J#3. Yokohama Publishers
. Linearar %ﬂeﬁrﬁa&ﬂ& S’ oeN2ieaaler CoPyriat 2016

4 gﬁi*i‘u. e

W@@}f Volume 2, Number 2, 2016, 263-270

GENERALIZED TRACE INEQUALITIES RELATED TO
FIDELITY AND TRACE DISTANCE

KENJIRO YANAGI

ABSTRACT. Recently in [8] we obtained non-hermitian extensions of Heisenberg
type and Schrodinger type uncertainty relations for generalized metric adjusted
skew information or generalized metric adjusted correlation measure and gave
the results of Dou-Du ([3,4])as corollaries. In this paper we define generalized
quasi-metric adjusted skew information for different two generalized states and
obtain corresponding uncertainty relation. The result is applied to the inequali-
ties related to fidelity and trace distance for different two generalized states which
were given by Audenaert et al; and Powers-Stgrmer ([1,2,5]).

1. INTRODUCTION

Let M, (C)(resp. M, s,(C)) be the set of all n x n complex matrices (resp.
all n x n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product
(X,Y) =Tr[X*Y]. Let M, 1(C) be the set of strictly positive elements of M,,(C).
A function f : (0,400) — R is said operator monotone if, for any n € N, and
A,B € M, 1(C) such that 0 < A < B, the inequality 0 < f(A) < f(B) holds. An
operator monotone function is said symmetric if f(z) = zf(z~!) and normalized if
f) =1
Definition 1.1. Let §,, be the class of functions f : (0, +00) — (0, +00) satisfying

(1) f(1) =1,
(2) tf(t1) = f(1),

(3) f is operator monotone.

For f € F,p define f(0) = lim,0 f(z). We introduce the sets of regular and
non-regular functions

Zp = {f € Sop‘f(o) 75 O}a ggp = {f € Sop|f(0) = 0}
and notice that trivially §,, = z;p U ggp. In Kubo-Ando theory of matrix means
one associates a mean to each operator monotone function f € §,, by the formula

mf(A,B) _ A1/2f(A—1/QBA—1/2)A1/27
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where A, B € M, +(C). By using the notion of matrix means we define the gener-
alized monotone metrics for X,Y € M, (C) by the following formula

(X,Y)p=Tr[X*ms(La,Rp)"'Y],
where LA(X) = AX,Rp(X) = XB.
2. GENERALIZED QUASI-METRIC ADJUSTED SKEW INFORMATION AND
CORRELATION MEASURE

Definition 2.1. Let g, f € §;, satisty

(z = 1)°
90 2 k)
for some k > 0. We define
r—1)2
(2.1) Aj(@) = g(o) - K € 5o

Definition 2.2. Notation as in Definition 2.1. For X,Y € M,(C) and A, B €
M,, +(C), we define the following quantities:

(1) TYD(X,Y) = k((La — Rp)X, (La — Rp)Y);

= kTr[X*(La— Rp)ms(La,Rp) " (La— Rp)Y]
= Tr[X*my(La, Rp)Y] = Tr[X*m s (La, Rp)Y],

@) 195 (x) =1r'Ph (x. x),

(3) WIH(X.Y) = Tr[X*my(La, Rp)Y] + Tr{X*m oy (La. Rp)Y].
(@) T () =i x, X)

(5) U (x) w 0D ).

The quantities 11(49 g) (X) and Fff’};) (X,Y) are said generalized quasi-metric adjusted
skew information and generalized quasi-metric adjusted correlation measure, respec-
tively.

Theorem 2.3 (Schrodinger type). For f € §7,, it holds

1900 190 () = It'0R (X, )2,

where X,Y € M, (C) and A, B € M,, +(C).

We use only Schwarz inequality to prove Theorem 2.3 by a similar way as the proof
of Theorem 2 in [8]. We note the equation

1La—Rp| =Y > 1N = il Liguyion Rl (1
i=1 j=1

where A =371 Ailgi)(di], B = > " pjlvy) (5] are the spectral decompositions.
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Theorem 2.4 (Heisenberg type). For f € Sops
(2.2) g(x) + Al(w) > (f(2)
for some £ > 0, then it holds

USE (X) - U () = kOTrIX"|La = Rp|Y]P
where X,Y € M, (C) and A, B € M, +(C). In particular,
KUTT[X|La — Rp| X])* < Tr[X*(my(La, Rp) —m s (La, Rp))X]

x Tr[X*(mg(La, Rp) + mAg(LA, Rp))X],

where X € M,(C) and A, B € M,, ,(C).

(2.3)

We use refined Schwarz inequality to prove Theorem 2.4 by a similar way as the
proof of Theorem 3 in [8].

3. TRACE INEQUALITIES

We assume that

41 7 (x—1)2 _ f(0)
== f@ =all - o)y k=

Then, since (2.1), (2.2) are satisfied for g, f, k and ¢, we have the following trace
inequality by putting X = I in (2.3).

(3.1) a(l — a)(Tr[|Ls — Rp|1])?

g9(z) L 0=2.

2

2
< <;T7~[A + B]) _ <;TT[A°‘Bla 4 AlO‘Ba]>

This is a generalization of trace inequality given in [2]. And also we give the following
new inequality by combining the Chernoff type inequality with the above theorem.

Theorem 3.1. We have the following:

1
“Tr[A+ B —|Ls— Rp|I] < inf Tr[A'™*B|
2 0<a<l1

< Tr[AY?BY?) < %Tr[AaBl—a + Al2B?

IN

1 2
\/<2Tr[A + B]) —a(l—a)(Tr[|La— Rp|I)?.

We need the following lemma in order to prove Theorem 3.1.

Lemma 3.2. Let f(s) = Tr[A'=*B®] for A,B € M,(C) and 0 < s < 1. Then f(s)

18 convex in s.

Proof of Lemma 3.2. f (s) = Tr[—A'"*log AB®* + A'~*B%log B]. And then
f(s) = Tr[A'"*(og A)’B® — A'~*log AB® log B]
—Tr[AY log AB*log B — A'*B*(log B)?|

= Tr[A'*(log A)’B°] — Tr[A'*log Alog BB?|
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—Tr[log Blog AA'™B®] 4+ Tr[A'~*(log B)*B*]
= Tr[A'""*log A(log A — log B)B®] — Tr[A'~*(log A — log B) log BB?|
= Tr[A'™5(log A — log B)B?log A] — Tr[A'*(log A — log B) log BB?|
= Tr[A'"*(log A — log B)B*(log A — log B)]
= Tr[A1=9/2(log A — log B) B (log A — log B)A1=9)/2] > 0.
Then f(s) is convex in s. O

Proof of Theorem 3.1. The third and fourth inequalities follow from Lemma 3.2 and
(3.1), respectively. So we may only prove

Tr[A+ B —|La — Rp|I] < 2Tr[A'"™*B*] (0<a<1).
Let
A= ZA |6i) (il =D Nila) (@ilabs) (w51,

7.]

B = ZM]WJ] 1#3\—2/13‘(1’1 ) (@ilg) (sl

2

=D Ailil) P, Tr(Bl = gl (il |?
i,j 1,7

Then we have

And since
1La—Ral =Y [\ — 15116, 6. Ry (1
,J
we have
La— Rp|IT =" |\ — pjll i) (ilbs ) (5]
4,J
Then we have
Tr|La— Rl =Y [N — pll(gilw;)*.
,J
Therefore
Trl[A+ B —|Ls— Rp|l]| = Z()\z + i — [N — :U’]D|<¢ZW]]>’2
4,J
On the other hand since
ZA% (il =D AT |oi) (dilbs) (s,

7]

:Z'M ‘wj ¢j|—2/‘ |¢1 ¢1|¢]><¢J|
J

we have

A°B = ZA“ @i {(ilehs ) (-

Then
AocBl a Z)\Oc a‘ ¢z|¢j>‘ )
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Thus
2Tr[A*B'™® — Tr[A+ B — |La — Rp|I]
= > {22 = g — [ — )Yl
47j
Since 22y~ — (x +y — |z —y|) > 0 for 2,35 > 0,0 < a < 1 in general, we can get
the result. 0

Remark 3.3. There are no relationship between Tr[|A — B|] and Tr[|La — Rp|I].

For example, let
4 0
=(14) (1)

Then Tr[Ls — Rp|I] = 3 and Tr[|A — B|] = V/10.
On the other hand let

DO 0| o
NG|

Finally we give a refinement of inequality about fidelity.

Theorem 3.4.
1 v Ao 1
Tr|AV2BY?)] > ———Tr[A] + —— <TrA+B— A-B )
| I]_lJr o [A] Tr v \2 [ | I

where Ay is the largest eigenvalue of B~Y/2AB~1/2,
In order to prove Theorem 3.4, we need the following lemma.

Lemma 3.5. Let A,B € M, +(C") and € = {E = {E;};E; > 0,370, Ej = I}.
We put aj = Tr[AE;],b; = Tr[BE;]. Then

_ 1/251/2)) — 7.
(3.2) F(A, B) = Tr[|AV2B'] glelg;\/aabg,
(3.3) D(A,B) =Tr[|A - BJ] =%lgg;|aj —bjl.

Proof of Lemma 3.5. First we prove (3.2). For A, B € M, 4(C), we take the polar
decomposition

Al/2pl/2 — W*|A1/2Bl/2|7
where W is a unitary matrix. Then we have

F(A,B) = Tr[|AY2BY2|] = Tr[W AY2B'/?

= > TrwAVE BB
j=1
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IA

zi:l \/Tr[AE|Tr(BE;

= Z \/ajbj.
j=1

The equality is satisfied in the case that for each j
E;/QBl/Z _ osz]l»/QAl/zW*
for some «;, or equivalently

E]1/2 _ OéjE;/QB_l/2|A1/2Bl/2|B_1/2.

Then when B-V2[AV2BY2BV2 = S Bk)k], 8 = & and E; = [j)(jl, the
J

equality is attained. Then F'(A, B) = mingee Y, \/a;b;.

Next we prove (3.3). Let X1 = (| X| + X) for selfadjoint X. Since

[ Tr[AE; — BEjl| = [Tr[(A=B)Ej]| = |Tr[((A-B)y — (A - B)-)Ej]
< Tr[((A—B)+ + (A— B)-)E]]
= Tr[|A-B|E]j],
we have

D(A,B) =Tr[[A= B[] > > |a; — bj].
j=1
The equality is satisfied with the measurement which is made by the projections

onto the support of (A — B)4 and the projection onto the support of (A — B)_.
Then D(A, B) = maxgee Y j—; |aj — bjl-

Now we are ready to prove Theorem 3.4. O

Proof of Theorem 3.4. By a similar way as the proof of Lemma 2.5 in [9], we can
get the following inequalities; for any A (0 < A < 1)

n 1— \/X n 1+ \/X n 1— \/X n
Z\/%(Mfr(l—k)ij 5 D la = bl > =) e+ ) b
J=1 j=1 J=1 j=1

1 +2\F)\TT[A} + ! _2\/X

Tr[B].

By taking the minimum over € in both sides,

L VAL ()4 LYy gy 12 VA
2 2 2
Let A\g = min{\ > 0; A < AB}. If Ay < 1, then it is clear that A < B. Since
|A— B| = |B— A| = B — A, the result of theorem holds. Then we can assume
Ao > 1. If we put

F(AMA + (1 —\)B) >

Tr[|A - BJ).

-1

C= - A,
I 11— 2"
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then we have

F(A,B) = FAN'A+(1-X10)

14+ /A1 1— /A1 1— /A1
— V'O — V0 o) - — Y2 1A - Q).

> — a4 —) 5
Since
7r(C] = - _1&71 1B) - fO;O_ITr{AL
we have
F(A,B) > H2/\°_1Tr[A] A : % (1 1A01 r[B] -1 Aa;OlTr[A])
“\Q/ETTHA e
_ AalTr[A] + ! Tr[B] — N Tr[A
2 21+ /7Y 2144/
_W%TTHA —B] (byA—C= - —1&71 (A-B))
_ HQ)\OlTr[A]—FW%TT[B]
T T - W%TTHA ~B|
_ mﬂm + Q(H%Trw] - 2(H\/YOWO)TT[IA - B
S m%mmw ~a- B).

Acknowledgements. The author would like to thank Ken Kuriyama and Shigeru
Furuichi for helpful suggestions on an earlier version of this paper.




270 KENJIRO YANAGI

REFERENCES

[1] K. M. R. Audenaert, J. Calsamiglia, L. I. Masancs, R. Munnoz-Tapia, A. Acin, E. Bagan and
F. Verstraete, The quantum Chernoff bound, Phys. Rev. Lett. 98 (2007), 160501.

[2] K. M. R. Audenaert K. M. Nussbaum, A. Szkola and F. Verstraete, Asymptotic error rates in
quantum hypothesis testing, Commun. Math. Phys. 279 (2008), 251-283.

[3] Y. N. Dou and H. K. Du, Generalizations of the Heisenberg and Schridinger uncertainty
relations, J. Math. Phys. 54 (2013), 103508.

[4] Y. N. Dou and H. K.Du, Note on the Wigner-Yanase-Dyson skew information,, Int. J. Theor.
Phys. 53 (2014), 952-958.

[5] R. T. Powers and E.St¢rmer, Free states of the canonical anticommutation relations, Commun.
Math. Phys. 16 (1970), 1-33.

[6] K. Yanagi, S. Furuichi and K. Kuriyama, Uncertainty relations for generalized metric adjusted
skew information and generalized metric correlation measure, J. Uncertainty Anal. Appl. 1
(2013), 1-14.

[7] K. Yanagi, Non-hermitian extensions of Schrodinger type uncertainty relations, Proceedings
of ISITA, 2014, pp. 163-166.

[8] K. Yanagi and K. Sekikawa, Non-hermitian extensions of Heisenberg type and Schrodinger
type uncertainty relations, J.Inequalities and Applications 381 (2015), 1-9.

[9] L. Zhang, K. Bu and J. Wu, A lower bound on the fidelity between two states in terms of their
trace-distance and maz-relative entropy, Linear and Multilinear Algebra 64 (2016), 801-806.

Manuscript received 19 February 2016
revised 16 June 2016

K. YaNaar
Department of Mathematics, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado 350-0295,
Japan

E-mail address: yanagi@josai.ac.jp





