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BOUNDEDNESS OF TOEPLITZ OPERATORS ON PARABOLIC
HARDY SPACES

HAYATO NAKAGAWA AND NORIAKI SUZUKI

ABSTRACT. We define a Toeplitz operator on a-parabolic Hardy spaces and give
a condition that it is bounded. A relation between Toeplitz operators and Car-
leson inclusions is important.

1. INTRODUCTION

For an integer n > 1, let RT‘I = {(z,t) € R*H! ‘ r = (r1,22,...,2,) € R" >
0} denote the upper half space. For 0 < o < 1, let L) be a parabolic operator
0? 0? 0?

L@ .— 9 ALY, Ay = e b e b
b+ )% 8x%+8x%+ +8:1:%

An L(®-harmonic function is a continuous function u on Riﬂ satisfying L(®y =0
in a weak sense; the precise definition will be given in the next section.

For 1 < p < oo, we denote by hh := hh(R"™) the set of all L(®-harmonic
functions u with ||u||,» < oo, where

1
(1) fulh =sop [ ot opas)”
t>0 R™

We call hf, the a-parabolic Hardy space of order p, which is a Banach space under
the norm | - ||,». Remark that

1
P
pu— 1 p
(1.2) lullpy, = lim (/Rn u(z, )| dw)

(see (3.3) below).
Let © be a positive Borel measure on RTFI. We define the Toeplitz operator T},
with symbol p by

(1.3) Tyu(x,t) == //Rnﬂ W (z —y,t+ s)uly, s) du(y, s)

for u € hE,, where W is the fundamental solution of L(®). Let 7 > 0. Recall that
1 is called a Tr-Carleson measure if there exists C' > 1 such that

(1.4) u(T(O‘) (2,t)) < Ctsa
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holds for all (z,t) € R}, where T (z,t) := {(y,s) € R |y — 2> + 5 < t}
(see [2]).
Now we will state our main result.

Theorem 1.1. Let 1 < p < g < oo, 7 := 14+ 1/p—1/q and p be a positive
Borel measure on Riﬂ. If p is a T:--Carleson measure, then the Toeplitz operator
T, =Tyupg: h% — hi is well defined and bounded.

We give an explanation for the definition (1.3). The a-parabolic Bergman space
b% is the set of all L(®)-harmonic functions u with |ul[pp < oo, where

1
P
ullpp = (// u(z,t) ]pdxdt> .

Toeplitz operator T' with symbol u on b5 has already discussed in [5] and [6] (see
also [7]). Its definition is

(1.5) u(z,t) = —2 //R"“ 5 —y,t+ s)u(y, s) du(y, s).

We note that —2(0/9t)W (®)(z — y,t + s) is the reproducing kernel of b2. Later we
will show that W(®) (z — y,t + s) is the reproducing kernel of the Hilbert space h2.
Hence (1.3) is a Hardy space version of (1.5).

In Section 2, we recall the definition of L(®-harmonic functions and basic prop-
erties of the fundamental solution W(®). In Section 3, we prepare some basic prop-
erties of a-parabolic Hardy space hh. In particular, Huygens property and duality
are important. The reproducing kernel of the Hilbert space h2 is also discussed.
Using Carleson inequalities on kb, (cf. [2]), we give a proof of Theorem 1.1 in Section
4.

Throughout the paper, we will use the same letter C' to denote various positive
constants; it may vary even within a line.

2. PRELIMINALIES

When a = 1, L®M-harmonic functions are solutions of the heat operator. We go
the case 0 < a < 1. Let CSO(RTFI) be the set of all C'"*°-functions with compact
support on ]RT‘I. For ¢ € CCOO(R:EH), we set

~la 0 —n—2«
Lq(a,1) 1= =5 () = cn o lim (o(z +y,t) — (1)) |y| " >*dy,
=0 Jly|>6
where
a:4o‘77_%@, lz| = (22 + 23+ +2x )%
(o)

and I'(+) is the gamma function. A function h on Riﬂ is said to be L(®-harmonic
if A is continuous,

(2.1) // (2, D)|(1 + 2])"2dadt < 0o
Rnx[t17t2]
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holds for every 0 <t < t; < o0 and [[pn h- L dzdt = 0 holds for all ¢ €
C(R*1). Note that the condition (2.1) is equivalent to ffRTrl |h- L@ | dedt < oo
for all ¢ € CX(R7TH).

We use a fundamental solution W (@ of L(® which is defined by
(271')_"/ e P eirE ge ¢ 5 0
0 " t<0

W) (z,t) =

where x - £ is the inner product of x and &. It is known that when o = 1/2, w/2)
coincides with the Poisson kernel on R:L_H, that is, for t > 0,

res)
n+1

Tz (24 |z]?

N|=

(2.2) W) (z,t) =

)y

Note also that W (z,t) = (4mt) /2~ 1#1*/4 is the Gauss kernel.
It is known that W(®)(z,t) > 0 and

W) (2, t)de = 1
Rn
for ¢ > 0. Note also that

W@ (z,1) = ¢t 2 W@ (1 2a, 1)
and

W (z,t) = @@ —y,t =)Wy, s)dy
Rn
for 0 < s < t. The following estimate is useful (see [3], [5]): There exists a constant
C > 0 such that
t

2.3 W) <O—o .
9 = e

Using this, we see

p
(@) p t+s
/n (W@ t+9)) dz < Rn((t+s+yx|2a)z’;+1> dx

1

Wn—1 2 (1-p) o 77%7
= 07 t 2a( p —nd s
20 (t+3) /0 (14 n)lzatbr 1
: . . |2 :
where wy,_1 is the volume of sphere of unit ball in R™ and 7 := e In particular,
s

if 1 <p < oo, then
(2.4) W, 4 ) < Cs3aG™Y < 0o

for all s > 0.
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3. a-PARABOLIC HARDY SPACES
The following Huygens property is important in our argument.

Definition 3.1. We say that an a-harmonic function v on ]R:L_H satisfies the Huy-
gens property, if W) (z — - t — s)u(-,s) € LY(R") and
(3.1) u(z,t) = @ (2 —y, t — s)u(y, s)dy
Rn
holds for every x € R™ and every 0 < s < t.

We know that every function in b}, satisfies the Huygens property (see [3, Theorem
4.1)). If uw € h%, then for any 0 < a < b < oo,

// |u(z, t)|Pdxdt < oo.
" x[a,b]

Hence by the same manner as in [3], we have the following proposition.
Proposition 3.2. Let 1 < p < oo. Ewvery function u € hb satisfies the Huygens
property.

For f € LP(R™), we set
(32) PO[f](z,t) = | W (@ —y,1)f(y)dy.

R’ﬂ

The following proposition is shown in [2] (see also [8, p.62]).

Proposition 3.3. Let 1 < p < oo. If f € LP(R"), then P(M[f] € h%, and conversely,

for w € RE, there exists a unique function f € LP(R") such that u = P®[f].
Moreover, we see ||P(®) Unz = IIfllprny and

(3.3) lim | PCYFI( 1) = fllogeny = 0.
—0
This implies that
(3.4) P LP(R™) — b2,

is a linear surjective isometry. When o = 1/2, (2.2) shows that A /o is the usual
harmonic Hardy spaces on the upper half space, and (3.4) is a generalization of
Theorem 7.17 in [1].

Let 1 < p <ocandlet 1/p+1/p' = 1. Ifu := P@[f] € h}, and v := P(¥[g] € hE,
then by (3.3), we have

(3.5) lim u(zx, t)v(z, t)de = f(x)g(x)dz.
t—0 Jpn R
We put
(3.6) (u,v)g = lim u(x, t)v(z,t) de.
t—0 Rn

Remark that Proposition 3.3 gives that

(3.7) [{w, 0y | < [ullpz ol = [1F ]l @e) g1l Lo ey < 00
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In case of p = 2, h?2 is a Hilbert space with the inner product (3.6). By (3.1), the
reproducing kernel for h2 is W(®)(z — - ¢t + ), that is,
(3-8) (u, W) (z—-t+))g =u(z,t)

for u € h2. Moreover (3.8) holds for all hh with 1 < p < oo, that is, if u € hh, then
by (3.1),

(3.9) lim [ wu(y,s)W(z—y,t+s)dy = lim u(z, t + 25) = u(z, t).
s—0 Rn s—0

Next we observe the dual space (hh)* of hh.

Proposition 3.4. Let 1 < p < oo and let 1/p+1/p' = 1. Forv € hﬁ,, we set
Ay(u) = {(u,v)g for u € hh. Then ® : v — A, is a linear surjective isometry from

18 to (hB)*, that is, ||®(v)[|z)- = [|v]|,,» and (hR)* 2 K hold.

Proof. We write u = P(®[f] and v = P(®[g] with f € LP(R") and g € L? (R"),
respectively. Then by (3.5) and (3.7),
[@W)llnzy- = sup  (u,v)m

uEhﬁ,Huth:l
= sup f(x)g(x)de
feLr@®"),|IfllLp®ny=1JR?
= 19l gy = el
This shows that ® is isometry. To show that ® is onto, take A € (hh)*. Since

f = A(P@[f]) is a bounded linear functional on LP(R"), there exists g € L¥ (R™)
such that

P = [ falgla)de.
It is not difficult to show that A = A Ple)[g]> which shows & is surjective. O

Here we recall a main result of [2]. Let 1 < p < oo and 1 < ¢ < co. We say that a
positive Borel measure 4 on ]Rfrl satisfies a (p, ¢)-Carleson inequality on parabolic
Hardy spaces if the mapping ¢, p o(u) = u from hf to Lq(]R?fl, du) is bounded, that
is,

”U”Lq(RTJﬁ{d‘u)

(3.10) [tppqll == sup
ueh?, HUth

We call ¢, 4 the Carleson inclusion, even if it is not necessarily injective.

Proposition 3.5. ( [2, Theorem 1]) Let 1 < p < ¢ < co. Then [jt,pqll < 00 if and
only if u is a T, ,-Carleson measure.

Let pu be a positive Borel measure on RTFI. For functions v and v on RZLF'H, we
write

(u,v) () = //R"“ u(z, t)v(x, t)du(x,t),

if this integral converges.
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Proposition 3.6. Let 1 <p < g < oo, and let 1/p+1/p' =1/q+1/¢ = 1. Put
T:=141/p—1/q and assume that p is Tr-Carleson measure. Then there exists a

constant C > 1 such that for v € hb, and v € hg,
(3.11) (lul, WDy < Cllullpgl1oll,,q

Proof. We note that 1/(7p) + 1/(r¢') = 1. By Proposition 3.5, ¢y prp and ¢ ¢ r¢
are bounded. Hence the Holder inequality shows that

1Lt 00t Dl ) < ol a9l ey, a
+

< Cllullpg o]l g

4. PROOF OF THEOREM 1.1

In this section, we will give a proof of Theorem 1.1.
Let 1<p<g<ooand 1/p+1/p =1/q+1/¢d = 1. Let pu be a T -Carleson
measure, where 7 = 14+ 1/p — 1/q. We note that ¢, -, and ¢, 4 - are bounded.

Let u € h%. Since W(®(z — -t + ) € he . by (3.11)
Talet) = [[ W=yt 4 Syuly,)dnly.
RTL

converges for every (z,t) € R, We will show that T,u is L(*)-harmonic. When
u = P@[f], we set @ := P@[|f|]. Then for every 0 < t; < t5 < 00,

/ / Tz, £)](1 + |2]) "2 dedt

R"x[tl,tg]

< // Tz, t)(1 + |z|) " 2*dwdt
R7™ X [t1,t2]

//R”“ (//n <tita] a) (x—y,t+s) 1+ |z|)™" 2O‘dxdt> a(y, s)du(y, s)

because @ € hb and
// W) (z + (1 + |z)) " dxdt € hY
X [t1,t2]

This estimate and the Fubini Theorem show that | fRTl Tyu - E(a)cp dxdt = 0 for
all p € CX(RTH).
Next we will show that T,u € hi. Take v € hg; arbitrarily. Then remarking
[o( - +28) = 0(s ) pror ) < ClloGs - +28) =v(5) e =0
as s = 0, we have
(Tyu,v) g
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= lim T, u(y, s)v(y, s) dy

s—0 Rn

s—0

= lim //Rn+1 (/Rn W (z —y,t + s)u(y, s) dy) w(z, t) dp(z, t)
= lim / /R oy vt 2s)u(e, t) dp(e, t)

= lim / W (y — s+ tu(z, t) du(z,t) | v(y, s)dy
R™ Ry

s—0

_ / /R vl (e, t) dp(e, )

= (Lp,p,7pls Lmq’#q’”)L(y)
_ *
= <Lu,q’,’rq’[’llapa7'pu7 U>H7

which implies T)u € hd and T, =1
well defined and

*

_ . pP q
D g spiTD- Hence T}, = T, pq : ha — hq is

1 Tupall < 4nq rg Mltwproll = lleng g Hlewp,rpll < 00
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