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class of perturbative functionals and recall that the Choquet, the Šipoš, the Sugeno,
and the Shilkret integrals belong to those classes. In Section 5 we discuss some net
versions of the monotone convergence theorem for nonlinear integrals with respect
to totally o-continuous and c-continuous nonadditive measures. Section 6 considers
their extensions to symmetric and asymmetric integrals and Section 7 gives some
examples of nonadditive measures with total continuities.

2. Preliminaries

In this paper, unless stated otherwise, X is a non-empty set and A is a field of
subsets of X. Let R and N denote the set of all real numbers and the set of all
natural numbers. Let R := R ∪ {−∞,∞} with usual total order. For any a, b ∈ R,
let a ∨ b := max (a, b) and a ∧ b := min (a, b). For any functions f, g : X → R,
let (f ∨ g)(x) := f(x) ∨ g(x) and (f ∧ g)(x) := f(x) ∧ g(x) for every x ∈ X. If
A ⊂ R is non-empty and not bounded from above (below) in R, let supA := ∞
(inf A := −∞). With this convention, every non-empty subset of R has a supremum
and an infimum in R. We adopt the usual conventions for algebraic operations on R.
We also adopt the convention (±∞) · 0 = 0 · (±∞) = 0 and inf ∅ = ∞. If a positive
number c may take ∞, we explicitly write c ∈ (0,∞] instead of an ambiguous
expression c > 0. In other words, c > 0 always means c ∈ (0,∞). This notational
convention will be used for similar cases.

Let χA denote the characteristic function of a set A, that is, χA(x) = 1 if x ∈ A
and χA(x) = 0 otherwise. A function f : X → R is called A-measurable if {f ≥
t} := {x ∈ X : f(x) ≥ t} ∈ A and {f > t} := {x ∈ X : f(x) > t} ∈ A for every
t ∈ R. Any constant function and the characteristic function χA of any set A ∈ A
are A-measurable. If f and g are A-measurable and c ∈ R, then so are f+ := f ∨ 0,
f− := (−f) ∨ 0, |f | := f ∨ (−f), cf , f + c, (f − c)+, f ∨ g, and f ∧ g. Note that
f = f ∧ c+ (f − c)+. Let F(X) denote the set of all A-measurable functions on X.
For every f ∈ F(X), let ∥f∥ := supx∈X |f(x)|. Then ∥f∥ < ∞ if and only if f is
bounded. Let Fb(X) := {f ∈ F(X) : ∥f∥ <∞}. For any F ⊂ F(X), let F+ always
denote its positive cone, that is, F+ := {f ∈ F : f ≥ 0}.

A simple function is a function whose range space is a finite subset of R. Let
S(X) denote the set of all A-measurable simple functions on X. Every f ∈ S+(X)
is represented by

f =

n∑
i=1

(ri − ri−1)χ{f≥ri} =

n∨
i=1

riχ{f≥ri} =

n−1∑
i=1

riχ{ri−1≤f<ri} + rnχ{f≥rn}

for some 0 = r0 < r1 < r2 < · · · < rn < ∞. It this case, f(X) \ {0} =
{r1, r2, . . . , rn}. Every f ∈ F+(X) is the pointwise limit of an increasing sequence
{hn}n∈N ⊂ S+(X). Throughout this paper, all functions are supposed to be A-
measurable.

2.1. Nonadditive measures. A nonadditive measure is an extended real-valued
set function µ : A → [0,∞] such that µ(∅) = 0 and µ(A) ≤ µ(B) whenever A,B ∈ A
and A ⊂ B. It is called finite if µ(X) < ∞. This type of set function is also
called a monotone measure [25], a capacity [2], or a fuzzy measure [17, 23] in the
literature. Let M(X) denote the set of all nonadditive measures µ : A → [0,∞]
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and let Mb(X) := {µ ∈ M(X) : µ(X) < ∞}. For any µ ∈ Mb(X), its dual
µ̄ ∈ Mb(X) is defined by µ̄(A) := µ(X)−µ(Ac) for every A ∈ A, where Ac denotes
the complement of A. It is obvious that ¯̄µ = µ. If µ is finitely additive, then µ = µ̄.
See [3, 15,25] for further information on nonadditive measures.

2.2. Nonlinear integrals. The Choquet integral [2, 18], the Šipoš integral [21],
the Sugeno integral [17, 23], and the Shilkret integral [20, 28] are typical nonlinear
integrals and widely used in nonadditive measure theory.

Definition 2.1. Let (µ, f) ∈ M(X)×F+(X).

(1) The Choquet integral is defined by

Ch(µ, f) :=

∫ ∞

0
µ({f ≥ t})dt,

where the integral of the right hand side is the Lebesgue integral.
(2) Let ∆+ denote the directed set of all partitions of [0,∞] of the form P =

{a1, a2, . . . , an}, where 0 < a1 < a2 < · · · < an < ∞, with partial order
given by the usual set inclusion. Let

SP (µ, f) :=

n∑
i=1

(ai − ai−1)µ({f ≥ ai})

for P = {a1, a2, . . . , an}, where a0 := 0. The Šipoš integral is defined by the
limit of the net {SP (µ, f)}P∈∆+ , that is,

Si(µ, f) := lim
P∈∆+

SP (µ, f).

(3) The Sugeno integral is defined by

Su(µ, f) := sup
t∈[0,∞]

[
t ∧ µ({f ≥ t})

]
.

(4) The Shilkret integral is defined by

Sh(µ, f) := sup
t∈[0,∞]

[
t · µ({f ≥ t})

]
.

Remark 2.2. (1) In the definitions of the above integrals, the µ-distribution func-
tion µ({f ≥ t}) can be replaced with µ({f > t}) without any change. Furthermore,
in the definitions of the Sugeno and the Shilkret integrals the closed interval [0,∞]
can be also replaced with the open interval (0,∞).

(2) It is well known that Ch(µ, f) = Si(µ, f) for every (µ, f) ∈ M(X)×F+(X) [22,
Remark], and they are equal to the abstract Lebesgue integral if µ is σ-additive and
A is a σ-field [21, Corollary 18]; see also [10, Propositions 8.1 and 8.2].

Definition 2.3. Let µ ∈ M(X). Let F be a non-empty subset of F(X) and
f ∈ F+(X).

(1) The function f is called µ-essentially bounded if there is M > 0 such that
µ({f ≥ M}) = 0 and µ({f ≥ −M} = µ(X) and the family F is called
uniformly µ-essentially bounded if there isM > 0 such that µ({f ≥M}) = 0
and µ({f ≥ −M} = µ(X) for all f ∈ F .
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(2) The function f is called µ-essentially symmetric bounded if there is M > 0
such that µ({f ≥ M}) = µ({f ≤ −M} = 0 and the family F is called
uniformly µ-essentially symmetric bounded if there is M > 0 such that
µ({f ≥M}) = µ({f ≤ −M} = 0 for all f ∈ F .

Remark 2.4. The notion of µ-essential symmetric boundedness in this paper
slightly differs from that of [8, Definition 2.1]. Although both notions coincide if the
functions are nonnegative or if µ is null-additive, that is, µ(A∪B) = µ(A) whenever
A,B ∈ A and µ(B) = 0, from now on we will distinguish them and say that f is
µ-essentially absolute bounded if there isM > 0 such that µ({|f | ≥M}) = 0, which
was the definition of the µ-essential boundedness in [8].

Let Fµ,b(X) and Fµ,sb(X) denote the set of all f ∈ F(X) that are µ-essentially

bounded and µ-essentially symmetric bounded, respectively. Obviously, F+
µ,b(X) =

F+
µ,sb(X), that is, the notions of µ-essential boundedness and µ-essential symmetric

boundedness coincide for nonnegative functions. If µ is finitely additive and µ(X) <
∞, then Fµ,b(X) = Fµ,sb(X). The following simple example illustrates that both
notions are independent of each other in general.

Example 2.5. Let X := [0, 1] and A the σ-field of all Lebesgue subsets of X. Let
f : X → [−∞,∞] be the A-measurable function defined by

f(x) :=

{
−∞ if x ∈ [0, 1/2],

0 if x ∈ (1/2, 1].

(1) Let µ : A → [0,∞] be the nonadditive measure defined by

µ(A) :=

{
0 if A = ∅,
1 if A ̸= ∅.

Then f ∈ Fµ,b(X) but f ̸∈ Fµ,sb(X).
(2) Let µ : A → [0,∞] the nonadditive measure defined by

µ(A) :=

{
0 if A ̸= X,

1 if A = X.

Then f ̸∈ Fµ,b(X) but f ∈ Fµ,sb(X).

For any f ∈ F(X), let

∥f∥µ := inf{M > 0: µ({f ≥M}) = 0 and µ({f ≥ −M} = µ(X)}.

Then f is µ-essentially bounded if and only if ∥f∥µ < ∞. It always holds that
Fb(X) ⊂ Fµ,b(X) ∩ Fµ,sb(X) and ∥f∥µ ≤ ∥f∥. Let us collect some basic properties
of essentially (symmetric) bounded functions, which can be proved directly from
Definition 2.3.

Proposition 2.6. Let µ ∈ M(X). Let F be a non-empty subset of F(X) and
f ∈ F(X).



THE MONOTONE CONVERGENCE THEOREMS 285

(1) The function f is µ-essentially symmetric bounded if and only if f+ and
f− are both µ-essentially bounded. Moreover, the family F is uniformly µ-
essentially symmetric bounded if and only if {f+ : f ∈ F} and {f− : f ∈ F}
are both uniformly µ-essentially bounded.

(2) Assume that µ ∈ Mb(X). The function f is µ-essentially bounded if and
only if f+ is µ-essentially bounded and f− is µ̄-essentially bounded. More-
over, the family F is uniformly µ-essentially bounded if and only if {f+ : f ∈
F} is uniformly µ-essentially bounded and {f− : f ∈ F} is uniformly µ̄-
essentially bounded.

3. Integral functionals

When discussing nonlinear integrals in a unified way, two binary operations ⊕
and ⊖, which are generalizations of the usual addition and subtraction, are use-
ful. A binary operation ⊕ : [0,∞]2 → [0,∞] is called a pseudo-addition if it is
associative, increasing in both coordinates, continuous, and 0 is its neutral ele-
ment [24, 25, 27]. Every pseudo-addition ⊕ is commutative and defines its pseudo-
difference ⊖ : [0,∞]2 → [0,∞] by a ⊖ b := inf{x ∈ [0,∞] : b ⊕ x ≥ a} for every
a, b ∈ [0,∞] [1]. For every a, b, c ∈ [0,∞] with a ≤ b ≤ c, it holds that a⊕(b⊖a) = b
and (c ⊖ b) ⊕ (b ⊖ a) = c ⊖ a. Thus, by the associativity of ⊕, for any n ≥ 2, any
0 = a0 < a1 < · · · < an ≤ ∞, and any i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n− i}, the
following computation rule holds [11]:

• ai−1 ⊕ (ai ⊖ ai−1)⊕ (ai+1 ⊖ ai)⊕ · · · ⊕ (ai+j ⊖ ai+j−1) = ai+j ,
• (ai ⊖ ai−1)⊕ (ai+1 ⊖ ai)⊕ · · · ⊕ (ai+j ⊖ ai+j−1) = ai+j ⊖ ai−1.

For every n ∈ N and a1, a2, . . . , an ∈ [0,∞] let
⊕n

i=1 ai := a1 ⊕ a2 ⊕ · · · ⊕ an.

Remark 3.1. Pseudo-addition has also been referred to as pan-addition in the
literature. In [27], the pan-integral was introduced by pan-operations and some
basic properties of the pan-integral were studied.

Example 3.2. (1) a ⊕ b := g−1(g(a) + g(b)), where g : [0,∞] → [0,∞] is an
increasing bijection, is a pseudo-addition. Its pseudo-difference is given by

a⊖ b =

{
g−1(g(a)− g(b)) if a > b,

0 if a ≤ b.

In particular, if a⊕ b := a+ b and a > b, then a⊖ b = a− b.
(2) a⊕ b := a ∨ b is a pseudo-addition. Its pseudo-difference is given by

a⊖ b =

{
a if a > b,

0 if a ≤ b.

Every f ∈ S+(X) with f(X)\{0} = {r1, r2, . . . , rn} has a unique standard ⊕-step
representation [1]

f =

n⊕
i=1

(ri ⊖ ri−1)χ{f≥ri},

where n ∈ N and 0 = r0 < r1 < · · · < rn < ∞. In particular, f is expressed by
f =

∑n
i=1(ri − ri−1)χ{f≥ri} if ⊕ = + and by f =

∨n
i=1 riχ{f≥ri} if ⊕ = ∨.



286 JUN KAWABE

Now we introduce some classes of functionals containing the Lebesgue, the Cho-
quet, the Šipoš, the Sugeno, and the Shilkret integrals as their special cases.

Definition 3.3. Let I : M(X)×F+(X) → [0,∞] be a functional.

(1) I is called an integral if it satisfies the following conditions:
(i) I(µ, 0) = I(0, f) = 0 for every µ ∈ M(X) and f ∈ F+(X).
(ii) I is jointly monotone, that is, I(µ, f) ≤ I(ν, g) for every µ, ν ∈ M(X)

with µ ≤ ν and f, g ∈ F+(X) with f ≤ g.
(2) I is called generative if there is a function θ : [0,∞]2 → [0,∞] such that

I(µ, rχA) = θ(r, µ(A)) for every µ ∈ M(X), A ∈ A, and r ∈ [0,∞]. The
function θ is called a generator of I.

(3) I is called elementary if it is generative with generator θ and there is a
pseudo-addition ⊕ such that

I

(
µ,

n⊕
i=1

(ri ⊖ ri−1)χAi

)
=

n⊕
i=1

θ (ri ⊖ ri−1, µ(Ai))

for every µ ∈ M(X), n ∈ N, A1, A2, . . . , An ∈ A, and r1, r2, . . . , rn ∈ (0,∞)
with A1 ⊃ A2 ⊃ · · · ⊃ An and 0 = r0 < r1 < r2 < · · · < rn.

(4) I is called measure-truncated if I(µ, f) = sups>0 I(µ ∧ s, f) for every µ ∈
M(X) and f ∈ F+(X).

If I is generative, then its generator θ has the property that θ(a, 0) = θ(0, b) = 0
for every a, b ∈ [0,∞]. A generator θ : [0,∞]2 → [0,∞] is called limit preserving if
bα → b whenever {bα}α∈Γ ⊂ [0,∞] is a net, b ∈ [0,∞], and θ(r, bα) → θ(r, b) for
every r ∈ (0,∞). In addition, it is called of finite type if θ(a, b) < ∞ whenever
a, b ∈ [0,∞) and of continuous type if it is continuous on the set D := [0,∞]2 \
{(0,∞), (∞, 0)}. Among others, θ(a, b) := a · b and θ(a, b) := a ∧ b are typical
limit-preserving generators of finite and continuous type. The Lebesgue integral is
obviously elementary with generator θ(a, b) := a·b with respect to the usual addition
a⊕ b := a+ b. The following are well-known and easily follow from the definition of
integral; see [8, Propositions 2.5, 2.6, and 2.7] for I = Ch, Su, Sh and [21, Theorem 5,
Corollary 15] for I = Si.

Proposition 3.4. Let µ ∈ M(X).

(1) The integral functionals Ch and Si are elementary and measure-truncated
with generator θ(a, b) := a · b with respect to a⊕ b := a+ b.

(2) The integral functional Su is elementary and measure-truncated with gener-
ator θ(a, b) := a ∧ b with respect to a⊕ b := a ∨ b.

(3) The integral functional Sh is elementary and measure-truncated with gener-
ator θ(a, b) := a · b with respect to a⊕ b := a ∨ b.

4. Perturbation of integral functionals

In this section we introduce the notion of perturbation of functional, that is, a
key tool when formulating in a unified way limit theorems for nonlinear integrals.
To this end we need the following notions [8–10].
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Definition 4.1. Let µ, ν : A → [0,∞] be set functions and f, g ∈ F(X). We say
that the pair (µ, f) is dominated by (ν, g) and write (µ, f) ≺ (ν, g) if µ({f ≥ t}) ≤
ν({g ≥ t}) for every t ∈ R. In particular, we say that f is µ-dominated by g and
write f ≺µ g if (µ, f) ≺ (µ, g).

In what follows, let Φ denote the set of all functions φ : [0,∞) → [0,∞) satisfying
φ(0) = limt→+0 φ(t) = 0. A function belonging to Φ is called a control function.
Recall that ∥f∥µ = inf{M > 0: µ({f ≥ M}) = 0} for every f ∈ F+(X), which is
nothing but the usual µ-essential norm of f .

Definition 4.2. Let I : M(X)×F+(X) → [0,∞] be a functional.

(1) I is called strongly monotone (s-monotone for short) if I(µ, f) ≤ I(µ, g)
whenever µ ∈ M(X), f, g ∈ F+(X), and f ≺µ g.

(2) I is called perturbative if, for each p, q > 0, there are control functions
φp,q, ψp,q ∈ Φ satisfying the following perturbation: for any µ ∈ M(X),
f, g ∈ F+(X), ε ≥ 0, and δ ≥ 0, it holds that

I(µ, f) ≤ I(µ, g) + φp,q(δ) + ψp,q(ε)

whenever ∥f∥µ < p, ∥g∥µ < p, µ(X) < q, and (µ, f) ≺ (µ+ δ, g + ε).

Every strongly monotone functional I is monotone with respect to functions,
that is, I(µ, f) ≤ I(µ, g) whenever µ ∈ M(X), f, g ∈ F+(X) and f ≤ g. The
perturbation of functional manages not only the monotonicity of the functional but
also the small change of the functional value I(µ, f) caused by adding small amounts
δ and ε to the measure µ and the function f , respectively.

Remark 4.3. Assume that a functional I : M(X) × F+(X) → [0,∞] is jointly
s-monotone, that is, I(µ, f) ≤ I(ν, g) if (µ, f), (ν, g) ∈ M(X)×F+(X) and (µ, f) ≺
(ν, g). Then the value I(µ, f) is uniquely determined by the decreasing µ-distribution
function µ({f ≥ t}), that is, I(µ, f) = I(ν, g) whenever (µ, f), (ν, g) ∈ M(X) ×
F+(X) and µ({f ≥ t}) = ν({g ≥ t}) for every t ∈ R. Every jointly s-monotone
functional is jointly monotone. A jointly s-monotone, generative functional is called
a universal integral in [11].

The Lebesgue integral is obviously strongly monotone and perturbative and it is
the case with nonlinear integrals as the following proposition shows.

Proposition 4.4. The integral functionals Ch, Si, Su, and Sh are all strongly
monotone and perturbative. In fact they are all jointly s-monotone.

Proof. See [10, Proposition 4.4]. □
Although the perturbation of functional does not imply the strong monotonicity,

every perturbative functional has the following weak type of strong monotonicity :

Proposition 4.5. Let I : M(X)×F+(X) → [0,∞] be a functional. If I is pertur-
bative, then I(µ, f) ≤ I(µ, g) whenever µ ∈ Mb(X), f, g ∈ F+

µ,b(X) and f ≺µ g.

Proof. Let µ ∈ Mb(X) and f, g ∈ F+
µ,b(X) with f ≺µ g. Let p := ∥f∥µ∨∥g∥µ+1 > 0

and q := µ(X) + 1 > 0. Since I is perturbative, there are control functions φ :=
φp,q, ψ := ψp,q ∈ Φ such that I(µ, f) ≤ I(µ, g)+φ(0)+ψ(0). Thus I(µ, f) ≤ I(µ, g)
since φ(0) = ψ(0) = 0. □
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Proposition 4.6. Let I : M(X)×F+(X) → [0,∞] be a generative functional with
generator θ.

(1) If I is strongly monotone, then I(µ, f) ≤ θ (∥f∥µ, µ({f > 0})) for any
(µ, f) ∈ M(X)×F+(X).

(2) If I is perturbative, then the same inequality as above holds for any µ ∈
Mb(X) and f ∈ F+

µ,b(X).

Thus I(µ, f) < ∞ for I = Ch, Si, Sh if µ is finite and f is µ-essentially bounded.
By contrast, Su(µ, f) <∞ if µ is finite or f is µ-essentially bounded.

Proof. (1) Since f ≺µ ∥f∥µ · χ{f>0}, the strong monotonicity and the generative
property of I imply

I(µ, f) ≤ I(µ, ∥f∥µ · χ{f>0}) = θ(∥f∥µ, µ({f > 0})).

Thus the most right-hand of the above formula is ∥f∥µ ·µ({f > 0}) for I = Ch, Si, Su
and ∥f∥µ ∧ µ({f > 0}) for I = Su. The former is finite if µ is finite and f is µ-
essentially bounded and so is the latter if µ is finite or f is µ-essentially bounded.

(2) It can be prove in the same way as (1) since every perturbative functional
has a weak type of strong monotonicity by Proposition 4.5. □

5. The monotone convergence theorems

In this section we investigate the monotone convergence theorems for nonlinear
integrals on a topological space. In the rest of the paper, X is a Hausdorff space, A
is a field containing all open subsets of X, F(X) is the set of all A-measurable func-
tions f : X → R, and M(X) is the set of all nonadditive measures µ : A → [0,∞].
Recall that a function f : X → R is lower semicontinuous if {f > r} is open for any
r ∈ R and upper semicontinuous if {f ≥ r} is closed for any r ∈ R. If {fα}α∈Γ is
an increasing net of lower semicontinuous functions on X with pointwise limit f ,
then f is lower semicontinuous. Similarly, if {fα}α∈Γ is a decreasing net of upper
semicontinuous functions on X with pointwise limit f , then f is upper semicontin-
uous. Every lower or upper semicontinuous function on X is A-measurable if A is
a σ-field, but this is not the case when A is a field.

Definition 5.1. Let µ ∈ M(X).

(1) µ is called totally o-continuous if µ(U) = supα∈Γ µ(Uα) whenever {Uα}α∈Γ
is an increasing net of open sets with U =

∪
α∈Γ Uα.

(2) µ is called totally c-continuous if µ(C) = infα∈Γ µ(Cα) whenever {Cα}α∈Γ
is a decreasing net of closed sets with C =

∩
α∈Γ Cα.

(3) µ is called totally conditional c-continuous if µ(C) = infα∈Γ µ(Cα) whenever
{Cα}α∈Γ is a decreasing net of closed sets with C =

∩
α∈Γ Cα and µ(Cα0) <

∞ for some α0 ∈ Γ .

Remark 5.2. (1) The total c-continuity implies the total conditional c-continuity
and they coincide for finite nonadditive measures.

(2) The total c-continuity and the total o-continuity were already discussed in [6]
with applications to convergence theorems for Choquet integrals.
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(3) The sequential versions of the total c-continuity and the total o-continuity
were introduced and discussed in [13] for nonadditive measures on a locally compact
space.

A finite nonadditive measure µ is totally c-continuous (totally o-continuous) if and
only if its dual µ̄ is totally o-continuous (totally c-continuous). In general, the total
c-continuity and the total o-continuity are independent of each other [7, Examples 2
and 3]. Some examples of nonadditive measures with total continuities will be given
in Section 7.

Lemma 5.3. Let µ ∈ M(X).

(1) If µ is totally o-continuous and {fα}α∈Γ is a uniformly µ-essentially bounded,
increasing net of lower semicontinuous functions in F(X) with pointwise
limit f ∈ F(X), then f is lower semicontinuous and µ-essentially bounded.

(2) If µ is totally c-continuous and {fα}α∈Γ is a uniformly µ-essentially bounded,
decreasing net of upper semicontinuous functions in F(X) with pointwise
limit f ∈ F(X), then f is upper semicontinuous and µ-essentially bounded.

Proof. (1) We only prove that f is µ-essentially bounded. Since {fα}α∈Γ is uni-
formly µ-essentially bounded, there is M > 0 such that for any α ∈ Γ ,

(5.1) µ({fα > M}) = 0 and µ({fα > −M}) = µ(X).

Since {{fα > M}}α∈Γ is an increasing net of open sets with {f > M} =
∪

α∈Γ {fα >
M}, by (5.1) and the total o-continuity of µ we have µ({f > M}) = 0 and thus
µ({f ≥ 2M}) = 0. Similarly, since {{fα > −M}}α∈Γ is an increasing net of open
sets with {f > −M} =

∪
α∈Γ {fα > −M}, we have µ({f > −M}) = µ(X) and thus

µ({f ≥ −2M}) = µ(X). Therefore f is µ-essentially bounded.
(2) It is similar to the proof of (1). □
Now we give a net version of the monotone increasing convergence theorem for

an integral functional, which is applicable to the Lebesgue, the Choquet, the Šipoš,
the Sugeno, and the Shilkret integrals.

Theorem 5.4. Let I : M(X) × F+(X) → [0,∞] be an integral functional. Let
µ ∈ M(X). Consider the following two assertions:

(i) µ is totally o-continuous.
(ii) For every uniformly µ-essentially bounded, increasing net {fα}α∈Γ of lower

semicontinuous functions in F+(X) with pointwise limit f ∈ F+(X),
I(µ, f) = limα∈Γ I(µ, fα) = supα∈Γ I(µ, fα).

If µ is finite and I is perturbative and elementary with generator of finite and con-
tinuous type, then (i) implies (ii). If I is generative with limit preserving generator,
then (ii) implies (i).

Proof. (i)⇒(ii): Let µ be totally o-continuous and finite. Assume that I is perturba-
tive and elementary with generator θ of finite and continuous type. Let {fα}α∈Γ be
a uniformly µ-essentially bounded, increasing net of lower semicontinuous functions
in F+(X) with pointwise limit f ∈ F+(X). By Lemma 5.3, f is lower semicontin-
uous and µ-essentially bounded. Thus I(µ, fα) ≤ I(µ, f) < ∞ for all α ∈ Γ by (2)
of Proposition 4.6.



290 JUN KAWABE

To begin with, we consider the case that {fα}α∈Γ is uniformly bounded. Then
there is M > 0 such that 0 ≤ fα ≤ f ≤ M for any α ∈ Γ . For each α ∈ Γ and
n ∈ N, let Gα,i := {fα > (i − 1)M/n}, Gi := {f > (i − 1)M/n} (i = 1, 2, . . . , n),
and

fα,n :=
n⊕

i=1

(ri ⊖ ri−1)χGα,i ,(5.2)

fn :=
n⊕

i=1

(ri ⊖ ri−1)χGi ,(5.3)

where ri := iM/n (i = 0, 1, . . . , n). Then 0 ≤ fα,n(x) ≤ M , 0 ≤ fn(x) ≤ M ,
|fα,n(x)− fα(x)| < M/n, and |fn(x)− f(x)| < M/n for any x ∈ X.

First we prove

(5.4) I(µ, fα,n) → I(µ, fn)

for every n ∈ N. For each i = 1, 2, . . . , n, {Gα,i}α∈Γ is an increasing net of open
sets with Gi =

∪
α∈Γ Gα,i. Thus µ(Gα,i) → µ(Gi) by the total o-continuity of µ, so

that θ(ri ⊖ ri−1, µ(Gα,i)) → θ(ri ⊖ ri−1, µ(Gi)) since θ is of continuous type. Since
I is elementary and θ is its generator, by (5.2) and (5.3),

I(µ, fα,n) =

n⊕
i=1

θ
(
ri ⊖ ri−1, µ(Gα,i)

)
,

I(µ, fn) =
n⊕

i=1

θ
(
ri ⊖ ri−1, µ(Gi)

)
.

So (5.4) follows from the continuity of ⊕.
Next we prove

(5.5) I(µ, fα) → I(µ, f).

Observe that for each α ∈ Γ and n ∈ N, fα,n ≺µ fα +M/n, fα ≺µ fα,n +M/n,
fn ≺µ f +M/n, and f ≺µ fn +M/n. Let p := M + 1 > 0 and q := µ(X) + 1 > 0.
Since I is perturbative, there are control functions φ := φp,q, ψ := ψp,q ∈ Φ such
that

|I(µ, fα,n)− I(µ, fα)| ≤ φ(0) + ψ(M/n),(5.6)

|I(µ, fn)− I(µ, f)| ≤ φ(0) + ψ(M/n)(5.7)

for every α ∈ Γ and n ∈ N. Consequently, (5.4), (5.6), and (5.7) imply

0 ≤ lim sup
α∈Γ

|I(µ, fα)− I(µ, f)| ≤ 2ψ(M/n).

So (5.5) follows from limn→∞ ψ(M/n) = 0. Thus the theorem has been proved in
the case that {fα}α∈Γ is uniformly bounded.

Now we consider the general case. Since {fα}α∈Γ is uniformly µ-essentially
bounded and f is µ-essentially bounded, there is M > 0 such that µ({f ≥ M}) =
µ({fα ≥M}) = 0 for all α ∈ Γ . Then µ({f ≥ t}) = µ({f ∧M ≥ t}) for any t ∈ R.
Thus I(µ, f) = I(µ, f ∧M) by Proposition 4.5. Similarly, I(µ, fα) = I(µ, fα ∧M)
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for all α ∈ Γ . Since {fα ∧M}α∈Γ is a uniformly bounded net of lower semicon-
tinuous functions in F+(X) converging pointwise to f ∧ M ∈ F+(X), we have
I(µ, f) = I(µ, f ∧M) = limα∈Γ I(µ, fα∧M) = limα∈Γ I(µ, fα). Since {I(µ, fα)}α∈Γ
is increasing, we also have I(µ, f) = supα∈Γ I(µ, fα).

(ii)⇒(i): Let {Gα}α∈Γ be an increasing net of open sets with G =
∪

α∈Γ Gα. For
each r > 0, let f := rχG and fα := rχGα (α ∈ Γ ). Then {fα}α∈Γ is a uniformly
µ-essentially bounded, increasing net of lower semicontinuous functions in F+(X)
with pointwise limit f ∈ F+(X). Since I is generative with generator θ, assertion
(ii) implies θ(r, µ(Gα)) = I(µ, fα) → I(µ, f) = θ(r, µ(G)) and thus µ(Gα) → µ(G)
since θ is limit preserving. So µ is totally o-continuous. □

The following net version of the monotone decreasing convergence theorem can
be proved in the same manner as Theorem 5.4.

Theorem 5.5. Let I : M(X) × F+(X) → [0,∞] be an integral functional. Let
µ ∈ M(X). Consider the following two assertions:

(i) µ is totally c-continuous.
(ii) For every uniformly µ-essentially bounded, decreasing net {fα}α∈Γ of up-

per semicontinuous functions in F+(X) with pointwise limit f ∈ F+(X),
I(µ, f) = limα∈Γ I(µ, fα) = infα∈Γ I(µ, fα).

If µ is finite and I is perturbative and elementary with generator of finite and con-
tinuous type, then (i) implies (ii). If I is generative with limit preserving generator,
then (ii) implies (i).

To prove implication (i) ⇒ (ii) in Theorems 5.4 and 5.5 we assume that µ is
finite. In what follows, we consider the case that µ is not necessarily finite. As
to the monotone increasing convergence theorem, we obtain the same conclusion
as Theorem 5.4 only appending the measure-truncated property of the integral
functional.

Theorem 5.6. Let I : M(X) × F+(X) → [0,∞] be an integral functional. As-
sume that I is perturbative, measure-truncated, and elementary with generator of
finite and continuous type. If µ ∈ M(X) is totally o-continuous and {fα}α∈Γ is
a uniformly µ-essentially bounded, increasing net of lower semicontinuous func-
tions in F+(X) with pointwise limit f ∈ F+(X), then I(µ, f) = limα∈Γ I(µ, fα) =
supα∈Γ I(µ, fα).

Proof. For each s > 0, define the finite nonadditive measure µ ∧ s by (µ ∧ s)(A) :=
µ(A)∧s for every A ∈ A. Then µ∧s is totally o-continuous and {fα}α∈Γ is uniformly
µ ∧ s-essentially bounded. Thus I(µ ∧ s, f) = supα∈Γ I(µ ∧ s, fα) by Theorem 5.4.
Since I is measure-truncated, we have

I(µ, f) = sup
s>0

I(µ ∧ s, f) = sup
α∈Γ

sup
s>0

I(µ ∧ s, fα) = sup
α∈Γ

I(µ, fα).

Since {I(µ, fα)}α∈Γ is increasing, we also have I(µ, f) = limα∈Γ I(µ, fα). □
By contrast, as to the monotone decreasing convergence theorem we need to

assume some additional conditions on the finiteness of the functional I and the
measure µ. For each β ∈ Γ , let Γ (β) := {α ∈ Γ : α ≥ β}, which is also a directed
set.
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Theorem 5.7. Let I = Ch, Si. Let µ ∈ M(X) and let {fα}α∈Γ be a uniformly
µ-essentially bounded, decreasing net of upper semicontinuous functions in F+(X)
with pointwise limit f ∈ F+(X). Assume I(µ, fα0) < ∞ for some α0 ∈ Γ . If µ is
totally conditional c-continuous, then I(µ, f) = limα∈Γ I(µ, fα) = infα∈Γ I(µ, fα).

Proof. By assumption, there is α0 ∈ Γ such that I(µ, f) ≤ I(µ, fα) ≤ I(µ, fα0) <∞
for all α ∈ Γ (α0). In what follows we prove

(5.8) I(µ, f) = lim
α∈Γ (α0)

I(µ, fα) = inf
α∈Γ (α0)

I(µ, fα),

which yields the conclusion since {I(µ, fα)}α∈Γ is decreasing and

I(µ, f) = inf
α∈Γ (α0)

I(µ, fα) ≥ inf
α∈Γ

I(µ, fα) ≥ I(µ, f).

Let ε > 0. By Proposition 3.2 of [10] I = Ch, Si are lower marginal continuous
and horizontally additive and thus we have

I(µ, fα0) = sup
r>0

I(µ, (fα0 − r)+)

and
I(µ, fα0) = I(µ, fα0 ∧ r) + I(µ, (fα0 − r)+)

for every r > 0, so that infr>0 I(µ, fα0 ∧ r) = 0. Thus there is r0 > 0 such that

(5.9) I(µ, fα0 ∧ r0) < ε.

Let g := (f − r0)
+ and gα := (fα − r0)

+ for every α ∈ Γ (α0). Then {gα}α∈Γ (α0) is

a decreasing net of upper semicontinuous functions in F+(X) with pointwise limit
g ∈ F+(X).

First we prove

(5.10) I(µ, g) = lim
α∈Γ (α0)

I(µ, gα)

Let ν(A) := µ(A ∩ {fα0 ≥ r0}) for every A ∈ A. Since r0 · µ({fα0 ≥ r0}) ≤
I(µ, fα0) < ∞ for I = Ch, Si, the nonadditive measure ν is finite and totally c-
continuous. Since {fα}α∈Γ is uniformly µ-essentially bounded, there is M > 0 such
that µ({fα ≥ M}) = 0 for all α ∈ Γ . Therefore 0 ≤ ν({gα ≥ M}) ≤ µ({gα ≥
M}) = µ({fα ≥M + r0}) ≤ µ({fα ≥M}) = 0 and hence ν({gα ≥M}) = 0 for any
α ∈ Γ (α0). Thus {gα}α∈Γ (α0) is uniformly ν-essentially bounded. Moreover, since
µ({g ≥ t}) = ν({g ≥ t}) and µ({gα ≥ t}) = ν({gα ≥ t}) for any t > 0, by the
definition of Ch and Si we have I(µ, g) = I(ν, g) and I(µ, gα) = I(ν, gα) for every
α ∈ Γ (α0). Consequently, by Theorem 5.5

I(µ, g) = I(ν, g) = lim
α∈Γ (α0)

I(ν, gα) = lim
α∈Γ (α0)

I(µ, gα)

and (5.10) follows.
By (5.9) and the horizontal additivity of I, for any α ∈ Γ (α0), we have

|I(µ, fα)− I(µ, f)| ≤ |I(µ, gα)− I(µ, g)|+ I(µ, fα ∧ r0) + I(µ, f ∧ r0)
≤ |I(µ, gα)− I(µ, g)|+ 2ε,

so that
0 ≤ lim sup

α∈Γ (α0)
|I(µ, fα)− I(µ, f)| ≤ 2ε.
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Letting ε → 0 gives I(µ, f) = limα∈Γ (α0) I(µ, fα). Since {I(µ, fα)}α∈Γ (α0) is de-
creasing, we also have I(µ, f) = infα∈Γ (α0) I(µ, fα). □

For a subset A of X, let A− be the closure of A, that is, the smallest closed set
containing A.

Theorem 5.8. Let µ ∈ M(X) and let {fα}α∈Γ be a uniformly µ-essentially bounded,
decreasing net of upper semicontinuous functions in F+(X) with pointwise limit
f ∈ F+(X). Assume µ({fα0 > Su(µ, f)}−) < ∞ for some α0 ∈ Γ . If µ is totally
conditional c-continuous, then Su(µ, f) = limα∈Γ Su(µ, fα) = infα∈Γ Su(µ, fα).

Proof. The conclusion is obvious if Su(µ, f) = ∞ or if Su(µ, f) <∞ and Su(µ, f) =
Su(µ, fβ0) for some β0 ∈ Γ . Therefore we consider the case that Su(µ, f) <∞ and
Su(µ, fα) > Su(µ, f) for all α ∈ Γ .

By assumption, there is α0 ∈ Γ such that µ({fα0 > Su(µ, f)}−) < ∞. Let
r := Su(µ, f) and ν(A) := µ(A∩{fα0 > r}−) for every A ∈ A. Then the finite non-
additive measure ν is totally c-continuous and {fα}α∈Γ (α0) is uniformly ν-essentially
bounded. First we prove

(5.11) Su(µ, fα) = Su(ν, fα)

for all α ∈ Γ (α0). Fix α ∈ Γ (α0). Then

r = Su(µ, f) < Su(µ, fα) ≤ r ∨ µ({fα > r})

and hence µ({fα > r}) > r. Therefore

(5.12) sup
t∈[r,∞]

[
t ∧ µ({fα > t})

]
≥ r ∧ µ({fα > r}) = r.

On the other hand,

r ≥ sup
t∈[0,r]

[
t ∧ µ({fα > t})

]
≥ r ∧ µ({fα > r}) = r

and hence

(5.13) sup
t∈[0,r]

[
t ∧ µ({fα > t})

]
= r.

Therefore by (5.12) and (5.13) we have

(5.14) Su(µ, fα) = sup
t∈[r,∞]

[
t ∧ µ({fα > t})

]
.

Since µ({fα > t}) = ν({fα > t}) for any t ∈ [r,∞], by (5.14)

Su(ν, fα) ≤ Su(µ, fα) = sup
t∈[r,∞]

[
t ∧ ν({fα > t})

]
≤ Su(ν, fα)

and (5.11) follows. Consequently, by Theorem 5.5

Su(µ, f) ≤ inf
α∈Γ

Su(µ, fα) ≤ inf
α∈Γ (α0)

Su(ν, fα) = Su(ν, f) ≤ Su(µ, f)

and thus Su(µ, f) = infα∈Γ Su(µ, fα). Since {Su(µ, fα)}α∈Γ is decreasing, we also
have Su(µ, f) = limα∈Γ Su(µ, fα). □
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Theorem 5.9. Let µ ∈ M(X) and let {fα}α∈Γ be a uniformly µ-essentially bounded,
decreasing net of upper semicontinuous functions in F+(X) with pointwise limit
f ∈ F+(X). Assume µ({fα0 > 0}−) < ∞ for some α0 ∈ Γ . If µ is totally condi-
tional c-continuous, then Sh(µ, f) = limα∈Γ Sh(µ, fα) = infα∈Γ Sh(µ, fα).

Proof. By assumption, there is α0 ∈ Γ such that µ({fα0 > 0}−) <∞. Let ν(A) :=
µ(A∩{fα0 > 0}−) for every A ∈ A. Then the finite nonadditive measure ν is totally
c-continuous and {fα}α∈Γ (α0) is uniformly ν-essentially bounded. In addition, for
any α ∈ Γ (α0), Sh(µ, fα) = Sh(ν, fα) since µ({fα > t}) = ν({fα > t}) for every
t ∈ [0,∞). Consequently, by Theorem 5.5

Sh(µ, f) ≤ inf
α∈Γ

Sh(µ, fα) ≤ inf
α∈Γ (α0)

Sh(ν, fα) = Sh(ν, f) ≤ Sh(µ, f)

and thus Sh(µ, f) = infα∈Γ Sh(µ, fα). Since {Sh(µ, fα)}α∈Γ is decreasing, we also
have Sh(µ, f) = limα∈Γ Sh(µ, fα). □
Example 5.10. Let X := (0,∞), A the σ-field of all Lebesgue measurable subsets
of X, and λ the Lebesgue measure on (X,A). Define the decreasing sequence
{fn}n∈N ⊂ F+(X) converging to 0 as below. Then the following show that the
finiteness assumptions on the functional I and the measure µ in Theorems 5.7, 5.8
and 5.9 cannot be dropped.

(1) Let fn(x) := χ[n,∞) for every x ∈ X and n ∈ N. Then Ch(λ, fn) = Si(λ, fn) =
∞ for all n ∈ N, so that Ch(λ, fn) ̸→ 0 and Si(λ, fn) ̸→ 0.

(2) Let fn(x) := 1 ∧ (x/n) for every x ∈ X and n ∈ N. Then λ({fn >
Su(λ, 0)}) = λ({fn > 0}) = ∞ and Su(λ, fn) = 1 for all n ∈ N, so that
Su(λ, fn) ̸→ 0.

(3) Let fn(x) := 1/(x+ n) for every x ∈ X and n ∈ N. Then λ({fn > 0}) = ∞
and Sh(λ, fn) = 1 for all n ∈ N, so that Sh(λ, fn) ̸→ 0.

6. Extensions to symmetric and asymmetric integrals

In this section we extend our net versions of the monotone convergence theo-
rem to symmetric and asymmetric nonlinear integrals. Let I : M(X) × F+(X) →
[0,∞] be an integral functional. The symmetric extension of I is the functional
Is : M(X)×F(X) → [−∞,∞] defined by Is(µ, f) := I(µ, f+)− I(µ, f−) for every
(µ, f) ∈ M(X) × F(X). By contrast, the asymmetric extension of I is the func-
tional Ia : Mb(X) × F(X) → [−∞,∞] defined by Ia(µ, f) := I(µ, f+) − I(µ̄, f−)
for every (µ, f) ∈ Mb(X) × F(X). Both extensions are not defined if the right
hand side of the equation is of the form ∞−∞. Note that the asymmetric exten-
sion is defined only for finite nonadditive measures. The symmetric extension Is is
symmetric: Is(µ,−f) = −Is(µ, f) and the asymmetric extension Ia is asymmetric:
Ia(µ,−f) = −Ia(µ̄, f). If I = Ch, Is and Ia are called the symmetric Choquet
integral and the asymmetric Choquet integral, respectively. The same is the case
with I = Si, Su, Sh. As to the asymmetric extension we have the following limit
theorem as a corollary to Theorems 5.4 and 5.5.

Corollary 6.1. Let I : M(X) × F+(X) → [0,∞] be an integral functional. Let
µ ∈ Mb(X). Assume that I is perturbative and elementary with generator of finite
and continuous type.
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(1) If µ is totally o-continuous and {fα}α∈Γ is a uniformly µ-essentially bounded,
increasing net of lower semicontinuous functions in F(X) with pointwise
limit f ∈ F(X), then Ia(µ, f) = limα∈Γ I

a(µ, fα) = supα∈Γ I
a(µ, fα).

(2) If µ is totally c-continuous and {fα}α∈Γ is a uniformly µ-essentially bounded,
decreasing net of upper semicontinuous functions in F(X) with pointwise
limit f ∈ F(X), then Ia(µ, f) = limα∈Γ I

a(µ, fα) = infα∈Γ I
a(µ, fα).

Proof. (1) By Lemma 5.3 and (2) of Proposition 2.6, {f+α }α∈Γ is a uniformly µ-
essentially bounded, increasing net of lower semicontinuous functions in F+(X)
converging to the µ-essential bounded f+ ∈ F+(X). Similarly, {f−α }α∈Γ is a uni-
formly µ̄-essentially bounded, decreasing net of upper semicontinuous functions in
F+(X) converging to the µ̄-essentially bounded f− ∈ F+(X). Therefore by Theo-
rem 5.4

(6.1) I(µ, f+) = lim
α∈Γ

I(µ, f+α ) = sup
α∈Γ

I(µ, f+α )

and by Theorem 5.5

(6.2) I(µ̄, f−) = lim
α∈Γ

I(µ̄, f−α ) = inf
α∈Γ

I(µ̄, f−α )

Since the generator of I is of finite type, by (2) of Proposition 4.6, I(µ, f+), I(µ̄, f−),
I(µ, f+α ), and I(µ̄, f−α ) are all finite. Therefore it follows from (6.1) and (6.2) that
Ia(µ, f) = limα∈Γ I

a(µ, fα) = supα∈Γ I
a(µ, fα).

(2) It can be proved in the same way as (1). □

As to the symmetric extension, by Theorems 5.6, 5.7, 5.8, and 5.9 we obtain the
following forms that can be proved in a similar way as Corollary 6.1.

Corollary 6.2. Let I = Ch, Si. Let µ ∈ M(X) be totally o-continuous and totally
conditional c-continuous.

(1) Let {fα}α∈Γ be a uniformly µ-essentially symmetric bounded, increasing
net of lower semicontinuous functions in F(X) with pointwise limit f ∈
F(X). Assume I(µ, f−α0

) < ∞ for some α0 ∈ Γ . Then the symmetric
extensions Is(µ, f), Is(µ, fα) are defined for all α ∈ Γ (α0) and Is(µ, f) =
limα∈Γ (α0) I

s(µ, fα) = supα∈Γ (α0) I
s(µ, fα).

(2) Let {fα}α∈Γ be a uniformly µ-essentially symmetric bounded, decreasing
net of upper semicontinuous functions in F(X) with pointwise limit f ∈
F(X). Assume I(µ, f+α0

) < ∞ for some α0 ∈ Γ . Then the symmetric
extensions Is(µ, f), Is(µ, fα) are defined for all α ∈ Γ (α0) and Is(µ, f) =
limα∈Γ (α0) I

s(µ, fα) = infα∈Γ (α0) I
s(µ, fα).

Corollary 6.3. Let µ ∈ M(X) be totally o-continuous and totally conditional c-
continuous.

(1) Let {fα}α∈Γ be a uniformly µ-essentially symmetric bounded, increasing
net of lower semicontinuous functions in F(X) with pointwise limit f ∈
F(X). Assume µ({f−α0

> Su(µ, f−)}−) < ∞ for some α0 ∈ Γ . Then the
symmetric extensions Sus(µ, f), Sus(µ, fα) are defined for all α ∈ Γ (α0) and
Sus(µ, f) = limα∈Γ (α0) Su

s(µ, fα) = supα∈Γ (α0) Su
s(µ, fα).
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(2) Let {fα}α∈Γ be a uniformly µ-essentially symmetric bounded, decreasing
net of upper semicontinuous functions in F(X) with pointwise limit f ∈
F(X). Assume µ({f+α0

> Su(µ, f+)}−) < ∞ for some α0 ∈ Γ . Then the
symmetric extensions Sus(µ, f), Sus(µ, fα) are defined for all α ∈ Γ (α0) and
Sus(µ, f) = limα∈Γ (α0) Su

s(µ, fα) = infα∈Γ (α0) Su
s(µ, fα).

Corollary 6.4. Let µ ∈ M(X) be totally o-continuous and totally conditional c-
continuous.

(1) Let {fα}α∈Γ be a uniformly µ-essentially symmetric bounded, increasing net
of lower semicontinuous functions in F(X) with pointwise limit f ∈ F(X).
Assume µ({f−α0

> 0}−) < ∞ for some α0 ∈ Γ . Then the symmetric ex-
tensions Shs(µ, f), Shs(µ, fα) are defined for all α ∈ Γ (α0) and Shs(µ, f) =
limα∈Γ (α0) Sh

s(µ, fα) = supα∈Γ (α0) Sh
s(µ, fα).

(2) Let {fα}α∈Γ be a uniformly µ-essentially symmetric bounded, decreasing net
of upper semicontinuous functions in F(X) with pointwise limit f ∈ F(X).
Assume µ({f+α0

> 0}−) < ∞ for some α0 ∈ Γ . Then the symmetric ex-
tensions Shs(µ, f), Shs(µ, fα) are defined for all α ∈ Γ (α0) and Shs(µ, f) =
limα∈Γ (α0) Sh

s(µ, fα) = infα∈Γ (α0) Sh
s(µ, fα).

7. Examples of nonadditive measures with total continuities

This last section gives some examples of nonadditive measures with total conti-
nuities. To this end let us recall some basic definitions concerning the continuity
and the quasi-additivity of nonadditive measures.

Definition 7.1. Let µ : A → [0,∞] be a nonadditive measure.

(1) µ is called continuous from above if µ(An) → µ(A) whenever A ∈ A and
{An}n∈N ⊂ A is a decreasing sequence with A =

∩∞
n=1An.

(2) µ is called continuous from below if µ(An) → µ(A) whenever A ∈ A and
{An}n∈N ⊂ A is an increasing sequence with A =

∪∞
n=1An.

(3) µ is called continuous if it is continuous from above and below.
(4) µ is called conditional continuous from above if µ(An) → µ(A) whenever

A ∈ A and {An}n∈N ⊂ A is a decreasing sequence with A =
∩∞

n=1An and
µ(A1) <∞.

(5) µ is called totally continuous from above if µ(Aα) → µ(A) whenever A ∈ A
and {Aα}α∈Γ ⊂ A is a decreasing net with A =

∩
α∈Γ Aα.

(6) µ is called totally continuous from below if µ(Aα) → µ(A) whenever A ∈ A
and {Aα}α∈Γ ⊂ A is an increasing net with A =

∪
α∈Γ Aα.

(7) µ is subadditive if µ(A ∪B) ≤ µ(A) + µ(B) whenever A,B ∈ A.
(8) µ is weakly null-additive if µ(A ∪ B) = 0 whenever A,B ∈ A and µ(A) =

µ(B) = 0.
(9) µ is null-additive if µ(A ∪B) = µ(A) whenever A,B ∈ A and µ(B) = 0.
(10) µ is asymptotic null-additive if µ(A ∪ Bn) → µ(A) whenever A ∈ A and

{Bn}n∈N ⊂ A is a decreasing sequence with µ(Bn) → 0.
(11) µ is asymptotic null-subtractive if µ(A \ Bn) → µ(A) whenever A ∈ A and

{Bn}n∈N ⊂ A is a decreasing sequence with µ(Bn) → 0.
(12) µ is autocontinuous from above if µ(A ∪ Bn) → µ(A) whenever A ∈ A and

{Bn}n∈N ⊂ A is a sequence with µ(Bn) → 0.
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(13) µ is autocontinuous from below if µ(A \ Bn) → µ(A) whenever A ∈ A and
{Bn}n∈N ⊂ A is a sequence with µ(Bn) → 0.

Obviously, every asymptotic null-additive or asymptotic null-subtractive non-
additive measure is null-additive and thus weakly null-additive. In addition, every
autocontinuous from above (below) nonadditive measure is asymptotic null-additive
(null-subtractive) and every continuous from above (below) and null-additive non-
additive measure is asymptotic null-additive (null-subtractive); see [6, Proposition
1].

The following special nonadditive measures are essential in Dempster-Shafer the-
ory of evidence and dealing with uncertainty in economics. See [25, Chapter 4] for
their basic properties and historical notes.

Definition 7.2. Let X be a nonempty set and 2X the family of all subsets of X.

(1) A set function m : 2X → [0, 1] is called a basic probability assignment if
m(∅) = 0 and∑

A∈2X
m(A) := sup

{∑
A∈D

m(A) : D ∈ Ω

}
= 1,

where D is a family of a finite number of subsets of X and Ω is the set of
all such families. Then the set function Bel : 2X → [0, 1] defined by

Bel(A) :=
∑
B⊂A

m(B), A ∈ 2X ,

is called a belief measure on X and the set function Pla: 2X → [0, 1] defined
by

Pla(A) :=
∑

B∩A̸=∅

m(B), A ∈ 2X ,

is called a plausibility measure on X.
(2) A nonadditive measure Pos: 2X → [0, 1] is called a possibility measure if

Pos

(∪
i∈I

Ai

)
= sup

i∈I
Pos(Ai)

for any family {Ai}i∈I ⊂ 2X and a nonadditive measure Nec: A → [0, 1] is
called a necessity measure if

Nec

(∩
i∈I

Ai

)
= inf

i∈I
Nec(Ai)

for any family {Ai}i∈I ⊂ 2X .

A nonadditive measure µ : A → [0,∞] is called Radon if for every A ∈ A and
every ε > 0, there are a compact set K and an open set U such that K ⊂ A ⊂ U
and µ(U \K) < ε. For instance, every weakly null-additive, continuous nonadditive
measure µ : A → [0,∞] is Radon if X is a complete or locally compact, separable
metric space and A is the Borel σ-field of X, that is, the smallest σ-field containing
all open subsets of X. This and other related results were already proved in [5] for
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Riesz space-valued nonadditive measures and they can be proved for not necessarily
finite, extended real-valued nonadditive measures by exactly the same idea.

Proposition 7.3. Let µ : A → [0,∞] be a nonadditive measure.

(1) If µ is Radon and asymptotic null-subtractive, then it is totally o-continuous.
(2) If µ is Radon and asymptotic null-additive, then it is totally c-continuous.

Proof. The proof is the same as [6, Theorem 6]. □
Recall that X is strongly Lindelöf if every family of open subsets of X has a

countable subfamily with the same union [19, Definition 7, p. 103]. For instance,
any Suslin space and any space with a countable base for open sets are strongly
Lindelöf [19, p. 104].

Proposition 7.4. Let X be strongly Lindel öf. Let µ : A → [0,∞] be a nonadditive
measure.

(1) If µ is continuous from below, then it is totally o-continuous.
(2) If µ is continuous from above, then it is totally c-continuous.
(3) If µ is conditional continuous from above, then it is totally conditional c-

continuous.

Proof. (1) Let {Gα}α∈Γ be an increasing net of open subsets of X with U =∪
α∈Γ Uα. SinceX is strongly Lindelöf, there is an increasing sequence {αn}n∈N ⊂ Γ

such that U =
∪∞

n=1 Uαn . Then the continuity of µ from below implies µ(Uαn) →
µ(U), so that µ(U) = supα∈Γ µ(Uα). Thus µ is totally o-continuous.

The proofs of (2) and (3) are similar. □
Proposition 7.5. Let µ : A → [0,∞) be a totally o-continuous, finite nonadditive
measure. Let φ : [0,∞) → [0,∞] be an increasing function with φ(0) = 0. Define
the nonadditive measure φ(µ) : A → [0,∞] by φ(µ)(A) := φ(µ(A)) for every A ∈ A.

(1) If φ is lower semicontinuous, then φ(µ) is totally o-continuous.
(2) If φ is upper semicontinuous, then φ(µ) is totally c-continuous.

Proof. (1) Let {Uα}α∈Γ be an increasing net of open subsets of X with U =∪
α∈Γ Uα. By the total o-continuity of µ we have µ(Uα) → µ(U) and thus the

lower semicontinuity of φ implies

(7.1) φ(µ)(U) = φ(µ(U)) ≤ lim inf
α∈Γ

φ(ν(Uα)) = lim inf
α∈Γ

φ(µ)(Uα).

Since φ(µ)(Uα) = inf{φ(µ)(Uβ) : β ∈ Γ, β ≥ α} for every α ∈ Γ , by (7.1) we have
φ(µ)(U) ≤ supα∈Γ φ(µ)(Uα) ≤ φ(µ)(U). Thus φ(µ) is totally o-continuous.

The proof of (2) is similar. □
¿From the above propositions we can verify that not a few nonadditive measures

are totally o-continuous and totally c-continuous.

Proposition 7.6. The following are typical examples of nonadditive measures with
total continuities.

(1) Every Radon nonadditive measure µ : A → [0,∞] that is subadditive or sat-
isfies inf{µ(A) : A ∈ A, A ̸= ∅} > 0 is totally o-continuous and totally
c-continuous.
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(2) Let X be strongly Lindel öf. Every σ-additive measure µ : A → [0,∞] is
totally o-continuous and totally conditional c-continuous.

(3) Let µ : A → [0,∞) be a totally o-continuous, finitely additive measure with
M := 2µ(X)/π < ∞. Then the nonadditive measures µ2,

√
µ, µ2 +

√
µ,

tan (µ/M) are totally o-continuous and totally c-continuous. Note that
µ2 +

√
µ is neither subadditive nor superadditive and tan (µ/M) (X) =

tan (π/2) = ∞. Moreover, ⌊µ⌋ is totally c-continuous and ⌈µ⌉ is totally
o-continuous, where ⌊t⌋ is the floor function, that is, the largest integer
not greater than a real number t and ⌈t⌉is the ceiling function, that is, the
smallest integer not less than t.

(4) Every belief measure Bel on X is totally continuous from above and thus
totally c-continuous, while every plausibility measure Pla on X is totally
continuous from below and thus totally o-continuous.

(5) Every possibility measure Pos on X is totally continuous from below and
thus totally o-continuous, while every necessity measure Nec on X is totally
continuous from above and thus totally c-continuous.

Proof. (1) Every nonadditive measure that is subadditive or satisfies

inf {µ(A) : A ∈ A, A ̸= ∅} > 0

is autocontinuous from above and below [25, Theorem 6.5], so that it is asymptotic
null-additive and asymptotic null-subtractive. Thus by Proposition 7.3 it is totally
c-continuous and totally o-continuous.

(2) Every σ-additive measure is continuous from below and conditional contin-
uous from above. Thus by Proposition 7.4 it is totally o-continuous and totally
conditional c-continuous.

(3) The increasing functions φ(t) := t2,
√
t, t2 +

√
t, tan(t/M) on [0,∞) satisfy

φ(0) = 0. Since they are continuous, by Proposition 7.5 the corresponding non-
additive measures µ2,

√
µ, µ2 +

√
µ, tan(µ/M) are totally o-continuous and totally

c-continuous. In addition, since the floor function ⌊t⌋ is upper semicontinuous and
the ceiling function ⌈t⌉ is lower semicontinuous, ⌊µ⌋ is totally c-continuous and ⌈µ⌉
is totally o-continuous.

(4) The proof (BM4) of [25, Theorem 4.13] shows that the belief measure Bel is
totally continuous from above. Thus the plausibility measure Pla is totally contin-
uous from below since Pla is the dual of Bel [25, Theorem 4.16].

(5) It is obvious that the possibility measure Pos is totally continuous from below.
Thus the necessity measure Nec is totally continuous from above since Nec is the
dual of Pos [25, Theorem 4.25]. □
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