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Theorem 1.3 ([7]). Let (X, d) be a ν-generalized metric space such that X is
compact in the strong sense. Let T be a mapping on X such that d(Tx, Ty) < d(x, y)
for any x, y ∈ X with x ̸= y. Then T has a unique fixed point z. Moreover for any
x ∈ X, {Tnx} converges to z in the strong sense.

In this paper, we prove another generalization of Theorem 1.2, which difffers from
Theorem 1.3.

2. Preliminaries

In this section, we give some preliminaries.
Throughout this paper, we denote by N the set of positive integers. For an

arbitrary set A, we also denote by #A the number of the elements of A.

Lemma 2.1. Let ν be an odd positive integer and let µ ∈ N with µ ≥ ν + 3. Then
there exists a positive integer M satisfying the following:

• If (X, d) is a ν-generalized metric space, ε is a positive real number and
{xj}µj=1

̸= is a finite sequence in X such that d(xj , xj+1) ≤ ε for any j =
1, 2, . . . , µ− 1, then

d(xi, xj) ≤ M ε

holds for any i, j ∈ {1, 2, . . . , µ}.

Proof. In the case where ν = 1, the conclusion is obvious. So we assume ν ≥ 3. We
have

d(x1, xν+2) ≤ D(x1, x2, . . . , xν+2) ≤ (ν + 1) ε

d(x2, xν+3) ≤ D(x2, x3, . . . , xν+3) ≤ (ν + 1) ε

d(x1, x4) ≤ D(x1, x2, xν+3, xν+2, . . . , x4) ≤ (2 ν + 1) ε

d(x1, x6) ≤ D(x1, x4, x3, x2, xν+3, . . . , x6) ≤ (4 ν + 1) ε

d(x1, x8) ≤ D(x1, x6, . . . , x2, xν+3, . . . , x8) ≤ (6 ν + 1) ε

...

d(x1, xν+1) ≤ D(x1, xν−1, . . . , x2, xν+3, . . . , xν+1) ≤ (ν2 − ν + 1) ε

d(x1, xν) ≤ D(x1, xν+2, xν+3, x2, . . . , xν) ≤ (3 ν + 1) ε

d(x1, xν−2) ≤ D(x1, xν , . . . , xν+3, x2, . . . , xν−2) ≤ (5 ν + 1) ε

...

d(x1, x3) ≤ D(x1, x5, . . . , xν+3, x2, x3) ≤ (ν2 + 1) ε

by (N3). Putting N1 = ν2 + 1, we have

d(x1, xj) ≤ N1 ε

for any j ∈ {1, 2, . . . , ν + 2}. We have

d(x1, xj) ≤ D(x1, xj−ν , . . . , xj) ≤ (N1 + ν) ε

for any j ∈ {ν + 3, . . . , 2 ν + 2}. Continuing this calculations, we have

d(x1, xj) ≤ D(x1, xj−ν , . . . , xj) ≤ (N1 + k ν) ε
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for any j, k ∈ N with k ν + 2 < j ≤ (k + 1) ν + 2 and j ≤ µ. Therefore there exists
N2 ∈ N satisfying

d(x1, xj) ≤ N2 ε

for any j ∈ {1, 2, . . . , µ}. Similarly we can prove

d(xµ, xj) ≤ N2 ε

for any j ∈ {1, 2, . . . , µ}. We put M = 3N2 + ν − 2 and fix i, j ∈ N with 1 < i <
i+ 1 < j < µ. We consider the following three cases:

• i ≥ ν + 1
• i < ν + 1 and j ≥ ν + 2
• i < ν + 1 and j < ν + 2

In the first case, we have

d(xi, xj) ≤ D(xi, . . . , xi−ν+1, x1, xj) ≤ (2N2 + ν − 1) ε ≤ M ε.

In the second case, we have

d(xi, xj) ≤ D(xi, . . . , x1, xi+j−ν−1, . . . , xj) ≤ (N2 + ν) ε ≤ M ε.

In the third case, we have

d(xi, xj) ≤ D(xi, . . . , x1, xi+1, . . . , xj−1, xµ, xν+1, . . . , xj) ≤ M ε.

Noting M does not depend on (X, d) and {xj}µj=1, we completes the proof. □

Lemma 2.2. Let ν be an even positive integer and let µ ∈ N with µ ≥ ν +3. Then
there exists a positive integer M satisfying the following:

• If (X, d) is a ν-generalized metric space, ε is a positive real number and
{xj}µj=1

̸= is a finite sequence in X such that d(xj , xj+1) ≤ ε for any j =
1, 2, . . . , µ− 1, then

d(xi, xj) ≤ M ε

holds for any i, j ∈ {1, 2, . . . , µ} such that i− j is odd.

Proof. We have

d(x1, xν+2) ≤ D(x1, . . . , xν+2) ≤ (ν + 1) ε

by (N3). For the case where ν ≥ 4, we further have

d(x2, xν+3) ≤ D(x2, . . . , xν+3) ≤ (ν + 1) ε

d(x1, x4) ≤ D(x1, x2, xν+3, . . . , x4) ≤ (2 ν + 1) ε

...

d(x1, xν) ≤ D(x1, xν−2, . . . , x2, xν+3, . . . , xν) ≤ (ν2 − 2 ν + 1) ε.

Putting N1 = max{ν2 − 2 ν + 1, ν + 1}, we have

d(x1, xj) ≤ N1 ε



274 TOMONARI SUZUKI

for any j ∈ {2, . . . , ν + 2} such that j is even. As in the proof of Lemma 2.1, there
exists N2 ∈ N satisfying

d(x1, xj) ≤ N2 ε

for any j ∈ {2, . . . , µ} such that j is even. We consider the following two cases:

• µ is odd.
• µ is even.

In the case where µ is odd, we can prove

d(xµ, xj) ≤ N2 ε

for any j ∈ {2, . . . , µ − 1} such that j is even. We put M = 3N2 + ν − 2 and fix
i, j ∈ N such that 1 < i < i+1 < j < µ and i− j is odd. Without loss of generality,
we may assume that i is odd and j is even. We consider the following three cases:

• i ≥ ν + 1
• i < ν + 1 and j ≥ ν + 2
• i < ν + 1 and j < ν + 2

In the first and second cases, we have

d(xi, xj) ≤ M ε.

as in the proof of Lemma 2.1. In the third case, noting i+ 3 ≤ j, we have

d(xi, xj) ≤ D(xi, . . . , x1, xi+1, . . . , xj−2, xµ, xν+2, . . . , xj) ≤ M ε.

So we obtain the desired result in the case where µ is odd. In the other case, where
µ is even, noting µ− 1 ≥ ν + 3, we have

d(xi, xj) ≤ M ε

for any i, j ∈ N satisfying either of the following:

• i, j ∈ {1, . . . , µ− 1} and i− j is odd.
• i, j ∈ {2, . . . , µ} and i− j is odd.

So we only have to consider the case where i = 1 and j = µ. In this case we have

d(x1, xµ) ≤ N2 µ ≤ M ε.

Noting M does not depend on (X, d) and {xj}µj=1, we completes the proof. □

As mentioned in Section 1, in general, ν-generalized metric spaces do not neces-
sarily have the compatible topology; see [4, 6]. So we have to define the concept of
the convergence and so on.

Definition 2.3 ([2, 7]). Let (X, d) be a ν-generalized metric space.

• A sequence {xn} in X is said to be Cauchy iff limn supm>n d(xm, xn) = 0
holds.

• A sequence {xn} in X is said to converge to x iff limn d(x, xn) = 0 holds.
• A sequence {xn} in X is said to converge exclusively to x iff limn d(x, xn) = 0
holds and limn d(y, xf(n)) = 0 does not hold for any y ∈ X \{x} and for any
subsequence {xf(n)} of {xn}.

• A sequence {xn} in X is said to converge to x in the strong sense iff {xn}
is Cauchy and {xn} converges to x.
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Definition 2.4 ([7]). Let (X, d) be a ν-generalized metric space.

• X is compact iff for any sequence {xn} in X, there exists a subsequence
{xf(n)} of {xn} converging to some z ∈ X.

• X is compact in the strong sense iff for any sequence {xn} in X, there exists
a subsequence {xf(n)} of {xn} converging to some z ∈ X in the strong sense.

Lemma 2.5. Let (X, d) be a 2-generalized metric space and let T be a mapping on
X such that

(2.1) d(Tx, Ty) ≤ d(x, y)

for any x, y ∈ X. Let {xn} be a sequence in X converging to some v ∈ X. Then
{Txn} converges to Tv. Moreover, if Txn ̸= xn and Txn ̸= Tv for sufficiently large
n ∈ N and Tv ̸= v, then

(2.2) d(v, Tv) = lim
n→∞

d(xn, Txn)

holds.

3. Main results

In this section, we prove our main results. We begin with the case where ν = 2.

Theorem 3.1. Let (X, d) be a compact 2-generalized metric space. Let T be a
mapping on X such that d(Tx, Ty) < d(x, y) for any x, y ∈ X with x ̸= y. Then T
has a unique fixed point z. Moreover {Tnx} converges to z for any x ∈ X.

Remark. This theorem is a correction of Theorem 3.1 in [7]. We wrote “{Tnx}
converges exclusively to z” in [7], which is not correct.

Proof. We have proved that T has a unique fixed point z in [7]. We note (2.1) holds
for any x, y ∈ X. Fix x ∈ X. Since {d(Tnx, z)} is nonincreasing, it converges to
some nonegative real number β. Arguing by contradiction, we assume β > 0. Then
Tnx ̸= z holds for any n ∈ N. So {d(Tnx, Tn+1x)} is strictly decreasing and hence
it converges to some nonegative real number γ and Tnx are all different. Since
X is compact, there exists a subsequence {T f(n)x} of {Tnx} converging to some

v ∈ X. By Lemma 2.5 (2.1), {T f(n)+1x} and {T f(n)+2x} converge to Tv and T 2v,
respectively. Since

lim
n→∞

d(T f(n)x, z) = lim
n→∞

d(T f(n)+1x, z) = β > 0,

we note v ̸= z and Tv ̸= z, thus, v ̸= Tv and Tv ̸= T 2v holds. By Lemma 2.5 (2.2),
we have

d(Tv, T 2v) = d(v, Tv) = γ,

which implies a contradiction. Therefore we obtain β = 0. □
We give a proof in the case where ν ≥ 3.

Theorem 3.2. Let (X, d) be a compact ν-generalized metric space. Let T be a
mapping on X such that

d(Tx, Ty) < d(x, y)

for any x, y ∈ X with x ̸= y. Then T has a unique fixed point z. Moreover {Tnx}
converges to z for any x ∈ X.
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Proof. In the case where ν = 1, 2, we have already proved this theorem (Theorems
1.2 and 3.1). So we assume ν ≥ 3. We first show that there exists at most one fixed
point of T . If z, w ∈ X are distinct fixed points of T , then we have

d(z, w) = d(Tz, Tw) < d(z, w),

which implies a contradiction. So we have shown that there exists at most one fixed
point of T . Fix u ∈ X and define a sequence {un} in X by un = Tnu for n ∈ N. We
next show that {un} converges to a fixed point of T , dividing the following three
cases:

(i) There exists k ∈ N such that uk+1 = uk.
(ii) un+1 ̸= un for all n ∈ N and there exist k, ℓ ∈ N such that k + 2 ≤ ℓ and

uk = uℓ.
(iii) {un}n∈N ̸=.

In the case of (i), uk is a fixed point of T and {un} converges to uk. In the case of
(ii), {d(un, un+1)} is strictly decreasing. So, since uk+1 = uℓ+1, we have

d(uk, uk+1) = d(uℓ, uℓ+1) < d(uk, uk+1),

which implies a contradiction. Thus, the case of (ii) cannot be possible. In the
case of (iii), since X is compact, there exists a subsequence of {Tnx} converging to
z ∈ X. Put µ = ν + 3 and let M be as in Lemmas 2.1 and 2.2. Define a sequence
{zn} in X by zn = Tnz for n ∈ N ∪ {0}. Arguing by contradiction, we assume the
following:

• zn is not a fixed point of T for any n ∈ N ∪ {0}.
Thus, {zn}n∈N∪{0}̸=. We further consider the following three cases:

(iii-a) {un : n ∈ N} ∩
{
zn : n ∈ N ∪ {0}

}
= ∅ and ν is odd.

(iii-b) {un : n ∈ N} ∩
{
zn : n ∈ N ∪ {0}

}
= ∅ and ν is even.

(iii-c) {un : n ∈ N} ∩
{
zn : n ∈ N ∪ {0}

}
̸= ∅.

In the case of (iii-a), we let ε > 0 satisfy

(3.1) d(Tz, T 2z) + (M + ν − 1) ε < d(z, Tz).

Then we can choose k, ℓ ∈ N satisfying

k + 2 ≤ ℓ, d(uk, z) < ε and d(uℓ, z) < ε.

Then we have

d(xj ℓ−(j−1) k, zj ℓ−j k) < d(xk, z) < ε

and

d(x(j+1) ℓ−j k, zj ℓ−j k) < d(xℓ, z) < ε

for any j ∈ N. Define a finite sequence {yn}µn=1
̸= by

y1 = z, y2 = xℓ, y3 = zℓ−k, y4 = x2 ℓ−k,

y5 = z2 ℓ−2 k, y6 = x3 ℓ−2 k, y7 = z3 ℓ−3 k, y8 = x4 ℓ−3 k,

. . . , yµ = x(ν+3) ℓ/2−(ν+1) k/2.
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Since d(yj , yj+1) < ε for any j, we have d(yi, yj) < M ε for any i, j by Lemma 2.1.
In the case where ν = 3, we have

d(z, Tz) ≤ D(y1 = z, y3 = zℓ−k, T zℓ−k, Txℓ, T z)

< M ε+ d(zℓ−k, T zℓ−k) + d(Tzℓ−k, Txℓ) + d(Txℓ, T z)

< M ε+ d(Tz, T 2z) + d(zℓ−k, xℓ) + d(xℓ, z)

< d(Tz, T 2z) + (M + 2) ε

< d(z, Tz),

which implies a contradiction. In the other case, where ν ≥ 5, we have

d(z, Tz) ≤ D(y1, yν , . . . , y3, T zℓ−k, Txℓ, T z)

< (M + ν − 3) ε+ d(zℓ−k, T zℓ−k) + d(Tzℓ−k, Txℓ) + d(Txℓ, T z)

< d(Tz, T 2z) + (M + ν − 1) ε < d(z, Tz),

which implies a contradiction. In the case of (iii-b), we let ε, k, ℓ and {yn}µn=1
̸= be

as in the case of (iii-a). By Lemma 2.2, we have d(yi, yj) < M ε for any i, j such
that i− j is odd. Noting that 1− ν is odd, we have

d(z, Tz) ≤ D(y1, yν , . . . , y3, T zℓ−k, Txℓ, T z)

< (M + ν − 3) ε+ d(zℓ−k, T zℓ−k) + d(Tzℓ−k, Txℓ) + d(Txℓ, T z)

< d(Tz, T 2z) + (M + ν − 1) ε < d(z, Tz),

which implies a contradiction. In the case of (iii-c), we let ε > 0 satisfy (3.1). Then
we can choose ℓ ∈ N satisfying 2 ≤ ℓ and d(zℓ, z) < ε. Then we have

d(zj ℓ, z(j−1)ℓ) ≤ d(zℓ, z) < ε

for any j ∈ N. Define a finite sequence {yn}µn=1
̸= by yn = z(n−1) ℓ. By Lemmas 2.1

and 2.2, we have d(yi, yj) < M ε for any i, j (such that i − j is odd, in the case
where ν is even). We have

d(z, Tz) ≤ D(z = y1, yν , . . . , y3 = z2 ℓ, T z2 ℓ, T zℓ, T z)

< (M + ν − 3) ε+ d(z2 ℓ, T z2 ℓ) + d(Tz2 ℓ, T zℓ) + d(Tzℓ, T z)

< d(Tz, T 2z) + (M + ν − 1) ε < d(z, Tz),

which implies a contradiction. Therefore we obtain that zκ is a fixed point for some
κ ∈ N ∪ {0}. Since

lim inf
n→∞

d(zκ, xn) ≤ lim inf
n→∞

d(z, xn−κ) = 0

and {d(zκ, xn)} is nonincreasing, {xn} itself converges to zκ. □

Remark. We can prove Theorem 3.1 by a similar method of proof of Theorem 3.2.
Indeed, in the case of (iii-b), we have

d(z, Tz) ≤ D(y1, y4, y3, T z)

≤ D(y1, y4, y3, T zℓ−k, Txℓ, T z)

< d(Tz, T 2z) + (M + ν + 1) ε.
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In the case of (iii-c), we have

d(z, Tz) ≤ D(y1, y4, y3, T z)

≤ D(y1, y4, y3, T z2 ℓ, T zℓ, T z)

< d(Tz, T 2z) + (M + ν + 1) ε.

Using these inequalities, we can prove Theorem 3.1.

4. Example

In order to show that Theorem 3.2 is new, we give an example of ν-generalized
metric space which is compact, however, which is not compact in the strong sense.

Proposition 4.1. Let (X, d) be a ν-generalized metric space and let λ ∈ N such
that λ is divisible by ν. Then (X, d) is a λ-generalized metric space.

Proof. We only have to show (N3). Let {xn}λ+2
n=1

̸= be a finite sequence in X. Then
we have

d(x1, xν+2) ≤ D(x1, . . . , xν+2)

d(x1, x2 ν+2) ≤ D(x1, xν+2, . . . , x2 ν+2) ≤ D(x1, . . . , x2 ν+2)

...

d(x1, xλ+2) ≤ D(x1, xλ−ν+2, . . . , xλ+2) ≤ D(x1, . . . , xλ+2).

Therefore we obtain (N3). □
Lemma 4.2. Let ν ∈ N be odd. Let (X, ρ) be a bounded metric space and let M be
a real number satisfying

sup
{
ρ(x, y) : x, y ∈ X

}
≤ M.

Let A and B be two subsets of X with A∩B = ∅. Assume #A ≤ (ν−1)/2. Define
a function d from X ×X into [0,∞) by

d(x, x) = 0

d(x, y) = d(y, x) = ρ(x, y) if x ∈ A and y ∈ B

d(x, y) = M otherwise.

Then (X, d) is a ν-generalized metric space.

Proof. We only have to show (N3). Let {xn}ν+2
n=1

̸= be a finite sequence in X. Then
we have

d(x1, xν+2) ≤ M ≤ D(x1, . . . , xν+2).

Therefore we obtain (N3). □
Lemma 4.3. Let ν ∈ N be even. Let (X, ρ) be a bounded metric space and let A
and B be two subsets of X with A ∩ B = ∅. Let M and d be as in Lemma 4.2.
Then (X, d) is a ν-generalized metric space.

Proof. We have already proved that (X, d) is a 2-generalized metric space; see
Lemma 4 in [4] and Remark 17 in [1]. By Proposition 4.1, we obtain the desired
result. □
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Example 4.4. Put X = {0} ∪ {1/n : n ∈ N} and define a function ρ from X ×X
into [0,∞) by ρ(x, y) = |x − y|. Put A = {0}, B = {1/n : n ∈ N} and M = 1.
Define a function d as in Lemmas 4.2 and 4.3. Then the following holds:

(i) (X, d) is a ν-generalized metric space for any ν ∈ N with ν ≥ 2.
(ii) X is compact
(iii) X is not compact in the strong sense.

Proof. By Lemmas 4.2 and 4.3, (X, d) is a ν-generalized metric space for any ν ∈ N
with ν ≥ 2. We next show (ii). Let {xn} be a sequence in X. We consider the
following two cases:

• There exists y ∈ X such that #{n : xn = y} = ∞.
• For any y ∈ X, #{n : xn = y} < ∞.

In the first case, there exists a subsequence of {xn} converging to y. In the second
case, {xn} itself converges to 0. Therefore X is compact. Let us prove (iii). Define
a sequence {xn} in X by xn = 1/n. Then {xn} converges exclusively to 0. Since
d(xm, xn) = M for any m,n ∈ N with m ̸= n, there does not exist a subsequence of
{xn} which is Cauchy. Therefore X is not compact in the strong sense. □

References

[1] B. Alamri, T. Suzuki and L. A. Khan, Caristi’s fixed point theorem and Subrahmanyam’s fixed
point theorem in ν-generalized metric spaces, J. Funct. Spaces 2015, 2015:709391, 6 pp.

[2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric
spaces, Publ. Math. Debrecen 57 (2000), 31–37.

[3] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc.
37 (1962), 74–79.

[4] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal.
2014, 2014:458098, 5 pp.

[5] T. Suzuki, B. Alamri and L. A. Khan, Some notes on fixed point theorems in ν-generalized
metric spaces, Bull. Kyushu Inst. Technol. 62 (2015), 15–23.

[6] T. Suzuki, B. Alamri and M. Kikkawa, Only 3-generalized metric spaces have a compatible
symmetric topology, Open Math. 13 (2015), 510–517.

[7] T. Suzuki, B. Alamri and M. Kikkawa, Edelstein’s fixed point theorem in generalized metric
spaces, J. Nonlinear Convex Anal. 16 (2015), 2301–2309.

Manuscript received 11 March 2016

Tomonari Suzuki
Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata,
Kitakyushu 804-8550, Japan

E-mail address: suzuki-t@mns.kyutech.ac.jp


