Ju− Jz∥2 ≤ d(Ju, JCn+1)
2 + δn+1} ∩ Cn+1,

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(g∗r(g
∗
r
−1(g∗r(g

∗
r
−1(δ0)))).

Moreover, if δ0 = 0, then {xn} converges strongly to J−1P ∗
JF (T )Ju where P ∗

JF (T ) is

the metric projection of E∗ onto JF (T ).

Proof. From Lemma 2.4, we have that T ∗ : JC → E∗ is of type (Q) in E∗ with
F (T ∗) ̸= ∅, where T ∗ is defined by (2.4). Put x∗n = Jxn and C∗

n = JCn for each
n ∈ N. Then T ∗ and {x∗n} satisfy the conditions of Theorem 4.1 in E∗. Theorefore,
we obtain that

(5.1) lim sup
n→∞

∥x∗n − T ∗x∗n∥ ≤ g∗
r
−1(g∗r(g

∗
r
−1(δ0)))
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where the function g∗
r
and g∗r in Theorem 2.9. Moreover, if δ0 = 0, then {x∗n}

converge strongly to P ∗
F (T ∗)Ju where P ∗

F (T ∗) is the metric projection of E∗ onto

F (T ∗) = JF (T ). From Theorem 2.8 (i) and 2.9 (ii), we have that

(5.2) g
r
(∥Txn − xn∥) ≤ V (Txn, xn) ≤ g∗r(∥Jxn − JTxn∥).

From (5.1) and (5.2), we obtain that

lim sup
n→∞

∥Txn − xn∥ ≤ lim sup
n→∞

g−1
r

(g∗r(∥Jxn − JTxn∥))

≤ g−1
r

(g∗r(g
∗
r
−1(g∗r(g

∗
r
−1(δ0))))

Finally, we show that {xn} converges strongly to J−1P ∗
F (T ∗)Ju. Since E is uni-

formly smooth and uniformly convex, we obtain that the duality mapping J−1 on
E∗ is continuous and xn = J−1x∗n for each n ∈ N. Since x∗n → P ∗

F (T ∗)Ju, we have

that
xn = J−1x∗n → J−1P ∗

F (T ∗)Ju

This completes the proof. □

6. Deduced results

In the case where E is a Hilbert space, the functions g
r
, gr, g

∗
r
and g∗r become

g
r
= gr = g∗

r
= g∗r = | · |2 for every r ∈ ]0,∞[. Therefore, as a direct consequence of

Theorems 3.1, 4.1 and 5.1, we obtain the following result.

Corollary 6.1. Let H be a Hilbert space and let C be a nonempty bounded closed
convex subset of H. Let T : C → E be a firmly nonexpansive mapping such that
F (T ) is nonempty. Let {δn} be a bounded nonnegative real sequence and let δ0 =
lim supn δn. For a given point u ∈ H, generate a sequence {xn} by x1 = x ∈ C,
C1 = C, and

Cn+1 = {z ∈ C : ⟨Txn − z, xn − Txn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : ∥u− z∥2 ≤ d(u,Cn+1)
2 + δn+1} ∩ Cn+1,

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤
√

δ0.

Moreover, if δ0 = 0, then {xn} converges strongly to PF (T )u.
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