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holds for all (x, t) ∈ Rn+1
+ , where T (α)(x, t) := {(y, s) ∈ Rn+1

+ ; |y − x|2α + s ≤ t}
(see [2]).

Now we will state our main result.

Theorem 1.1. Let 1 < p ≤ q < ∞, τ := 1 + 1/p − 1/q and µ be a positive
Borel measure on Rn+1

+ . If µ is a Tτ -Carleson measure, then the Toeplitz operator
Tµ = Tµ,p,q : h

p
α → hqα is well defined and bounded.

We give an explanation for the definition (1.3). The α-parabolic Bergman space

bpα is the set of all L(α)-harmonic functions u with ∥u∥bpα < ∞, where

∥u∥bpα :=

(∫∫
Rn+1
+

|u(x, t)|pdxdt

) 1
p

.

Toeplitz operator T with symbol µ on bpα has already discussed in [5] and [6] (see
also [7]). Its definition is

(1.5) Tu(x, t) := −2

∫∫
Rn+1
+

∂

∂t
W (α)(x− y, t+ s)u(y, s) dµ(y, s).

We note that −2(∂/∂t)W (α)(x− y, t+ s) is the reproducing kernel of b2α. Later we

will show that W (α)(x− y, t+ s) is the reproducing kernel of the Hilbert space h2α.
Hence (1.3) is a Hardy space version of (1.5).

In Section 2, we recall the definition of L(α)-harmonic functions and basic prop-
erties of the fundamental solution W (α). In Section 3, we prepare some basic prop-
erties of α-parabolic Hardy space hpα. In particular, Huygens property and duality
are important. The reproducing kernel of the Hilbert space h2α is also discussed.
Using Carleson inequalities on hpα (cf. [2]), we give a proof of Theorem 1.1 in Section
4.

Throughout the paper, we will use the same letter C to denote various positive
constants; it may vary even within a line.

2. Preliminalies

When α = 1, L(1)-harmonic functions are solutions of the heat operator. We go
the case 0 < α < 1. Let C∞

c (Rn+1
+ ) be the set of all C∞-functions with compact

support on Rn+1
+ . For φ ∈ C∞

c (Rn+1
+ ), we set

L̃(α)φ(x, t) := − ∂

∂t
φ(x, t)− cn,α lim

δ→0

∫
|y|>δ

(φ(x+ y, t)− φ(x, t))|y|−n−2αdy,

where

cn,α = 4απ−n
2
Γ(2n+α

2 )

|Γ(−α)|
, |x| = (x21 + x22 + · · ·+ x2n)

1
2 ,

and Γ(·) is the gamma function. A function h on Rn+1
+ is said to be L(α)-harmonic

if h is continuous,

(2.1)

∫∫
Rn×[t1,t2]

|h(x, t)|(1 + |x|)−n−2αdxdt < ∞
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holds for every 0 < t1 < t2 < ∞ and
∫∫

Rn+1
+

h · L̃(α)φdxdt = 0 holds for all φ ∈

C∞
c (Rn+1

+ ). Note that the condition (2.1) is equivalent to
∫∫

Rn+1
+

|h·L̃(α)φ| dxdt < ∞
for all φ ∈ C∞

c (Rn+1
+ ).

We use a fundamental solution W (α) of L(α), which is defined by

W (α)(x, t) =

(2π)−n

∫
Rn

e−t|ξ|2αeix·ξ dξ t > 0

0 t ≤ 0

where x · ξ is the inner product of x and ξ. It is known that when α = 1/2, W (1/2)

coincides with the Poisson kernel on Rn+1
+ , that is, for t > 0,

(2.2) W ( 1
2
)(x, t) =

Γ
(
n+1
2

)
π

n+1
2

t

(t2 + |x|2)
n+1
2

.

Note also that W (1)(x, t) = (4πt)−n/2e−|x|2/4t is the Gauss kernel.

It is known that W (α)(x, t) ≥ 0 and∫
Rn

W (α)(x, t)dx = 1

for t > 0. Note also that

W (α)(x, t) = t−
n
2αW (α)(t−

1
2αx, 1)

and

W (α)(x, t) =

∫
Rn

W (α)(x− y, t− s)W (α)(y, s)dy

for 0 < s < t. The following estimate is useful (see [3], [5]): There exists a constant
C > 0 such that

(2.3) W (α)(x, t) ≤ C
t

(t+ |x|2α)
n
2α

+1
.

Using this, we see∫
Rn

(
W (α)(x, t+ s)

)p
dx ≤ C

∫
Rn

(
t+ s

(t+ s+ |x|2α)
n
2α

+1

)p

dx

= C
ωn−1

2α
(t+ s)

n
2α

(1−p)

∫ ∞

0

η
n
2α

−1

(1 + η)(
n
2α

+1)p
dη,

where ωn−1 is the volume of sphere of unit ball in Rn and η :=
|x|2α

t+ s
. In particular,

if 1 < p < ∞, then

(2.4) ∥W (α)(·, ·+ s)∥hp
α
< Cs

n
2α

( 1
p
−1)

< ∞

for all s > 0.
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3. α-parabolic Hardy spaces

The following Huygens property is important in our argument.

Definition 3.1. We say that an α-harmonic function u on Rn+1
+ satisfies the Huy-

gens property, if W (α)(x− ·, t− s)u(·, s) ∈ L1(Rn) and

(3.1) u(x, t) =

∫
Rn

W (α)(x− y, t− s)u(y, s)dy

holds for every x ∈ Rn and every 0 < s < t.

We know that every function in bpα satisfies the Huygens property (see [3, Theorem
4.1]). If u ∈ hpα, then for any 0 < a < b < ∞,∫∫

Rn×[a,b]
|u(x, t)|pdxdt < ∞.

Hence by the same manner as in [3], we have the following proposition.

Proposition 3.2. Let 1 < p < ∞. Every function u ∈ hpα satisfies the Huygens
property.

For f ∈ Lp(Rn), we set

(3.2) P (α)[f ](x, t) :=

∫
Rn

W (α)(x− y, t)f(y)dy.

The following proposition is shown in [2] (see also [8, p.62]).

Proposition 3.3. Let 1 < p < ∞. If f ∈ Lp(Rn), then P (α)[f ] ∈ hpα and conversely,

for u ∈ hpα, there exists a unique function f ∈ Lp(Rn) such that u = P (α)[f ].

Moreover, we see ∥P (α)[f ]∥hp
α
= ∥f∥Lp(Rn) and

(3.3) lim
t→0

∥P (α)[f ](·, t)− f∥Lp(Rn) = 0.

This implies that

(3.4) P (α) : Lp(Rn) → hpα

is a linear surjective isometry. When α = 1/2, (2.2) shows that hp1/2 is the usual

harmonic Hardy spaces on the upper half space, and (3.4) is a generalization of
Theorem 7.17 in [1].

Let 1 < p < ∞ and let 1/p+1/p′ = 1. If u := P (α)[f ] ∈ hpα and v := P (α)[g] ∈ hp
′

α ,
then by (3.3), we have

(3.5) lim
t→0

∫
Rn

u(x, t)v(x, t)dx =

∫
Rn

f(x)g(x)dx.

We put

(3.6) ⟨u, v⟩H := lim
t→0

∫
Rn

u(x, t)v(x, t) dx.

Remark that Proposition 3.3 gives that

(3.7) |⟨u, v⟩H | ≤ ∥u∥hp
α
∥v∥

hp′
α
= ∥f∥Lp(Rn)∥g∥Lp′ (Rn) < ∞.
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In case of p = 2, h2α is a Hilbert space with the inner product (3.6). By (3.1), the

reproducing kernel for h2α is W (α)(x− ·, t+ ·), that is,

(3.8) ⟨u,W (α)(x− ·, t+ ·)⟩H = u(x, t)

for u ∈ h2α. Moreover (3.8) holds for all hpα with 1 < p < ∞, that is, if u ∈ hpα, then
by (3.1),

(3.9) lim
s→0

∫
Rn

u(y, s)W (α)(x− y, t+ s) dy = lim
s→0

u(x, t+ 2s) = u(x, t).

Next we observe the dual space (hpα)∗ of hpα.

Proposition 3.4. Let 1 < p < ∞ and let 1/p + 1/p′ = 1. For v ∈ hp
′

α , we set
Λv(u) = ⟨u, v⟩H for u ∈ hpα. Then Φ : v → Λv is a linear surjective isometry from

hp
′

α to (hpα)∗, that is, ∥Φ(v)∥(hp
α)∗ = ∥v∥

hp′
α

and (hpα)∗ ∼= hp
′

α hold.

Proof. We write u = P (α)[f ] and v = P (α)[g] with f ∈ Lp(Rn) and g ∈ Lp′(Rn),
respectively. Then by (3.5) and (3.7),

∥Φ(v)∥(hp
α)∗ = sup

u∈hp
α,∥u∥hpα=1

⟨u, v⟩H

= sup
f∈Lp(Rn),∥f∥Lp(Rn)=1

∫
Rn

f(x)g(x)dx

= ∥g∥Lp′ (Rn) = ∥v∥
hp′
α
.

This shows that Φ is isometry. To show that Φ is onto, take Λ ∈ (hpα)∗. Since

f 7→ Λ(P (α)[f ]) is a bounded linear functional on Lp(Rn), there exists g ∈ Lp′(Rn)
such that

Λ(P (α)[f ]) =

∫
Rn

f(x)g(x)dx.

It is not difficult to show that Λ = ΛP (α)[g], which shows Φ is surjective. □

Here we recall a main result of [2]. Let 1 < p < ∞ and 1 < q < ∞. We say that a
positive Borel measure µ on Rn+1

+ satisfies a (p, q)-Carleson inequality on parabolic

Hardy spaces if the mapping ιµ,p,q(u) = u from hpα to Lq(Rn+1
+ , dµ) is bounded, that

is,

(3.10) ∥ιµ,p,q∥ := sup
u∈hp

α

∥u∥Lq(Rn+1
+ , dµ)

∥u∥hp
α

< ∞.

We call ιµ,p,q the Carleson inclusion, even if it is not necessarily injective.

Proposition 3.5. ( [2, Theorem 1]) Let 1 < p ≤ q < ∞. Then ∥ιµ,p,q∥ < ∞ if and
only if µ is a Tq/p-Carleson measure.

Let µ be a positive Borel measure on Rn+1
+ . For functions u and v on Rn+1

+ , we
write

⟨u, v⟩L(µ) :=
∫∫

Rn+1
+

u(x, t)v(x, t)dµ(x, t),

if this integral converges.
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Proposition 3.6. Let 1 < p ≤ q < ∞, and let 1/p + 1/p′ = 1/q + 1/q′ = 1. Put
τ := 1 + 1/p− 1/q and assume that µ is Tτ -Carleson measure. Then there exists a

constant C ≥ 1 such that for u ∈ hpα and v ∈ hq
′

α ,

(3.11) ⟨|u|, |v|⟩L(µ) ≤ C∥u∥hp
α
∥v∥

hq′
α
.

Proof. We note that 1/(τp) + 1/(τq′) = 1. By Proposition 3.5, ιµ,p,τp and ιµ,q′,τq′
are bounded. Hence the Hölder inequality shows that∫∫

Rn+1
+

|u(x, t)v(x, t)|dµ(x, t) ≤ ∥u∥Lτp(Rn+1
+ , dµ)∥v∥Lτq′ (Rn+1

+ , dµ)

≤ C∥u∥hp
α
∥v∥

hq′
α
.

□

4. Proof of Theorem 1.1

In this section, we will give a proof of Theorem 1.1.
Let 1 < p ≤ q < ∞ and 1/p + 1/p′ = 1/q + 1/q′ = 1. Let µ be a Tτ -Carleson

measure, where τ = 1 + 1/p − 1/q. We note that ιµ,p,τp and ιµ,q′,τq′ are bounded.

Let u ∈ hpα. Since W (α)(x− ·, t+ ·) ∈ hq
′

α , by (3.11)

Tµu(x, t) :=

∫∫
Rn+1
+

W (α)(x− y, t+ s)u(y, s)dµ(y, s)

converges for every (x, t) ∈ Rn+1
+ . We will show that Tµu is L(α)-harmonic. When

u = P (α)[f ], we set ũ := P (α)[|f |]. Then for every 0 < t1 < t2 < ∞,∫∫
Rn×[t1,t2]

|Tµu(x, t)|(1 + |x|)−n−2αdxdt

≤
∫∫

Rn×[t1,t2]
Tµũ(x, t)(1 + |x|)−n−2αdxdt

≤
∫∫

Rn+1
+

(∫∫
Rn×[t1,t2]

W (α)(x− y, t+ s)(1 + |x|)−n−2αdxdt

)
ũ(y, s)dµ(y, s)

< ∞

because ũ ∈ hpα and∫∫
Rn×[t1,t2]

W (α)(x− ·, t+ ·)(1 + |x|)−n−2αdxdt ∈ hq
′

α .

This estimate and the Fubini Theorem show that
∫∫

Rn+1
+

Tµu · L̃(α)φdxdt = 0 for

all φ ∈ C∞
c (Rn+1

+ ).

Next we will show that Tµu ∈ hqα. Take v ∈ hq
′

α arbitrarily. Then remarking

∥v(·, ·+ 2s)− v(·, ·)∥Lτq′ (µ) ≤ C∥v(·, ·+ 2s)− v(·, ·)∥
hq′
α
→ 0

as s → 0, we have

⟨Tµu, v⟩H
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= lim
s→0

∫
Rn

Tµu(y, s)v(y, s) dy

= lim
s→0

∫
Rn

(∫∫
Rn+1
+

W (α)(y − x, s+ t)u(x, t) dµ(x, t)

)
v(y, s) dy

= lim
s→0

∫∫
Rn+1
+

(∫
Rn

W (α)(x− y, t+ s)v(y, s) dy

)
u(x, t) dµ(x, t)

= lim
s→0

∫∫
Rn+1
+

v(x, t+ 2s)u(x, t) dµ(x, t)

=

∫∫
Rn+1
+

v(x, t)u(x, t) dµ(x, t)

= ⟨ιµ,p,τpu, ιµ,q′,τq′v⟩L(µ)
= ⟨ι∗µ,q′,τq′ιµ,p,τpu, v⟩H ,

which implies Tµu ∈ hqα and Tµ = ι∗µ,q′,τq′ιµ,p,τp. Hence Tµ = Tµ,p,q : hpα → hqα is
well defined and

∥Tµ,p,q∥ ≤ ∥ι∗µ,q′,τq′∥∥ιµ,p,τp∥ = ∥ιµ,q′,τq′∥∥ιµ,p,τp∥ < ∞.
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