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ANOTHER GENERALIZATION OF EDELSTEIN’S FIXED POINT
THEOREM IN GENERALIZED METRIC SPACES

TOMONARI SUZUKI

ABSTRACT. We prove another generalization of Edelstein’s fixed point theorem
in compact v-generalized metric spaces.

1. INTRODUCTION

We define the meaning of “{z,}*_,7” by that {z,}"_, is a finite sequence and
r1,%2,...,%, are all different. Similarly we define the meaning of “Laptnen”” by
that {z,} is a sequence and x1, x9, ... are all different.

In 2000, Branciari introduced the following very interesting concept.

Definition 1.1 (Branciari [2]). Let X be a set, let d be a function from X x X
into [0,00) and let v € N. Then (X, d) is said to be a v-generalized metric space if
the following hold:
(N1) d(z,y) =0 iff x = y for any =,y € X.
(N2) d(z,y) = d(y,x) for any z,y € X.
(N3) d(z,y) < D(z,ui,uz,...,u,,y) for any x,uy,us,...,u,,y € X such that
X, U, U2, ..., Uy, y are all different, where D(z, uy, ug, ..., uy,y) = d(x,u1)+
d(u1,uz) + -+ d(uy, y).

It is obvious that (X, d) is a metric space if and only if (X, d) is a 1-generalized
metric space. We found that not every generalized metric space has the compatible
topology. See Example 7 in [4] and Example 4.2 in [6]. In [1] and [7], we discussed
the completeness and compactness of v-generalized metric spaces, respectively. See
also [5].

In 1962, Edelstein proved the following famous fixed point theorem.

Theorem 1.2 (Edelstein [3]). Let (X, d) be a compact metric space and let T be a
mapping on X such that d(Tz,Ty) < d(x,y) for any x,y € X with x #vy. Then T
has a unique fixed point.

Very recently, we prove the following generalization of Theorem 1.2.
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Theorem 1.3 ([7]). Let (X,d) be a v-generalized metric space such that X is
compact in the strong sense. Let T be a mapping on X such that d(Tx,Ty) < d(z,y)
for any x,y € X with x #y. Then T has a unique fized point z. Moreover for any
x € X, {T"z} converges to z in the strong sense.

In this paper, we prove another generalization of Theorem 1.2, which difffers from
Theorem 1.3.

2. PRELIMINARIES

In this section, we give some preliminaries.
Throughout this paper, we denote by N the set of positive integers. For an
arbitrary set A, we also denote by # A the number of the elements of A.

Lemma 2.1. Let v be an odd positive integer and let p € N with u > v+ 3. Then
there exists a positive integer M satisfying the following:

o If (X,d) is a v-generalized metric space, € is a positive real number and
{a:j}?:ﬁ is a finite sequence in X such that d(zj,zj11) < € for any j =
1,2,...,u—1, then

d(fL‘i, IL‘J’) <Me
holds for any i,j € {1,2,...,u}.

Proof. In the case where v = 1, the conclusion is obvious. So we assume v > 3. We
have

d(xl,xy+2) S D(le,xg, . ,:EV+2) S (V + 1)6
d(:zg,xy+3) < D(.%’Q,xg, - ,:EV+3) < (V + 1)6
d($1,x4) < D($1,$2,$V+3,(I)V+2, v 71"4) < (2V + 1)5
d(z1,76) < D(21,74, 23,22, Tp43,...,76) < (dv+1)¢
d(:L‘l,xg) S D(le,xﬁ, ey L2, Lyt-3y - - - ,xg) S (61/ + 1)5
d(xlaxu—‘rl) S D(.Tl,ﬂ?l,_l, .. '7x27$u+37 R ,.'1?,/_’_1) S (V2 —v+ 1)8
d(xz1,2,) < D(x1,Tp42, Tpts, X2, ..., 0) < (Bv+1)e
d(z1,2y-2) < D(x1,Zyy oy Tyi3, T2y, Ty—2) < (Br+1)e
d(xy,23) < D(x1,25,...,T,43,20,23) < (2 +1)e

by (N3). Putting N1 = % + 1, we have
d(z1,zj) < Nie
for any j € {1,2,...,v+ 2}. We have
d(z,zj) < D(x1,2j—p,...,25) < (N1 +1v)e
for any j € {v+3,...,2v + 2}. Continuing this calculations, we have
d(z1,z5) < D(x1,2j—p,...,25) < (N1 +kv)e
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for any j,k € Nwith kv +2 < j < (k+1)v+2 and j < pu. Therefore there exists
Ny € N satisfying

d(:lj'l, .%'j) S N2 (3
for any j € {1,2,...,u}. Similarly we can prove

d(zy,z;) < Noe

for any j € {1,2,...,u}. Weput M =3 Ny +v —2 and fix i,j € Nwith 1 <i <
1+ 1 < j < pu. We consider the following three cases:

e >v—+1
e <v+landj>v+2
ej<v+landj<v—+2

In the first case, we have
d(zi, x;) < D(xi, ..., Ti—ps1,21,25) < (2Na+v—1)e < Me.
In the second case, we have
d(zi,xj) < D(xi, ..., 21, Tigj—v—1,...,25) < (No+v)e < Me.
In the third case, we have
d(zi,25) < D(@iy ..o, X1, Tty oo Tjm1s Tppy Tigeds - - -, X)) < Me.
Noting M does not depend on (X, d) and {xj}le, we completes the proof. O

Lemma 2.2. Let v be an even positive integer and let yn € N with p > v+ 3. Then
there exists a positive integer M satisfying the following:

o If (X,d) is a v-generalized metric space, € is a positive real number and
{:L"j};‘:f"é is a finite sequence in X such that d(z;,xj4+1) < € for any j =
1,2,...,u—1, then

d(zi,z;) < Me
holds for any i,j € {1,2,...,u} such that i — j is odd.
Proof. We have
d(x1,xy42) < D(x1,...,2p42) < (v+1)e
by (N3). For the case where v > 4, we further have
d($27$1/+3) < D(J"Z’ s 71'1/+3) < (V + ]') €
d(gjla $4) < D($1,l’2,l’y+3, ceey $4) < (2V + ]') €

d(x1,2y) < D(XT1,Tp—9, ... X2, Tyys, ..., Ty) < (1/2 —2v+1)e.
Putting N7 = max{v? —2v + 1,v + 1}, we have
d(l’l,iﬁj) S N1€
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for any j € {2,...,v + 2} such that j is even. As in the proof of Lemma 2.1, there
exists Ny € N satisfying
d(l’l, ZCj) S N2 g
for any j € {2,...,u} such that j is even. We consider the following two cases:
e 4 is odd.
® /i is even.

In the case where p is odd, we can prove
d(zy,z;) < Noe

for any j € {2,...,u — 1} such that j is even. We put M = 3 Ny + v — 2 and fix
1,7 € Nsuchthat 1 <7< i+1<j < pandi—jisodd. Without loss of generality,
we may assume that ¢ is odd and j is even. We consider the following three cases:
e >v—+1
e <v+landj>v+2
ej<v+landj<v—+2
In the first and second cases, we have

d(:Ei,.’L’j) < Me.
as in the proof of Lemma 2.1. In the third case, noting i + 3 < j, we have

d(zi, x5) < D(xiy .o, X1, Tty -, Tjm2s Tppy Tuge2s - -+, ) < Me.
So we obtain the desired result in the case where p is odd. In the other case, where
u is even, noting 4 — 1 > v + 3, we have
d(zs,z;) < Me

for any 4, j € N satisfying either of the following:

e i je{l,...,u—1} and i — j is odd.

e i,j€{2,...,u} and i — j is odd.
So we only have to consider the case where ¢ = 1 and j = u. In this case we have

d(z1,2,) < Nop < Me.

Noting M does not depend on (X, d) and {xj}gzl, we completes the proof. O

As mentioned in Section 1, in general, v-generalized metric spaces do not neces-
sarily have the compatible topology; see [4,6]. So we have to define the concept of
the convergence and so on.

Definition 2.3 ([2,7]). Let (X, d) be a v-generalized metric space.

e A sequence {z,} in X is said to be Cauchy iff lim, sup,,s,, d(zm,x,) = 0
holds.

e A sequence {x,} in X is said to converge to z iff lim,, d(x, x,) = 0 holds.

e A sequence {z,} in X is said to converge exclusively to x iff lim,, d(z, z,) =0
holds and lim,, d(y, 2 (,)) = 0 does not hold for any y € X \ {z} and for any
subsequence {z ()} of {zn}.

e A sequence {z,} in X is said to converge to x in the strong sense iff {z,}
is Cauchy and {z,} converges to z.
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Definition 2.4 ([7]). Let (X, d) be a v-generalized metric space.
e X is compact iff for any sequence {x,} in X, there exists a subsequence
{7 ¢y} of {w,} converging to some z € X.
e X is compact in the strong sense iff for any sequence {x,} in X, there exists
a subsequence {7 ¢(,} of {z,} converging to some z € X in the strong sense.

Lemma 2.5. Let (X, d) be a 2-generalized metric space and let T be a mapping on
X such that

(2.1) d(Tz,Ty) < d(z,y)

for any z,y € X. Let {x,} be a sequence in X converging to some v € X. Then
{Tx,} converges to Tv. Moreover, if Tx,, # x, and Tx, # Tv for sufficiently large
n € N and Tv # v, then

(2.2) d(v,Tv) = li_)m d(xp, Txy)
holds.

3. MAIN RESULTS
In this section, we prove our main results. We begin with the case where v = 2.

Theorem 3.1. Let (X,d) be a compact 2-generalized metric space. Let T be a
mapping on X such that d(Tx,Ty) < d(z,y) for any v,y € X with x #y. Then T
has a unique fized point z. Moreover {T"x} converges to z for any x € X.

Remark. This theorem is a correction of Theorem 3.1 in [7]. We wrote “{T"x}
converges exclusively to z” in [7], which is not correct.

Proof. We have proved that 7" has a unique fixed point z in [7]. We note (2.1) holds
for any =,y € X. Fix x € X. Since {d(T"z,z)} is nonincreasing, it converges to
some nonegative real number 8. Arguing by contradiction, we assume 5 > 0. Then
T"z # z holds for any n € N. So {d(T"x, T"*'z)} is strictly decreasing and hence
it converges to some nonegative real number v and T™x are all different. Since
X is compact, there exists a subsequence {T/(™z} of {T"z} converging to some
v € X. By Lemma 2.5 (2.1), {T/™+12} and {77422} converge to Tw and T?v,
respectively. Since
lim d(Tf™z,2) = lim d(TF™ 2, 2) = 8 >0,

n—oo n—oo

we note v # z and Tv # z, thus, v # Tv and Tv # T?v holds. By Lemma 2.5 (2.2),
we have

d(Tv, T?v) = d(v, Tv) = 7,
which implies a contradiction. Therefore we obtain 8 = 0. 0

We give a proof in the case where v > 3.

Theorem 3.2. Let (X,d) be a compact v-generalized metric space. Let T be a
mapping on X such that

d(Tz,Ty) < d(z,y)
for any x,y € X with x #y. Then T has a unique fized point z. Moreover {T"x}
converges to z for any x € X.



276 TOMONARI SUZUKI

Proof. In the case where v = 1,2, we have already proved this theorem (Theorems
1.2 and 3.1). So we assume v > 3. We first show that there exists at most one fixed
point of T'. If z,w € X are distinct fixed points of T', then we have

d(z,w) =d(Tz,Tw) < d(z,w),

which implies a contradiction. So we have shown that there exists at most one fixed
point of T'. Fix u € X and define a sequence {u,} in X by u, = T"u for n € N. We
next show that {u,} converges to a fixed point of T', dividing the following three
cases:

(i) There exists k € N such that ug41 = ug.
(il) Up4+1 # up for all n € N and there exist k,¢ € N such that k£ 4+ 2 < ¢ and
Ul = Uy.
(iif) {Un}nEN?é-
In the case of (i), uy is a fixed point of T and {u,} converges to ug. In the case of
(ii), {d(un,uns+1)} is strictly decreasing. So, since ug+1 = ug+1, we have
d(ug, ugs1) = d(ug, uprr) < d(ug, ug+1),

which implies a contradiction. Thus, the case of (ii) cannot be possible. In the
case of (iii), since X is compact, there exists a subsequence of {T"z} converging to
z€ X. Put p =v+3 and let M be as in Lemmas 2.1 and 2.2. Define a sequence
{zn} in X by 2z, = T"z for n € NU {0}. Arguing by contradiction, we assume the
following:

e 2z, is not a fixed point of T' for any n € NU {0}.
Thus, {Zn}neNu{O};é- We further consider the following three cases:

(iii-a) {up :n € N}N{z, :n € NU{0}} = @ and v is odd.

(iii-b) {un :n € N} N {2, :n € NU{0}} = & and v is even.

(iii-c) {un:n e N}N{z,:n e NU{0}} # 2.
In the case of (iii-a), we let £ > 0 satisfy
(3.1) d(Tz,T?2) + (M +v —1)e < d(2,Tz).
Then we can choose k, ¢ € N satisfying

kE+2 <Y, d(ug,z) <e and d(ugz) <e.
Then we have
d(Tj— (1) k> Zj0—jk) < AT, 2) < €

and

d(l’(j+1)g_j ks Zjt—jk) < d(xg,2) < e
for any j € N. Define a finite sequence {y,}"_,” by
Yy =z, Y2 = Ty, Ys = 21—k, Y4 = T20—k,
Ys = 2202k, Y6 = T3¢—2k; Y71 = 23¢-3k; Y8 = T4¢-3k;
) Y = T(v43)/2—(v+1) k/2-
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Since d(y;,yj+1) < € for any j, we have d(y;,y;) < M ¢ for any 4, j by Lemma 2.1.
In the case where v = 3, we have
d(z,Tz) < D(y1 = z,y3 = z¢—, Tzg—, Twp, Tz)
< Me+d(ze—g, Tz—1) + d(Tzo—g, Txy) + d(Txe, T2)
<Me+d(TzT%2) 4 d(z—g, x¢) + d(xy, 2)
< d(Tz,T?2) + (M +2) ¢
<d(z,Tz),
which implies a contradiction. In the other case, where v > 5, we have
d(z,Tz) < D(y1,Yu, .- y3, Tzp—, Txg, Tz)
<(M+v—-3)e+dze—k, Tzo—k) + d(Tzp—, Txg) + d(Txe, Tz)
<d(Tz,T*2) + (M +v—1)e < d(z,T=z),
which implies a contradiction. In the case of (iii-b), we let ¢, k, £ and {y,}"_,” be

as in the case of (ili-a). By Lemma 2.2, we have d(y;,y;) < M e for any i,j such
that ¢ — j is odd. Noting that 1 — v is odd, we have

d(Z>TZ) < D(ylaylla s ,y3,TZé_k;, Tl'g,TZ)
<(M+v-=3)e+d(zo—k,Tzo—k) + d(T2p—, Txg) + d(Txp, Tz)
<d(Tz,T*2) + (M +v—1)e < d(z,T?),

which implies a contradiction. In the case of (iii-c), we let € > 0 satisfy (3.1). Then
we can choose ¢ € N satisfying 2 < ¢ and d(z¢, z) < €. Then we have

d(2j0, 2(j—1y0) < d(2¢,2) <€
for any j € N. Define a finite sequence {yn}zzf by yn = 2(n—1)¢- By Lemmas 2.1

and 2.2, we have d(y;,y;) < Me for any 4,j (such that i — j is odd, in the case
where v is even). We have

d(z,Tz) < D(z=y1,Yu,---, Y3 = 220, L22¢, T2, T2)
< (M +v— 3) e+ d(Zgg,TZQg) + d(TZgg,TZg) + d(TZg,TZ)
<d(Tz,T?2)+ (M +v —1)e < d(z,Tz),

which implies a contradiction. Therefore we obtain that z, is a fixed point for some
k € NU{0}. Since

liminf d(zx, x,) < liminfd(z,z,—x) =0

and {d(zx, )} is nonincreasing, {z,} itself converges to z. O

Remark. We can prove Theorem 3.1 by a similar method of proof of Theorem 3.2.
Indeed, in the case of (iii-b), we have

d(Z,TZ) < D(y1,y47?/3,TZ)
< D(y1,Y4,Y3, T2k, Ty, T2)
<d(Tz,T?2) + (M +v+1)e.
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In the case of (iii-c), we have
d(z,Tz) < D(y1,y4,y3, T2)
< D(y1,ya,y3, T220, T2, Tz)
<d(Tz,T?2) + (M +v+1)e.

Using these inequalities, we can prove Theorem 3.1.

4. EXAMPLE

In order to show that Theorem 3.2 is new, we give an example of v-generalized
metric space which is compact, however, which is not compact in the strong sense.

Proposition 4.1. Let (X,d) be a v-generalized metric space and let X € N such
that X is divisible by v. Then (X, d) is a A-generalized metric space.

Proof. We only have to show (N3). Let {J;n}f‘;%’é be a finite sequence in X. Then
we have

d(z1,2p42) < D(21,...,Tyi2)
d(z1,72042) < D(w1,2p42,. .., T2042) < D(21,...,52,42)
d($1,$,\+2) S D(xl, TA—p42y - ,.1‘)\+2) S D(:L‘l, ey .%')\+2).
Therefore we obtain (N3). O

Lemma 4.2. Let v € N be odd. Let (X, p) be a bounded metric space and let M be
a real number satisfying

sup{p(a:,y): x,yeX} < M.

Let A and B be two subsets of X with ANB = &. Assume #A < (v—1)/2. Define
a function d from X x X into [0,00) by

d(z,z) =0
d(ﬂ?,y) :d<y,1’) :P(%y) Zf{EGA andyEB
d(z,y) =M otherwise.

Then (X, d) is a v-generalized metric space.

Proof. We only have to show (N3). Let {x,}”137 be a finite sequence in X. Then
we have

d(ZL‘l, :E,,+2) S M § D({L‘l, Ce ,$u+2)-
Therefore we obtain (N3). O

Lemma 4.3. Let v € N be even. Let (X, p) be a bounded metric space and let A
and B be two subsets of X with ANB = &. Let M and d be as in Lemma 4.2.
Then (X, d) is a v-generalized metric space.

Proof. We have already proved that (X,d) is a 2-generalized metric space; see
Lemma 4 in [4] and Remark 17 in [1]. By Proposition 4.1, we obtain the desired
result. O
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Example 4.4. Put X = {0} U{1/n: n € N} and define a function p from X x X
into [0,00) by p(x,y) = | —y|. Put A = {0}, B={1/n:n € N} and M = 1.
Define a function d as in Lemmas 4.2 and 4.3. Then the following holds:
(i) (X,d) is a v-generalized metric space for any v € N with v > 2.
(ii) X is compact
(iii) X is not compact in the strong sense.

Proof. By Lemmas 4.2 and 4.3, (X, d) is a v-generalized metric space for any v € N
with v > 2. We next show (ii). Let {z,} be a sequence in X. We consider the
following two cases:

e There exists y € X such that #{n : z, =y} = oc.

e Forany y € X, #{n:z, =y} < oc.
In the first case, there exists a subsequence of {x,} converging to y. In the second
case, {x,} itself converges to 0. Therefore X is compact. Let us prove (iii). Define
a sequence {x,} in X by z, = 1/n. Then {z,} converges exclusively to 0. Since
d(Zpm, xpn) = M for any m,n € N with m # n, there does not exist a subsequence of
{z,} which is Cauchy. Therefore X is not compact in the strong sense. O
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