Yokohama Publishers

ANOTHER GENERALIZATION OF EDELSTEIN'S FIXED POINT THEOREM IN GENERALIZED METRIC SPACES

TOMONARI SUZUKI

Abstract

We prove another generalization of Edelstein's fixed point theorem in compact ν-generalized metric spaces.

1. Introduction

We define the meaning of " $\left\{x_{n}\right\}_{n=1}^{\mu} \neq$ " by that $\left\{x_{n}\right\}_{n=1}^{\mu}$ is a finite sequence and $x_{1}, x_{2}, \ldots, x_{\mu}$ are all different. Similarly we define the meaning of " $\left\{x_{n}\right\}_{n \in \mathbb{N}} \neq$ " by that $\left\{x_{n}\right\}$ is a sequence and x_{1}, x_{2}, \ldots are all different.

In 2000, Branciari introduced the following very interesting concept.
Definition 1.1 (Branciari [2]). Let X be a set, let d be a function from $X \times X$ into $[0, \infty)$ and let $\nu \in \mathbb{N}$. Then (X, d) is said to be a ν-generalized metric space if the following hold:
(N1) $d(x, y)=0$ iff $x=y$ for any $x, y \in X$.
(N2) $d(x, y)=d(y, x)$ for any $x, y \in X$.
(N3) $d(x, y) \leq D\left(x, u_{1}, u_{2}, \ldots, u_{\nu}, y\right)$ for any $x, u_{1}, u_{2}, \ldots, u_{\nu}, y \in X$ such that $x, u_{1}, u_{2}, \ldots, u_{\nu}, y$ are all different, where $D\left(x, u_{1}, u_{2}, \ldots, u_{\nu}, y\right)=d\left(x, u_{1}\right)+$ $d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{\nu}, y\right)$.
It is obvious that (X, d) is a metric space if and only if (X, d) is a 1 -generalized metric space. We found that not every generalized metric space has the compatible topology. See Example 7 in [4] and Example 4.2 in [6]. In [1] and [7], we discussed the completeness and compactness of ν-generalized metric spaces, respectively. See also [5].

In 1962, Edelstein proved the following famous fixed point theorem.
Theorem 1.2 (Edelstein [3]). Let (X, d) be a compact metric space and let T be a mapping on X such that $d(T x, T y)<d(x, y)$ for any $x, y \in X$ with $x \neq y$. Then T has a unique fixed point.

Very recently, we prove the following generalization of Theorem 1.2.
2010 Mathematics Subject Classification. Primary 54E25; Secondary 54E45, 54H25.
Key words and phrases. Fixed point, Edelstein's fixed point theorem, compactness, ν-generalized metric space.

The author is supported in part by JSPS KAKENHI Grant Number 25400141 from Japan Society for the Promotion of Science.

Theorem $1.3([7])$. Let (X, d) be a ν-generalized metric space such that X is compact in the strong sense. Let T be a mapping on X such that $d(T x, T y)<d(x, y)$ for any $x, y \in X$ with $x \neq y$. Then T has a unique fixed point z. Moreover for any $x \in X,\left\{T^{n} x\right\}$ converges to z in the strong sense.

In this paper, we prove another generalization of Theorem 1.2, which difffers from Theorem 1.3.

2. Preliminaries

In this section, we give some preliminaries.
Throughout this paper, we denote by \mathbb{N} the set of positive integers. For an arbitrary set A, we also denote by $\# A$ the number of the elements of A.

Lemma 2.1. Let ν be an odd positive integer and let $\mu \in \mathbb{N}$ with $\mu \geq \nu+3$. Then there exists a positive integer M satisfying the following:

- If (X, d) is a ν-generalized metric space, ε is a positive real number and $\left\{x_{j}\right\}_{j=1}^{\mu} \neq$ is a finite sequence in X such that $d\left(x_{j}, x_{j+1}\right) \leq \varepsilon$ for any $j=$ $1,2, \ldots, \mu-1$, then

$$
d\left(x_{i}, x_{j}\right) \leq M \varepsilon
$$

holds for any $i, j \in\{1,2, \ldots, \mu\}$.
Proof. In the case where $\nu=1$, the conclusion is obvious. So we assume $\nu \geq 3$. We have

$$
\begin{aligned}
d\left(x_{1}, x_{\nu+2}\right) & \leq D\left(x_{1}, x_{2}, \ldots, x_{\nu+2}\right) \leq(\nu+1) \varepsilon \\
d\left(x_{2}, x_{\nu+3}\right) & \leq D\left(x_{2}, x_{3}, \ldots, x_{\nu+3}\right) \leq(\nu+1) \varepsilon \\
d\left(x_{1}, x_{4}\right) & \leq D\left(x_{1}, x_{2}, x_{\nu+3}, x_{\nu+2}, \ldots, x_{4}\right) \leq(2 \nu+1) \varepsilon \\
d\left(x_{1}, x_{6}\right) & \leq D\left(x_{1}, x_{4}, x_{3}, x_{2}, x_{\nu+3}, \ldots, x_{6}\right) \leq(4 \nu+1) \varepsilon \\
d\left(x_{1}, x_{8}\right) & \leq D\left(x_{1}, x_{6}, \ldots, x_{2}, x_{\nu+3}, \ldots, x_{8}\right) \leq(6 \nu+1) \varepsilon \\
& \vdots \\
d\left(x_{1}, x_{\nu+1}\right) & \leq D\left(x_{1}, x_{\nu-1}, \ldots, x_{2}, x_{\nu+3}, \ldots, x_{\nu+1}\right) \leq\left(\nu^{2}-\nu+1\right) \varepsilon \\
d\left(x_{1}, x_{\nu}\right) & \leq D\left(x_{1}, x_{\nu+2}, x_{\nu+3}, x_{2}, \ldots, x_{\nu}\right) \leq(3 \nu+1) \varepsilon \\
d\left(x_{1}, x_{\nu-2}\right) & \leq D\left(x_{1}, x_{\nu}, \ldots, x_{\nu+3}, x_{2}, \ldots, x_{\nu-2}\right) \leq(5 \nu+1) \varepsilon \\
& \vdots \\
d\left(x_{1}, x_{3}\right) & \leq D\left(x_{1}, x_{5}, \ldots, x_{\nu+3}, x_{2}, x_{3}\right) \leq\left(\nu^{2}+1\right) \varepsilon
\end{aligned}
$$

by (N3). Putting $N_{1}=\nu^{2}+1$, we have

$$
d\left(x_{1}, x_{j}\right) \leq N_{1} \varepsilon
$$

for any $j \in\{1,2, \ldots, \nu+2\}$. We have

$$
d\left(x_{1}, x_{j}\right) \leq D\left(x_{1}, x_{j-\nu}, \ldots, x_{j}\right) \leq\left(N_{1}+\nu\right) \varepsilon
$$

for any $j \in\{\nu+3, \ldots, 2 \nu+2\}$. Continuing this calculations, we have

$$
d\left(x_{1}, x_{j}\right) \leq D\left(x_{1}, x_{j-\nu}, \ldots, x_{j}\right) \leq\left(N_{1}+k \nu\right) \varepsilon
$$

for any $j, k \in \mathbb{N}$ with $k \nu+2<j \leq(k+1) \nu+2$ and $j \leq \mu$. Therefore there exists $N_{2} \in \mathbb{N}$ satisfying

$$
d\left(x_{1}, x_{j}\right) \leq N_{2} \varepsilon
$$

for any $j \in\{1,2, \ldots, \mu\}$. Similarly we can prove

$$
d\left(x_{\mu}, x_{j}\right) \leq N_{2} \varepsilon
$$

for any $j \in\{1,2, \ldots, \mu\}$. We put $M=3 N_{2}+\nu-2$ and fix $i, j \in \mathbb{N}$ with $1<i<$ $i+1<j<\mu$. We consider the following three cases:

- $i \geq \nu+1$
- $i<\nu+1$ and $j \geq \nu+2$
- $i<\nu+1$ and $j<\nu+2$

In the first case, we have

$$
d\left(x_{i}, x_{j}\right) \leq D\left(x_{i}, \ldots, x_{i-\nu+1}, x_{1}, x_{j}\right) \leq\left(2 N_{2}+\nu-1\right) \varepsilon \leq M \varepsilon
$$

In the second case, we have

$$
d\left(x_{i}, x_{j}\right) \leq D\left(x_{i}, \ldots, x_{1}, x_{i+j-\nu-1}, \ldots, x_{j}\right) \leq\left(N_{2}+\nu\right) \varepsilon \leq M \varepsilon
$$

In the third case, we have

$$
d\left(x_{i}, x_{j}\right) \leq D\left(x_{i}, \ldots, x_{1}, x_{i+1}, \ldots, x_{j-1}, x_{\mu}, x_{\nu+1}, \ldots, x_{j}\right) \leq M \varepsilon
$$

Noting M does not depend on (X, d) and $\left\{x_{j}\right\}_{j=1}^{\mu}$, we completes the proof.
Lemma 2.2. Let ν be an even positive integer and let $\mu \in \mathbb{N}$ with $\mu \geq \nu+3$. Then there exists a positive integer M satisfying the following:

- If (X, d) is a ν-generalized metric space, ε is a positive real number and $\left\{x_{j}\right\}_{j=1}^{\mu} \neq$ is a finite sequence in X such that $d\left(x_{j}, x_{j+1}\right) \leq \varepsilon$ for any $j=$ $1,2, \ldots, \mu-1$, then

$$
d\left(x_{i}, x_{j}\right) \leq M \varepsilon
$$

holds for any $i, j \in\{1,2, \ldots, \mu\}$ such that $i-j$ is odd.
Proof. We have

$$
d\left(x_{1}, x_{\nu+2}\right) \leq D\left(x_{1}, \ldots, x_{\nu+2}\right) \leq(\nu+1) \varepsilon
$$

by (N3). For the case where $\nu \geq 4$, we further have

$$
\begin{aligned}
d\left(x_{2}, x_{\nu+3}\right) & \leq D\left(x_{2}, \ldots, x_{\nu+3}\right) \leq(\nu+1) \varepsilon \\
d\left(x_{1}, x_{4}\right) & \leq D\left(x_{1}, x_{2}, x_{\nu+3}, \ldots, x_{4}\right) \leq(2 \nu+1) \varepsilon \\
& \vdots \\
d\left(x_{1}, x_{\nu}\right) & \leq D\left(x_{1}, x_{\nu-2}, \ldots, x_{2}, x_{\nu+3}, \ldots, x_{\nu}\right) \leq\left(\nu^{2}-2 \nu+1\right) \varepsilon
\end{aligned}
$$

Putting $N_{1}=\max \left\{\nu^{2}-2 \nu+1, \nu+1\right\}$, we have

$$
d\left(x_{1}, x_{j}\right) \leq N_{1} \varepsilon
$$

for any $j \in\{2, \ldots, \nu+2\}$ such that j is even. As in the proof of Lemma 2.1, there exists $N_{2} \in \mathbb{N}$ satisfying

$$
d\left(x_{1}, x_{j}\right) \leq N_{2} \varepsilon
$$

for any $j \in\{2, \ldots, \mu\}$ such that j is even. We consider the following two cases:

- μ is odd.
- μ is even.

In the case where μ is odd, we can prove

$$
d\left(x_{\mu}, x_{j}\right) \leq N_{2} \varepsilon
$$

for any $j \in\{2, \ldots, \mu-1\}$ such that j is even. We put $M=3 N_{2}+\nu-2$ and fix $i, j \in \mathbb{N}$ such that $1<i<i+1<j<\mu$ and $i-j$ is odd. Without loss of generality, we may assume that i is odd and j is even. We consider the following three cases:

- $i \geq \nu+1$
- $i<\nu+1$ and $j \geq \nu+2$
- $i<\nu+1$ and $j<\nu+2$

In the first and second cases, we have

$$
d\left(x_{i}, x_{j}\right) \leq M \varepsilon .
$$

as in the proof of Lemma 2.1. In the third case, noting $i+3 \leq j$, we have

$$
d\left(x_{i}, x_{j}\right) \leq D\left(x_{i}, \ldots, x_{1}, x_{i+1}, \ldots, x_{j-2}, x_{\mu}, x_{\nu+2}, \ldots, x_{j}\right) \leq M \varepsilon .
$$

So we obtain the desired result in the case where μ is odd. In the other case, where μ is even, noting $\mu-1 \geq \nu+3$, we have

$$
d\left(x_{i}, x_{j}\right) \leq M \varepsilon
$$

for any $i, j \in \mathbb{N}$ satisfying either of the following:

- $i, j \in\{1, \ldots, \mu-1\}$ and $i-j$ is odd.
- $i, j \in\{2, \ldots, \mu\}$ and $i-j$ is odd.

So we only have to consider the case where $i=1$ and $j=\mu$. In this case we have

$$
d\left(x_{1}, x_{\mu}\right) \leq N_{2} \mu \leq M \varepsilon
$$

Noting M does not depend on (X, d) and $\left\{x_{j}\right\}_{j=1}^{\mu}$, we completes the proof.
As mentioned in Section 1, in general, ν-generalized metric spaces do not necessarily have the compatible topology; see $[4,6]$. So we have to define the concept of the convergence and so on.
Definition 2.3 ($[2,7])$. Let (X, d) be a ν-generalized metric space.

- A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy iff $\lim _{n} \sup _{m>n} d\left(x_{m}, x_{n}\right)=0$ holds.
- A sequence $\left\{x_{n}\right\}$ in X is said to converge to x iff $\lim _{n} d\left(x, x_{n}\right)=0$ holds.
- A sequence $\left\{x_{n}\right\}$ in X is said to converge exclusively to x iff $\lim _{n} d\left(x, x_{n}\right)=0$ holds and $\lim _{n} d\left(y, x_{f(n)}\right)=0$ does not hold for any $y \in X \backslash\{x\}$ and for any subsequence $\left\{x_{f(n)}\right\}$ of $\left\{x_{n}\right\}$.
- A sequence $\left\{x_{n}\right\}$ in X is said to converge to x in the strong sense iff $\left\{x_{n}\right\}$ is Cauchy and $\left\{x_{n}\right\}$ converges to x.

Definition $2.4([7])$. Let (X, d) be a ν-generalized metric space.

- X is compact iff for any sequence $\left\{x_{n}\right\}$ in X, there exists a subsequence $\left\{x_{f(n)}\right\}$ of $\left\{x_{n}\right\}$ converging to some $z \in X$.
- X is compact in the strong sense iff for any sequence $\left\{x_{n}\right\}$ in X, there exists a subsequence $\left\{x_{f(n)}\right\}$ of $\left\{x_{n}\right\}$ converging to some $z \in X$ in the strong sense.

Lemma 2.5. Let (X, d) be a 2-generalized metric space and let T be a mapping on X such that

$$
\begin{equation*}
d(T x, T y) \leq d(x, y) \tag{2.1}
\end{equation*}
$$

for any $x, y \in X$. Let $\left\{x_{n}\right\}$ be a sequence in X converging to some $v \in X$. Then $\left\{T x_{n}\right\}$ converges to $T v$. Moreover, if $T x_{n} \neq x_{n}$ and $T x_{n} \neq T v$ for sufficiently large $n \in \mathbb{N}$ and $T v \neq v$, then

$$
\begin{equation*}
d(v, T v)=\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right) \tag{2.2}
\end{equation*}
$$

holds.

3. Main Results

In this section, we prove our main results. We begin with the case where $\nu=2$.
Theorem 3.1. Let (X, d) be a compact 2-generalized metric space. Let T be a mapping on X such that $d(T x, T y)<d(x, y)$ for any $x, y \in X$ with $x \neq y$. Then T has a unique fixed point z. Moreover $\left\{T^{n} x\right\}$ converges to z for any $x \in X$.

Remark. This theorem is a correction of Theorem 3.1 in [7]. We wrote " $\left\{T{ }^{n} x\right\}$ converges exclusively to $z "$ in [7], which is not correct.

Proof. We have proved that T has a unique fixed point z in [7]. We note (2.1) holds for any $x, y \in X$. Fix $x \in X$. Since $\left\{d\left(T^{n} x, z\right)\right\}$ is nonincreasing, it converges to some nonegative real number β. Arguing by contradiction, we assume $\beta>0$. Then $T^{n} x \neq z$ holds for any $n \in \mathbb{N}$. So $\left\{d\left(T^{n} x, T^{n+1} x\right)\right\}$ is strictly decreasing and hence it converges to some nonegative real number γ and $T^{n} x$ are all different. Since X is compact, there exists a subsequence $\left\{T^{f(n)} x\right\}$ of $\left\{T^{n} x\right\}$ converging to some $v \in X$. By Lemma $2.5(2.1),\left\{T^{f(n)+1} x\right\}$ and $\left\{T^{f(n)+2} x\right\}$ converge to $T v$ and $T^{2} v$, respectively. Since

$$
\lim _{n \rightarrow \infty} d\left(T^{f(n)} x, z\right)=\lim _{n \rightarrow \infty} d\left(T^{f(n)+1} x, z\right)=\beta>0
$$

we note $v \neq z$ and $T v \neq z$, thus, $v \neq T v$ and $T v \neq T^{2} v$ holds. By Lemma 2.5 (2.2), we have

$$
d\left(T v, T^{2} v\right)=d(v, T v)=\gamma
$$

which implies a contradiction. Therefore we obtain $\beta=0$.
We give a proof in the case where $\nu \geq 3$.
Theorem 3.2. Let (X, d) be a compact ν-generalized metric space. Let T be a mapping on X such that

$$
d(T x, T y)<d(x, y)
$$

for any $x, y \in X$ with $x \neq y$. Then T has a unique fixed point z. Moreover $\left\{T^{n} x\right\}$ converges to z for any $x \in X$.

Proof. In the case where $\nu=1,2$, we have already proved this theorem (Theorems 1.2 and 3.1). So we assume $\nu \geq 3$. We first show that there exists at most one fixed point of T. If $z, w \in X$ are distinct fixed points of T, then we have

$$
d(z, w)=d(T z, T w)<d(z, w)
$$

which implies a contradiction. So we have shown that there exists at most one fixed point of T. Fix $u \in X$ and define a sequence $\left\{u_{n}\right\}$ in X by $u_{n}=T^{n} u$ for $n \in \mathbb{N}$. We next show that $\left\{u_{n}\right\}$ converges to a fixed point of T, dividing the following three cases:
(i) There exists $k \in \mathbb{N}$ such that $u_{k+1}=u_{k}$.
(ii) $u_{n+1} \neq u_{n}$ for all $n \in \mathbb{N}$ and there exist $k, \ell \in \mathbb{N}$ such that $k+2 \leq \ell$ and $u_{k}=u_{\ell}$.
(iii) $\left\{u_{n}\right\}_{n \in \mathbb{N}}{ }^{\text {. }}$.

In the case of (i), u_{k} is a fixed point of T and $\left\{u_{n}\right\}$ converges to u_{k}. In the case of (ii), $\left\{d\left(u_{n}, u_{n+1}\right)\right\}$ is strictly decreasing. So, since $u_{k+1}=u_{\ell+1}$, we have

$$
d\left(u_{k}, u_{k+1}\right)=d\left(u_{\ell}, u_{\ell+1}\right)<d\left(u_{k}, u_{k+1}\right)
$$

which implies a contradiction. Thus, the case of (ii) cannot be possible. In the case of (iii), since X is compact, there exists a subsequence of $\left\{T^{n} x\right\}$ converging to $z \in X$. Put $\mu=\nu+3$ and let M be as in Lemmas 2.1 and 2.2. Define a sequence $\left\{z_{n}\right\}$ in X by $z_{n}=T^{n} z$ for $n \in \mathbb{N} \cup\{0\}$. Arguing by contradiction, we assume the following:

- z_{n} is not a fixed point of T for any $n \in \mathbb{N} \cup\{0\}$.

Thus, $\left\{z_{n}\right\}_{n \in \mathbb{N} \cup\{0\}} \neq$. We further consider the following three cases:

$$
\begin{aligned}
& \text { (iii-a) }\left\{u_{n}: n \in \mathbb{N}\right\} \cap\left\{z_{n}: n \in \mathbb{N} \cup\{0\}\right\}=\varnothing \text { and } \nu \text { is odd. } \\
& \text { (iii-b) }\left\{u_{n}: n \in \mathbb{N}\right\} \cap\left\{z_{n}: n \in \mathbb{N} \cup\{0\}\right\}=\varnothing \text { and } \nu \text { is even. } \\
& \text { (iii-c) }\left\{u_{n}: n \in \mathbb{N}\right\} \cap\left\{z_{n}: n \in \mathbb{N} \cup\{0\}\right\} \neq \varnothing
\end{aligned}
$$

In the case of (iii-a), we let $\varepsilon>0$ satisfy

$$
\begin{equation*}
d\left(T z, T^{2} z\right)+(M+\nu-1) \varepsilon<d(z, T z) \tag{3.1}
\end{equation*}
$$

Then we can choose $k, \ell \in \mathbb{N}$ satisfying

$$
k+2 \leq \ell, \quad d\left(u_{k}, z\right)<\varepsilon \quad \text { and } \quad d\left(u_{\ell}, z\right)<\varepsilon
$$

Then we have

$$
d\left(x_{j \ell-(j-1) k}, z_{j \ell-j k}\right)<d\left(x_{k}, z\right)<\varepsilon
$$

and

$$
d\left(x_{(j+1) \ell-j k}, z_{j \ell-j k}\right)<d\left(x_{\ell}, z\right)<\varepsilon
$$

for any $j \in \mathbb{N}$. Define a finite sequence $\left\{y_{n}\right\}_{n=1}^{\mu} \neq$ by

$$
\begin{array}{llll}
y_{1}=z, & y_{2}=x_{\ell}, & y_{3}=z_{\ell-k}, & y_{4}=x_{2 \ell-k} \\
y_{5}=z_{2 \ell-2 k}, & y_{6}=x_{3 \ell-2 k}, & y_{7}=z_{3 \ell-3 k}, & y_{8}=x_{4 \ell-3 k} \\
\ldots, & y_{\mu}=x_{(\nu+3) \ell / 2-(\nu+1) k / 2} &
\end{array}
$$

Since $d\left(y_{j}, y_{j+1}\right)<\varepsilon$ for any j, we have $d\left(y_{i}, y_{j}\right)<M \varepsilon$ for any i, j by Lemma 2.1. In the case where $\nu=3$, we have

$$
\begin{aligned}
d(z, T z) & \leq D\left(y_{1}=z, y_{3}=z_{\ell-k}, T z_{\ell-k}, T x_{\ell}, T z\right) \\
& <M \varepsilon+d\left(z_{\ell-k}, T z_{\ell-k}\right)+d\left(T z_{\ell-k}, T x_{\ell}\right)+d\left(T x_{\ell}, T z\right) \\
& <M \varepsilon+d\left(T z, T^{2} z\right)+d\left(z_{\ell-k}, x_{\ell}\right)+d\left(x_{\ell}, z\right) \\
& <d\left(T z, T^{2} z\right)+(M+2) \varepsilon \\
& <d(z, T z)
\end{aligned}
$$

which implies a contradiction. In the other case, where $\nu \geq 5$, we have

$$
\begin{aligned}
d(z, T z) & \leq D\left(y_{1}, y_{\nu}, \ldots, y_{3}, T z_{\ell-k}, T x_{\ell}, T z\right) \\
& <(M+\nu-3) \varepsilon+d\left(z_{\ell-k}, T z_{\ell-k}\right)+d\left(T z_{\ell-k}, T x_{\ell}\right)+d\left(T x_{\ell}, T z\right) \\
& <d\left(T z, T^{2} z\right)+(M+\nu-1) \varepsilon<d(z, T z)
\end{aligned}
$$

which implies a contradiction. In the case of (iii-b), we let ε, k, ℓ and $\left\{y_{n}\right\}_{n=1}^{\mu} \neq$ be as in the case of (iii-a). By Lemma 2.2, we have $d\left(y_{i}, y_{j}\right)<M \varepsilon$ for any i, j such that $i-j$ is odd. Noting that $1-\nu$ is odd, we have

$$
\begin{aligned}
d(z, T z) & \leq D\left(y_{1}, y_{\nu}, \ldots, y_{3}, T z_{\ell-k}, T x_{\ell}, T z\right) \\
& <(M+\nu-3) \varepsilon+d\left(z_{\ell-k}, T z_{\ell-k}\right)+d\left(T z_{\ell-k}, T x_{\ell}\right)+d\left(T x_{\ell}, T z\right) \\
& <d\left(T z, T^{2} z\right)+(M+\nu-1) \varepsilon<d(z, T z)
\end{aligned}
$$

which implies a contradiction. In the case of (iii-c), we let $\varepsilon>0$ satisfy (3.1). Then we can choose $\ell \in \mathbb{N}$ satisfying $2 \leq \ell$ and $d\left(z_{\ell}, z\right)<\varepsilon$. Then we have

$$
d\left(z_{j \ell}, z_{(j-1) \ell}\right) \leq d\left(z_{\ell}, z\right)<\varepsilon
$$

for any $j \in \mathbb{N}$. Define a finite sequence $\left\{y_{n}\right\}_{n=1}^{\mu} \neq$ by $y_{n}=z_{(n-1) \ell}$. By Lemmas 2.1 and 2.2 , we have $d\left(y_{i}, y_{j}\right)<M \varepsilon$ for any i, j (such that $i-j$ is odd, in the case where ν is even). We have

$$
\begin{aligned}
d(z, T z) & \leq D\left(z=y_{1}, y_{\nu}, \ldots, y_{3}=z_{2 \ell}, T z_{2 \ell}, T z_{\ell}, T z\right) \\
& <(M+\nu-3) \varepsilon+d\left(z_{2 \ell}, T z_{2 \ell}\right)+d\left(T z_{2 \ell}, T z_{\ell}\right)+d\left(T z_{\ell}, T z\right) \\
& <d\left(T z, T^{2} z\right)+(M+\nu-1) \varepsilon<d(z, T z)
\end{aligned}
$$

which implies a contradiction. Therefore we obtain that z_{κ} is a fixed point for some $\kappa \in \mathbb{N} \cup\{0\}$. Since

$$
\liminf _{n \rightarrow \infty} d\left(z_{\kappa}, x_{n}\right) \leq \liminf _{n \rightarrow \infty} d\left(z, x_{n-\kappa}\right)=0
$$

and $\left\{d\left(z_{\kappa}, x_{n}\right)\right\}$ is nonincreasing, $\left\{x_{n}\right\}$ itself converges to z_{κ}.
Remark. We can prove Theorem 3.1 by a similar method of proof of Theorem 3.2. Indeed, in the case of (iii-b), we have

$$
\begin{aligned}
d(z, T z) & \leq D\left(y_{1}, y_{4}, y_{3}, T z\right) \\
& \leq D\left(y_{1}, y_{4}, y_{3}, T z_{\ell-k}, T x_{\ell}, T z\right) \\
& <d\left(T z, T^{2} z\right)+(M+\nu+1) \varepsilon
\end{aligned}
$$

In the case of (iii-c), we have

$$
\begin{aligned}
d(z, T z) & \leq D\left(y_{1}, y_{4}, y_{3}, T z\right) \\
& \leq D\left(y_{1}, y_{4}, y_{3}, T z_{2 \ell}, T z_{\ell}, T z\right) \\
& <d\left(T z, T^{2} z\right)+(M+\nu+1) \varepsilon
\end{aligned}
$$

Using these inequalities, we can prove Theorem 3.1.

4. Example

In order to show that Theorem 3.2 is new, we give an example of ν-generalized metric space which is compact, however, which is not compact in the strong sense.
Proposition 4.1. Let (X, d) be a ν-generalized metric space and let $\lambda \in \mathbb{N}$ such that λ is divisible by ν. Then (X, d) is a λ-generalized metric space.
Proof. We only have to show (N3). Let $\left\{x_{n}\right\}_{n=1}^{\lambda+2 \neq}$ be a finite sequence in X. Then we have

$$
\begin{aligned}
d\left(x_{1}, x_{\nu+2}\right) & \leq D\left(x_{1}, \ldots, x_{\nu+2}\right) \\
d\left(x_{1}, x_{2 \nu+2}\right) & \leq D\left(x_{1}, x_{\nu+2}, \ldots, x_{2 \nu+2}\right) \leq D\left(x_{1}, \ldots, x_{2 \nu+2}\right) \\
& \vdots \\
d\left(x_{1}, x_{\lambda+2}\right) & \leq D\left(x_{1}, x_{\lambda-\nu+2}, \ldots, x_{\lambda+2}\right) \leq D\left(x_{1}, \ldots, x_{\lambda+2}\right) .
\end{aligned}
$$

Therefore we obtain (N3).
Lemma 4.2. Let $\nu \in \mathbb{N}$ be odd. Let (X, ρ) be a bounded metric space and let M be a real number satisfying

$$
\sup \{\rho(x, y): x, y \in X\} \leq M .
$$

Let A and B be two subsets of X with $A \cap B=\varnothing$. Assume $\# A \leq(\nu-1) / 2$. Define a function d from $X \times X$ into $[0, \infty)$ by

$$
\begin{array}{ll}
d(x, x)=0 & \\
d(x, y)=d(y, x)=\rho(x, y) & \\
d(x, y)=M & \\
\text { otherwise. } x \in A \text { and } y \in B \\
d(x)
\end{array}
$$

Then (X, d) is a ν-generalized metric space.
Proof. We only have to show (N3). Let $\left\{x_{n}\right\}_{n=1}^{\nu+2 \neq}$ be a finite sequence in X. Then we have

$$
d\left(x_{1}, x_{\nu+2}\right) \leq M \leq D\left(x_{1}, \ldots, x_{\nu+2}\right) .
$$

Therefore we obtain (N3).
Lemma 4.3. Let $\nu \in \mathbb{N}$ be even. Let (X, ρ) be a bounded metric space and let A and B be two subsets of X with $A \cap B=\varnothing$. Let M and d be as in Lemma 4.2. Then (X, d) is a ν-generalized metric space.

Proof. We have already proved that (X, d) is a 2 -generalized metric space; see Lemma 4 in [4] and Remark 17 in [1]. By Proposition 4.1, we obtain the desired result.

Example 4.4. Put $X=\{0\} \cup\{1 / n: n \in \mathbb{N}\}$ and define a function ρ from $X \times X$ into $[0, \infty)$ by $\rho(x, y)=|x-y|$. Put $A=\{0\}, B=\{1 / n: n \in \mathbb{N}\}$ and $M=1$. Define a function d as in Lemmas 4.2 and 4.3. Then the following holds:
(i) (X, d) is a ν-generalized metric space for any $\nu \in \mathbb{N}$ with $\nu \geq 2$.
(ii) X is compact
(iii) X is not compact in the strong sense.

Proof. By Lemmas 4.2 and $4.3,(X, d)$ is a ν-generalized metric space for any $\nu \in \mathbb{N}$ with $\nu \geq 2$. We next show (ii). Let $\left\{x_{n}\right\}$ be a sequence in X. We consider the following two cases:

- There exists $y \in X$ such that $\#\left\{n: x_{n}=y\right\}=\infty$.
- For any $y \in X, \#\left\{n: x_{n}=y\right\}<\infty$.

In the first case, there exists a subsequence of $\left\{x_{n}\right\}$ converging to y. In the second case, $\left\{x_{n}\right\}$ itself converges to 0 . Therefore X is compact. Let us prove (iii). Define a sequence $\left\{x_{n}\right\}$ in X by $x_{n}=1 / n$. Then $\left\{x_{n}\right\}$ converges exclusively to 0 . Since $d\left(x_{m}, x_{n}\right)=M$ for any $m, n \in \mathbb{N}$ with $m \neq n$, there does not exist a subsequence of $\left\{x_{n}\right\}$ which is Cauchy. Therefore X is not compact in the strong sense.

References

[1] B. Alamri, T. Suzuki and L. A. Khan, Caristi's fixed point theorem and Subrahmanyam's fixed point theorem in ν-generalized metric spaces, J. Funct. Spaces 2015, 2015:709391, 6 pp.
[2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31-37.
[3] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
[4] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal. 2014, 2014:458098, 5 pp.
[5] T. Suzuki, B. Alamri and L. A. Khan, Some notes on fixed point theorems in ν-generalized metric spaces, Bull. Kyushu Inst. Technol. 62 (2015), 15-23.
[6] T. Suzuki, B. Alamri and M. Kikkawa, Only 3-generalized metric spaces have a compatible symmetric topology, Open Math. 13 (2015), 510-517.
[7] T. Suzuki, B. Alamri and M. Kikkawa, Edelstein's fixed point theorem in generalized metric spaces, J. Nonlinear Convex Anal. 16 (2015), 2301-2309.

Manuscript received 11 March 2016

[^0]
[^0]: Tomonari Suzuki
 Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

 E-mail address: suzuki-t@mns.kyutech.ac.jp

