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where A,B ∈ Mn,+(C). By using the notion of matrix means we define the gener-
alized monotone metrics for X,Y ∈Mn(C) by the following formula

⟨X,Y ⟩f = Tr[X∗mf (LA, RB)
−1Y ],

where LA(X) = AX,RB(X) = XB.

2. Generalized quasi-metric adjusted skew information and
correlation measure

Definition 2.1. Let g, f ∈ Frop satisfy

g(x) ≥ k
(x− 1)2

f(x)

for some k > 0. We define

(2.1) ∆f
g (x) = g(x)− k

(x− 1)2

f(x)
∈ Fop.

Definition 2.2. Notation as in Definition 2.1. For X,Y ∈ Mn(C) and A,B ∈
Mn,+(C), we define the following quantities:

(1) Γ
(g,f)
A,B (X,Y ) = k⟨(LA −RB)X, (LA −RB)Y ⟩f
= kTr[X∗(LA −RB)mf (LA, RB)

−1(LA −RB)Y ]
= Tr[X∗mg(LA, RB)Y ]− Tr[X∗m

∆f
g
(LA, RB)Y ],

(2) I
(g,f)
A,B (X) = Γ

(g,f)
A,B (X,X),

(3) Ψ
(g,f)
A,B (X,Y ) = Tr[X∗mg(LA, RB)Y ] + Tr[X∗m

∆f
g
(LA, RB)Y ],

(4) J
(g,f)
A,B (X) = Ψ

(g,f)
A,B (X,X),

(5) U
(g,f)
ρ (X) =

√
I
(g,f)
A,B (X)J

(g,f)
A,B (X).

The quantities I
(g,f)
A,B (X) and Γ

(g,f)
A,B (X,Y ) are said generalized quasi-metric adjusted

skew information and generalized quasi-metric adjusted correlation measure, respec-
tively.

Theorem 2.3 (Schrödinger type). For f ∈ Frop, it holds

I
(g,f)
A,B (X) · I(g,f)A,B (Y ) ≥ |Γ(g,f)

A,B (X,Y )|2,

where X,Y ∈Mn(C) and A,B ∈Mn,+(C).

We use only Schwarz inequality to prove Theorem 2.3 by a similar way as the proof
of Theorem 2 in [8]. We note the equation

|LA −RB| =
n∑
i=1

n∑
j=1

|λi − µj |L|ϕi⟩⟨ϕi|R|ψj⟩⟨ψj |,

where A =
∑n

i=1 λi|ϕi⟩⟨ϕi|, B =
∑n

j=1 µj |ψj⟩⟨ψj | are the spectral decompositions.



GENERALIZED TRACE INEQUALITIES 265

Theorem 2.4 (Heisenberg type). For f ∈ Frop, if

(2.2) g(x) + ∆f
g (x) ≥ ℓf(x)

for some ℓ > 0, then it holds

U
(g,f)
A,B (X) · U (g,f)

A,B (Y ) ≥ kℓ|Tr[X∗|LA −RB|Y ]|2,

where X,Y ∈Mn(C) and A,B ∈Mn,+(C). In particular,

(2.3)
kℓ(Tr[X∗|LA −RB|X])2 ≤ Tr[X∗(mg(LA, RB)−m

∆f
g
(LA, RB))X]

× Tr[X∗(mg(LA, RB) +m
∆f

g
(LA, RB))X],

where X ∈Mn(C) and A,B ∈Mn,+(C).

We use refined Schwarz inequality to prove Theorem 2.4 by a similar way as the
proof of Theorem 3 in [8].

3. Trace inequalities

We assume that

g(x) =
x+ 1

2
, f(x) = α(1− α)

(x− 1)2

(xα − 1)(x1−α − 1)
, k =

f(0)

2
, ℓ = 2.

Then, since (2.1), (2.2) are satisfied for g, f, k and ℓ, we have the following trace
inequality by putting X = I in (2.3).

α(1− α)(Tr[|LA −RB|I])2(3.1)

≤
(
1

2
Tr[A+B]

)2

−
(
1

2
Tr[AαB1−α +A1−αBα]

)2

.

This is a generalization of trace inequality given in [2]. And also we give the following
new inequality by combining the Chernoff type inequality with the above theorem.

Theorem 3.1. We have the following:

1

2
Tr[A+B − |LA −RB|I] ≤ inf

0≤α≤1
Tr[A1−αBα]

≤ Tr[A1/2B1/2] ≤ 1

2
Tr[AαB1−α +A1−αBα]

≤

√(
1

2
Tr[A+B]

)2

− α(1− α)(Tr[|LA −RB|I)2.

We need the following lemma in order to prove Theorem 3.1.

Lemma 3.2. Let f(s) = Tr[A1−sBs] for A,B ∈Mn(C) and 0 ≤ s ≤ 1. Then f(s)
is convex in s.

Proof of Lemma 3.2. f
′
(s) = Tr[−A1−s logABs +A1−sBs logB]. And then

f
′′
(s) = Tr[A1−s(logA)2Bs −A1−s logABs logB]

−Tr[A1s logABs logB −A1−sBs(logB)2]

= Tr[A1−s(logA)2Bs]− Tr[A1−s logA logBBs]
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−Tr[logB logAA1−sBs] + Tr[A1−s(logB)2Bs]

= Tr[A1−s logA(logA− logB)Bs]− Tr[A1−s(logA− logB) logBBs]

= Tr[A1−s(logA− logB)Bs logA]− Tr[A1−s(logA− logB) logBBs]

= Tr[A1−s(logA− logB)Bs(logA− logB)]

= Tr[A(1−s)/2(logA− logB)Bs(logA− logB)A(1−s)/2] ≥ 0.

Then f(s) is convex in s. □
Proof of Theorem 3.1. The third and fourth inequalities follow from Lemma 3.2 and
(3.1), respectively. So we may only prove

Tr[A+B − |LA −RB|I] ≤ 2Tr[A1−αBα] (0 ≤ α ≤ 1).

Let
A =

∑
i

λi|ϕi⟩⟨ϕi| =
∑
i,j

λi|ϕi⟩⟨ϕi|ψj⟩⟨ψj |,

B =
∑
j

µj |ψj⟩⟨ψj | =
∑
i,j

µj |ϕi⟩⟨ϕi|ψj⟩⟨ψj |.

Then we have

Tr[A] =
∑
i,j

λi|⟨ϕi|ψj⟩|2, T r[B] =
∑
i,j

µj |⟨ϕi|ψj⟩|2.

And since
|LA −RB| =

∑
i,j

|λi − µj |L|ϕi⟩⟨ϕi|R|ψj⟩⟨ψj |,

we have
|LA −RB|I =

∑
i,j

|λi − µj ||ϕi⟩⟨ϕi|ψj⟩⟨ψj |.

Then we have
Tr[|LA −RB|I] =

∑
i,j

|λi − µj ||⟨ϕi|ψj⟩|2.

Therefore

Tr[A+B − |LA −RB|I] =
∑
i,j

(λi + µj − |λi − µj |)|⟨ϕi|ψj⟩|2.

On the other hand since

Aα =
∑
i

λαi |ϕi⟩⟨ϕi| =
∑
i,j

λαi |ϕi⟩⟨ϕi|ψj⟩⟨ψj |,

B1−α =
∑
j

µ1−αj |ψj⟩⟨ψj | =
∑
i,j

µ1−αj |ϕi⟩⟨ϕi|ψj⟩⟨ψj |,

we have
AαB1−α =

∑
i,j

λαi µ
1−α
j |ϕi⟩⟨ϕi|ψj⟩⟨ψj |.

Then
Tr[AαB1−α] =

∑
i,j

λαi µ
1−α
j |⟨ϕi|ψj⟩|2.
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Thus

2Tr[AαB1−α]− Tr[A+B − |LA −RB|I]
=

∑
i,j

{2λαi µ1−αj − (λi + µj − |λi − µj |)}|⟨ϕi|ψj⟩|2.

Since 2xαy1−α − (x+ y − |x− y|) ≥ 0 for x, y > 0, 0 ≤ α ≤ 1 in general, we can get
the result. □
Remark 3.3. There are no relationship between Tr[|A−B|] and Tr[|LA −RB|I].
For example, let

A =

(
3
2

1
2

1
2

3
2

)
, B =

(
4 0
0 1

)
.

Then Tr[LA −RB|I] = 3 and Tr[|A−B|] =
√
10.

On the other hand let

A =

(
13
2

7
2

7
2

13
2

)
, B =

(
2 0
0 5

)
.

Then Tr[|LA −RB|I] = 8 and Tr[|A−B|] =
√
58.

Finally we give a refinement of inequality about fidelity.

Theorem 3.4.

Tr[|A1/2B1/2|] ≥ 1

1 +
√
λ0
Tr[A] +

√
λ0

1 +
√
λ0

(
1

2
Tr[A+B − |A−B|]

)
,

where λ0 is the largest eigenvalue of B−1/2AB−1/2.

In order to prove Theorem 3.4, we need the following lemma.

Lemma 3.5. Let A,B ∈ Mn,+(Cn) and E = {E = {Ej};Ej ≥ 0,
∑n

j=1Ej = I}.
We put aj = Tr[AEj ], bj = Tr[BEj ]. Then

(3.2) F (A,B) = Tr[|A1/2B1/2|] = min
E∈E

n∑
j=1

√
ajbj ,

(3.3) D(A,B) = Tr[|A−B|] = max
E∈E

n∑
j=1

|aj − bj |.

Proof of Lemma 3.5. First we prove (3.2). For A,B ∈ Mn,+(C), we take the polar
decomposition

A1/2B1/2 =W ∗|A1/2B1/2|,
where W is a unitary matrix. Then we have

F (A,B) = Tr[|A1/2B1/2|] = Tr[WA1/2B1/2]

=

n∑
j=1

Tr[WA1/2E
1/2
j E

1/2
j B1/2]
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≤
n∑
j=1

√
Tr[AEj ]Tr[BEj ]

=

n∑
j=1

√
ajbj .

The equality is satisfied in the case that for each j

E
1/2
j B1/2 = αjE

1/2
j A1/2W ∗

for some αj , or equivalently

E
1/2
j = αjE

1/2
j B−1/2|A1/2B1/2|B−1/2.

Then when B−1/2|A1/2B1/2|B−1/2 =
∑

k βk|k⟩⟨k|, βj = 1
αj

and Ej = |j⟩⟨j|, the
equality is attained. Then F (A,B) = minE∈E

∑n
j=1

√
ajbj .

Next we prove (3.3). Let X± = 1
2(|X| ±X) for selfadjoint X. Since

|Tr[AEj −BEj ]| = |Tr[(A−B)Ej ]| = |Tr[((A−B)+ − (A−B)−)Ej ]

≤ Tr[((A−B)+ + (A−B)−)Ej ]

= Tr[|A−B|Ej ],

we have

D(A,B) = Tr[|A−B|] ≥
n∑
j=1

|aj − bj |.

The equality is satisfied with the measurement which is made by the projections
onto the support of (A − B)+ and the projection onto the support of (A − B)−.
Then D(A,B) = maxE∈E

∑n
j=1 |aj − bj |.

Now we are ready to prove Theorem 3.4. □

Proof of Theorem 3.4. By a similar way as the proof of Lemma 2.5 in [9], we can
get the following inequalities; for any λ (0 ≤ λ ≤ 1)

n∑
j=1

√
aj(λaj + (1− λ)bj) +

1−
√
λ

2

n∑
j=1

|aj − bj | ≥
1 +

√
λ

2

n∑
j=1

aj +
1−

√
λ

2

n∑
j=1

bj

=
1 +

√
λ

2
Tr[A] +

1−
√
λ

2
Tr[B].

By taking the minimum over E in both sides,

F (A, λA+ (1− λ)B) ≥ 1 +
√
λ

2
Tr[A] +

1−
√
λ

2
Tr[B]− 1−

√
λ

2
Tr[|A−B|].

Let λ0 = min{λ > 0;A ≤ λB}. If λ0 ≤ 1, then it is clear that A ≤ B. Since
|A − B| = |B − A| = B − A, the result of theorem holds. Then we can assume
λ0 > 1. If we put

C =
1

1− λ−1
0

B − λ−1
0

1− λ−1
0

A,
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then we have

F (A,B) = F (A, λ−1
0 A+ (1− λ−1

0 )C)

≥
1 +

√
λ−1
0

2
Tr[A] +

1−
√
λ−1
0

2
Tr[C]−

1−
√
λ−1
0

2
Tr[|A− C|].

Since

Tr[C] =
1

1− λ−1
0

Tr[B]− λ−1
0

1− λ−1
0

Tr[A],

we have

F (A,B) ≥
1 +

√
λ−1
0

2
Tr[A] +

1−
√
λ−1
0

2

(
1

1− λ−1
0

Tr[B]− λ−1
0

1− λ−1
0

Tr[A]

)

−
1−

√
λ−1
0

2
Tr[|A− C|]

=
1 +

√
λ−1
0

2
Tr[A] +

1

2(1 +
√
λ−1
0 )

Tr[B]− λ−1
0

2(1 +
√
λ−1
0 )

Tr[A]

−
√
λ0

2(1 +
√
λ0)

Tr[|A−B|] (by A− C =
1

1− λ−1
0

(A−B))

=
1 +

√
λ−1
0

2
Tr[A] +

√
λ0

2(1 +
√
λ0)

Tr[B]

− 1

2
√
λ0(1 +

√
λ0)

Tr[A]−
√
λ0

2(1 +
√
λ0)

Tr[|A−B|]

=
2 +

√
λ0

2(1 +
√
λ0)

Tr[A] +

√
λ0

2(1 +
√
λ0)

Tr[B]−
√
λ0

2(1 +
√
λ0)

Tr[|A−B|]

=
1

1 +
√
λ0
Tr[A] +

√
λ0

2(1 +
√
λ0)

(Tr[A+B − |A−B|]).

□
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