BOUNDEDNESS OF TOEPLITZ OPERATORS ON PARABOLIC HARDY SPACES

HAYATO NAKAGAWA AND NORIAKI SUZUKI

Abstract

We define a Toeplitz operator on α-parabolic Hardy spaces and give a condition that it is bounded. A relation between Toeplitz operators and Carleson inclusions is important.

1. Introduction

For an integer $n \geq 1$, let $\mathbb{R}_{+}^{n+1}:=\left\{(x, t) \in \mathbb{R}^{n+1} \mid x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t>\right.$ $0\}$ denote the upper half space. For $0<\alpha \leq 1$, let $L^{(\alpha)}$ be a parabolic operator

$$
L^{(\alpha)}:=\partial_{t}+\left(-\Delta_{x}\right)^{\alpha}, \quad \Delta_{x}:=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}} .
$$

An $L^{(\alpha)}$-harmonic function is a continuous function u on \mathbb{R}_{+}^{n+1} satisfying $L^{(\alpha)} u=0$ in a weak sense; the precise definition will be given in the next section.
For $1<p<\infty$, we denote by $h_{\alpha}^{p}:=h_{\alpha}^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ the set of all $L^{(\alpha)}$-harmonic functions u with $\|u\|_{h_{\alpha}^{p}}<\infty$, where

$$
\begin{equation*}
\|u\|_{h_{\alpha}^{p}}:=\sup _{t>0}\left(\int_{\mathbb{R}^{n}}|u(x, t)|^{p} d x\right)^{\frac{1}{p}} . \tag{1.1}
\end{equation*}
$$

We call h_{α}^{p} the α-parabolic Hardy space of order p, which is a Banach space under the norm $\|\cdot\|_{h_{\alpha}^{p}}$. Remark that

$$
\begin{equation*}
\|u\|_{h_{\alpha}^{p}}=\lim _{t \rightarrow 0}\left(\int_{\mathbb{R}^{n}}|u(x, t)|^{p} d x\right)^{\frac{1}{p}} \tag{1.2}
\end{equation*}
$$

(see (3.3) below).
Let μ be a positive Borel measure on \mathbb{R}_{+}^{n+1}. We define the Toeplitz operator T_{μ} with symbol μ by

$$
\begin{equation*}
T_{\mu} u(x, t):=\iint_{\mathbb{R}_{+}^{n+1}} W^{(\alpha)}(x-y, t+s) u(y, s) d \mu(y, s) \tag{1.3}
\end{equation*}
$$

for $u \in h_{\alpha}^{p}$, where $W^{(\alpha)}$ is the fundamental solution of $L^{(\alpha)}$. Let $\tau>0$. Recall that μ is called a T_{τ}-Carleson measure if there exists $C \geq 1$ such that

$$
\begin{equation*}
\mu\left(T^{(\alpha)}(x, t)\right) \leq C t^{\frac{n \pi}{\alpha \alpha}} \tag{1.4}
\end{equation*}
$$

2010 Mathematics Subject Classification. Primary 35K05; Secondary 30H10, 26D10.
Key words and phrases. Parabolic Hardy space, Toeplitz operator, Carleson inequality.
holds for all $(x, t) \in \mathbb{R}_{+}^{n+1}$, where $T^{(\alpha)}(x, t):=\left\{(y, s) \in \mathbb{R}_{+}^{n+1} ;|y-x|^{2 \alpha}+s \leq t\right\}$ (see [2]).

Now we will state our main result.
Theorem 1.1. Let $1<p \leq q<\infty, \tau:=1+1 / p-1 / q$ and μ be a positive Borel measure on \mathbb{R}_{+}^{n+1}. If μ is a T_{τ}-Carleson measure, then the Toeplitz operator $T_{\mu}=T_{\mu, p, q}: h_{\alpha}^{p} \rightarrow h_{\alpha}^{q}$ is well defined and bounded.

We give an explanation for the definition (1.3). The α-parabolic Bergman space b_{α}^{p} is the set of all $L^{(\alpha)}$-harmonic functions u with $\|u\|_{b_{\alpha}^{p}}<\infty$, where

$$
\|u\|_{b_{\alpha}^{p}}:=\left(\iint_{\mathbb{R}_{+}^{n+1}}|u(x, t)|^{p} d x d t\right)^{\frac{1}{p}}
$$

Toeplitz operator T with symbol μ on b_{α}^{p} has already discussed in [5] and [6] (see also [7]). Its definition is

$$
\begin{equation*}
T u(x, t):=-2 \iint_{\mathbb{R}_{+}^{n+1}} \frac{\partial}{\partial t} W^{(\alpha)}(x-y, t+s) u(y, s) d \mu(y, s) . \tag{1.5}
\end{equation*}
$$

We note that $-2(\partial / \partial t) W^{(\alpha)}(x-y, t+s)$ is the reproducing kernel of b_{α}^{2}. Later we will show that $W^{(\alpha)}(x-y, t+s)$ is the reproducing kernel of the Hilbert space h_{α}^{2}. Hence (1.3) is a Hardy space version of (1.5).

In Section 2, we recall the definition of $L^{(\alpha)}$-harmonic functions and basic properties of the fundamental solution $W^{(\alpha)}$. In Section 3, we prepare some basic properties of α-parabolic Hardy space h_{α}^{p}. In particular, Huygens property and duality are important. The reproducing kernel of the Hilbert space h_{α}^{2} is also discussed. Using Carleson inequalities on h_{α}^{p} (cf. [2]), we give a proof of Theorem 1.1 in Section 4.

Throughout the paper, we will use the same letter C to denote various positive constants; it may vary even within a line.

2. Preliminalies

When $\alpha=1, L^{(1)}$-harmonic functions are solutions of the heat operator. We go the case $0<\alpha<1$. Let $C_{c}^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$ be the set of all C^{∞}-functions with compact support on \mathbb{R}_{+}^{n+1}. For $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$, we set

$$
\widetilde{L}^{(\alpha)} \varphi(x, t):=-\frac{\partial}{\partial t} \varphi(x, t)-c_{n, \alpha} \lim _{\delta \rightarrow 0} \int_{|y|>\delta}(\varphi(x+y, t)-\varphi(x, t))|y|^{-n-2 \alpha} d y
$$

where

$$
c_{n, \alpha}=4^{\alpha} \pi^{-\frac{n}{2}} \frac{\Gamma\left(\frac{2 n+\alpha}{2}\right)}{|\Gamma(-\alpha)|}, \quad|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}},
$$

and $\Gamma(\cdot)$ is the gamma function. A function h on \mathbb{R}_{+}^{n+1} is said to be $L^{(\alpha)}$-harmonic if h is continuous,

$$
\begin{equation*}
\iint_{\mathbb{R}^{n} \times\left[t_{1}, t_{2}\right]}|h(x, t)|(1+|x|)^{-n-2 \alpha} d x d t<\infty \tag{2.1}
\end{equation*}
$$

holds for every $0<t_{1}<t_{2}<\infty$ and $\iint_{\mathbb{R}_{+}^{n+1}} h \cdot \widetilde{L}^{(\alpha)} \varphi d x d t=0$ holds for all $\varphi \in$ $C_{c}^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$. Note that the condition (2.1) is equivalent to $\iint_{\mathbb{R}_{+}^{n+1}}\left|h \cdot \widetilde{L}^{(\alpha)} \varphi\right| d x d t<\infty$ for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$.

We use a fundamental solution $W^{(\alpha)}$ of $L^{(\alpha)}$, which is defined by

$$
W^{(\alpha)}(x, t)= \begin{cases}(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{-t|\xi|^{2 \alpha}} e^{i x \cdot \xi} d \xi & t>0 \\ 0 & t \leq 0\end{cases}
$$

where $x \cdot \xi$ is the inner product of x and ξ. It is known that when $\alpha=1 / 2, W^{(1 / 2)}$ coincides with the Poisson kernel on \mathbb{R}_{+}^{n+1}, that is, for $t>0$,

$$
\begin{equation*}
W^{\left(\frac{1}{2}\right)}(x, t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{t}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} . \tag{2.2}
\end{equation*}
$$

Note also that $W^{(1)}(x, t)=(4 \pi t)^{-n / 2} e^{-|x|^{2} / 4 t}$ is the Gauss kernel.
It is known that $W^{(\alpha)}(x, t) \geq 0$ and

$$
\int_{\mathbb{R}^{n}} W^{(\alpha)}(x, t) d x=1
$$

for $t>0$. Note also that

$$
W^{(\alpha)}(x, t)=t^{-\frac{n}{2 \alpha}} W^{(\alpha)}\left(t^{-\frac{1}{2 \alpha}} x, 1\right)
$$

and

$$
W^{(\alpha)}(x, t)=\int_{\mathbb{R}^{n}} W^{(\alpha)}(x-y, t-s) W^{(\alpha)}(y, s) d y
$$

for $0<s<t$. The following estimate is useful (see [3], [5]): There exists a constant $C>0$ such that

$$
\begin{equation*}
W^{(\alpha)}(x, t) \leq C \frac{t}{\left(t+|x|^{2 \alpha}\right)^{\frac{n}{2 \alpha}+1}} . \tag{2.3}
\end{equation*}
$$

Using this, we see

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} & \left(W^{(\alpha)}(x, t+s)\right)^{p} d x \leq C \int_{\mathbb{R}^{n}}\left(\frac{t+s}{\left(t+s+|x|^{2 \alpha}\right)^{\frac{n}{2 \alpha}+1}}\right)^{p} d x \\
& =C \frac{\omega_{n-1}}{2 \alpha}(t+s)^{\frac{n}{2 \alpha}(1-p)} \int_{0}^{\infty} \frac{\eta^{\frac{n}{2 \alpha}-1}}{(1+\eta)^{\left(\frac{n}{2 \alpha}+1\right) p}} d \eta
\end{aligned}
$$

where ω_{n-1} is the volume of sphere of unit ball in \mathbb{R}^{n} and $\eta:=\frac{|x|^{2 \alpha}}{t+s}$. In particular, if $1<p<\infty$, then

$$
\begin{equation*}
\left\|W^{(\alpha)}(\cdot, \cdot+s)\right\|_{h_{\alpha}^{p}}<C s^{\frac{n}{2 \alpha}\left(\frac{1}{p}-1\right)}<\infty \tag{2.4}
\end{equation*}
$$

for all $s>0$.

3. α-Parabolic Hardy spaces

The following Huygens property is important in our argument.
Definition 3.1. We say that an α-harmonic function u on \mathbb{R}_{+}^{n+1} satisfies the Huygens property, if $W^{(\alpha)}(x-\cdot, t-s) u(\cdot, s) \in L^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
u(x, t)=\int_{\mathbb{R}^{n}} W^{(\alpha)}(x-y, t-s) u(y, s) d y \tag{3.1}
\end{equation*}
$$

holds for every $x \in \mathbb{R}^{n}$ and every $0<s<t$.
We know that every function in b_{α}^{p} satisfies the Huygens property (see [3, Theorem 4.1]). If $u \in h_{\alpha}^{p}$, then for any $0<a<b<\infty$,

$$
\iint_{\mathbb{R}^{n} \times[a, b]}|u(x, t)|^{p} d x d t<\infty
$$

Hence by the same manner as in [3], we have the following proposition.
Proposition 3.2. Let $1<p<\infty$. Every function $u \in h_{\alpha}^{p}$ satisfies the Huygens property.

For $f \in L^{p}\left(\mathbb{R}^{n}\right)$, we set

$$
\begin{equation*}
P^{(\alpha)}[f](x, t):=\int_{\mathbb{R}^{n}} W^{(\alpha)}(x-y, t) f(y) d y \tag{3.2}
\end{equation*}
$$

The following proposition is shown in [2] (see also [8, p.62]).
Proposition 3.3. Let $1<p<\infty$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then $P^{(\alpha)}[f] \in h_{\alpha}^{p}$ and conversely, for $u \in h_{\alpha}^{p}$, there exists a unique function $f \in L^{p}\left(\mathbb{R}^{n}\right)$ such that $u=P^{(\alpha)}[f]$. Moreover, we see $\left\|P^{(\alpha)}[f]\right\|_{h_{\alpha}^{p}}=\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ and

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|P^{(\alpha)}[f](\cdot, t)-f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0 \tag{3.3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
P^{(\alpha)}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow h_{\alpha}^{p} \tag{3.4}
\end{equation*}
$$

is a linear surjective isometry. When $\alpha=1 / 2$, (2.2) shows that $h_{1 / 2}^{p}$ is the usual harmonic Hardy spaces on the upper half space, and (3.4) is a generalization of Theorem 7.17 in [1].

Let $1<p<\infty$ and let $1 / p+1 / p^{\prime}=1$. If $u:=P^{(\alpha)}[f] \in h_{\alpha}^{p}$ and $v:=P^{(\alpha)}[g] \in h_{\alpha}^{p^{\prime}}$, then by (3.3), we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}} u(x, t) v(x, t) d x=\int_{\mathbb{R}^{n}} f(x) g(x) d x \tag{3.5}
\end{equation*}
$$

We put

$$
\begin{equation*}
\langle u, v\rangle_{H}:=\lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}} u(x, t) v(x, t) d x \tag{3.6}
\end{equation*}
$$

Remark that Proposition 3.3 gives that

$$
\begin{equation*}
\left|\langle u, v\rangle_{H}\right| \leq\|u\|_{h_{\alpha}^{p}}\|v\|_{h_{\alpha}^{p^{\prime}}}=\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}<\infty \tag{3.7}
\end{equation*}
$$

In case of $p=2, h_{\alpha}^{2}$ is a Hilbert space with the inner product (3.6). By (3.1), the reproducing kernel for h_{α}^{2} is $W^{(\alpha)}(x-\cdot, t+\cdot)$, that is,

$$
\begin{equation*}
\left\langle u, W^{(\alpha)}(x-\cdot, t+\cdot)\right\rangle_{H}=u(x, t) \tag{3.8}
\end{equation*}
$$

for $u \in h_{\alpha}^{2}$. Moreover (3.8) holds for all h_{α}^{p} with $1<p<\infty$, that is, if $u \in h_{\alpha}^{p}$, then by (3.1),

$$
\begin{equation*}
\lim _{s \rightarrow 0} \int_{\mathbb{R}^{n}} u(y, s) W^{(\alpha)}(x-y, t+s) d y=\lim _{s \rightarrow 0} u(x, t+2 s)=u(x, t) . \tag{3.9}
\end{equation*}
$$

Next we observe the dual space $\left(h_{\alpha}^{p}\right)^{*}$ of h_{α}^{p}.
Proposition 3.4. Let $1<p<\infty$ and let $1 / p+1 / p^{\prime}=1$. For $v \in h_{\alpha}^{p^{\prime}}$, we set $\Lambda_{v}(u)=\langle u, v\rangle_{H}$ for $u \in h_{\alpha}^{p}$. Then $\Phi: v \rightarrow \Lambda_{v}$ is a linear surjective isometry from $h_{\alpha}^{p^{\prime}}$ to $\left(h_{\alpha}^{p}\right)^{*}$, that is, $\|\Phi(v)\|_{\left(h_{\alpha}^{p}\right)^{*}}=\|v\|_{h_{\alpha}^{p^{\prime}}}$ and $\left(h_{\alpha}^{p}\right)^{*} \cong h_{\alpha}^{p^{\prime}}$ hold.

Proof. We write $u=P^{(\alpha)}[f]$ and $v=P^{(\alpha)}[g]$ with $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$, respectively. Then by (3.5) and (3.7),

$$
\begin{aligned}
\|\Phi(v)\|_{\left(h_{\alpha}^{p}\right)^{*}} & =\sup _{u \in h_{\alpha}^{p},\|u\|_{h_{\alpha}^{p}}=1}\langle u, v\rangle_{H} \\
& =\sup _{f \in L^{p}\left(\mathbb{R}^{n}\right)\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)=1}} \int_{\mathbb{R}^{n}} f(x) g(x) d x \\
& =\|g\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}=\|v\|_{h_{\alpha}^{p^{\prime}} \cdot}
\end{aligned}
$$

This shows that Φ is isometry. To show that Φ is onto, take $\Lambda \in\left(h_{\alpha}^{p}\right)^{*}$. Since $f \mapsto \Lambda\left(P^{(\alpha)}[f]\right)$ is a bounded linear functional on $L^{p}\left(\mathbb{R}^{n}\right)$, there exists $g \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ such that

$$
\Lambda\left(P^{(\alpha)}[f]\right)=\int_{\mathbb{R}^{n}} f(x) g(x) d x .
$$

It is not difficult to show that $\Lambda=\Lambda_{P^{(\alpha)}[g]}$, which shows Φ is surjective.
Here we recall a main result of [2]. Let $1<p<\infty$ and $1<q<\infty$. We say that a positive Borel measure μ on \mathbb{R}_{+}^{n+1} satisfies a (p, q)-Carleson inequality on parabolic Hardy spaces if the mapping $\iota_{\mu, p, q}(u)=u$ from h_{α}^{p} to $L^{q}\left(\mathbb{R}_{+}^{n+1}, d \mu\right)$ is bounded, that is,

$$
\begin{equation*}
\left\|\iota_{\mu, p, q}\right\|:=\sup _{u \in h_{\alpha}^{p}} \frac{\|u\|_{L^{q}\left(\mathbb{R}_{+}^{n+1}, d \mu\right)}}{\|u\|_{h_{\alpha}^{p}}}<\infty . \tag{3.10}
\end{equation*}
$$

We call $\iota_{\mu, p, q}$ the Carleson inclusion, even if it is not necessarily injective.
Proposition 3.5. ([2, Theorem 1]) Let $1<p \leq q<\infty$. Then $\left\|\iota_{\mu, p, q}\right\|<\infty$ if and only if μ is a $T_{q / p^{-} \text {-Carleson measure. }}^{\text {. }}$

Let μ be a positive Borel measure on \mathbb{R}_{+}^{n+1}. For functions u and v on \mathbb{R}_{+}^{n+1}, we write

$$
\langle u, v\rangle_{L(\mu)}:=\iint_{\mathbb{R}_{+}^{n+1}} u(x, t) v(x, t) d \mu(x, t)
$$

if this integral converges.

Proposition 3.6. Let $1<p \leq q<\infty$, and let $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. Put $\tau:=1+1 / p-1 / q$ and assume that μ is T_{τ}-Carleson measure. Then there exists a constant $C \geq 1$ such that for $u \in h_{\alpha}^{p}$ and $v \in h_{\alpha}^{q^{\prime}}$,

$$
\begin{equation*}
\langle | u|,|v|\rangle_{L(\mu)} \leq C\|u\|_{h_{\alpha}^{p}}\|v\|_{h_{\alpha}^{q^{\prime}}} \tag{3.11}
\end{equation*}
$$

Proof. We note that $1 /(\tau p)+1 /\left(\tau q^{\prime}\right)=1$. By Proposition 3.5, $\iota_{\mu, p, \tau p}$ and $\iota_{\mu, q^{\prime}, \tau q^{\prime}}$ are bounded. Hence the Hölder inequality shows that

$$
\begin{aligned}
\iint_{\mathbb{R}_{+}^{n+1}}|u(x, t) v(x, t)| d \mu(x, t) & \leq\|u\|_{L^{\tau p}\left(\mathbb{R}_{+}^{n+1}, d \mu\right)}\|v\|_{L^{\tau q^{\prime}}\left(\mathbb{R}_{+}^{n+1}, d \mu\right)} \\
& \leq C\|u\|_{h_{\alpha}^{p}}\|v\|_{h_{\alpha}^{q^{\prime}}}
\end{aligned}
$$

4. Proof of Theorem 1.1

In this section, we will give a proof of Theorem 1.1.
Let $1<p \leq q<\infty$ and $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. Let μ be a T_{τ}-Carleson measure, where $\tau=1+1 / p-1 / q$. We note that $\iota_{\mu, p, \tau p}$ and $\iota_{\mu, q^{\prime}, \tau q^{\prime}}$ are bounded. Let $u \in h_{\alpha}^{p}$. Since $W^{(\alpha)}(x-\cdot, t+\cdot) \in h_{\alpha}^{q^{\prime}}$, by (3.11)

$$
T_{\mu} u(x, t):=\iint_{\mathbb{R}_{+}^{n+1}} W^{(\alpha)}(x-y, t+s) u(y, s) d \mu(y, s)
$$

converges for every $(x, t) \in \mathbb{R}_{+}^{n+1}$. We will show that $T_{\mu} u$ is $L^{(\alpha)}$-harmonic. When $u=P^{(\alpha)}[f]$, we set $\tilde{u}:=P^{(\alpha)}[|f|]$. Then for every $0<t_{1}<t_{2}<\infty$,

$$
\begin{aligned}
& \iint_{\mathbb{R}^{n} \times\left[t_{1}, t_{2}\right]}\left|T_{\mu} u(x, t)\right|(1+|x|)^{-n-2 \alpha} d x d t \\
& \leq \iint_{\mathbb{R}^{n} \times\left[t_{1}, t_{2}\right]} T_{\mu} \tilde{u}(x, t)(1+|x|)^{-n-2 \alpha} d x d t \\
& \leq \iint_{\mathbb{R}_{+}^{n+1}}\left(\iint_{\mathbb{R}^{n} \times\left[t_{1}, t_{2}\right]} W^{(\alpha)}(x-y, t+s)(1+|x|)^{-n-2 \alpha} d x d t\right) \tilde{u}(y, s) d \mu(y, s) \\
& <\infty
\end{aligned}
$$

because $\tilde{u} \in h_{\alpha}^{p}$ and

$$
\iint_{\mathbb{R}^{n} \times\left[t_{1}, t_{2}\right]} W^{(\alpha)}(x-\cdot, t+\cdot)(1+|x|)^{-n-2 \alpha} d x d t \in h_{\alpha}^{q^{\prime}}
$$

This estimate and the Fubini Theorem show that $\iint_{\mathbb{R}_{+}^{n+1}} T_{\mu} u \cdot \widetilde{L}^{(\alpha)} \varphi d x d t=0$ for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$.

Next we will show that $T_{\mu} u \in h_{\alpha}^{q}$. Take $v \in h_{\alpha}^{q^{\prime}}$ arbitrarily. Then remarking

$$
\|v(\cdot, \cdot+2 s)-v(\cdot, \cdot)\|_{L^{\tau q^{\prime}}(\mu)} \leq C\|v(\cdot, \cdot+2 s)-v(\cdot, \cdot)\|_{h_{\alpha}^{q^{\prime}}} \rightarrow 0
$$

as $s \rightarrow 0$, we have

$$
\left\langle T_{\mu} u, v\right\rangle_{H}
$$

$$
\begin{aligned}
& =\lim _{s \rightarrow 0} \int_{\mathbb{R}^{n}} T_{\mu} u(y, s) v(y, s) d y \\
& =\lim _{s \rightarrow 0} \int_{\mathbb{R}^{n}}\left(\iint_{\mathbb{R}_{+}^{n+1}} W^{(\alpha)}(y-x, s+t) u(x, t) d \mu(x, t)\right) v(y, s) d y \\
& =\lim _{s \rightarrow 0} \iint_{\mathbb{R}_{+}^{n+1}}\left(\int_{\mathbb{R}^{n}} W^{(\alpha)}(x-y, t+s) v(y, s) d y\right) u(x, t) d \mu(x, t) \\
& =\lim _{s \rightarrow 0} \iint_{\mathbb{R}_{+}^{n+1}} v(x, t+2 s) u(x, t) d \mu(x, t) \\
& =\iint_{\mathbb{R}_{+}^{n+1}} v(x, t) u(x, t) d \mu(x, t) \\
& =\left\langle\iota_{\mu, p, \tau p} u, \iota_{\mu, q^{\prime}, \tau q^{\prime}} v\right\rangle_{L(\mu)} \\
& =\left\langle\iota_{\mu, q^{\prime}, \tau q^{\prime}}^{*} \mu, p, \tau p, v\right\rangle_{H},
\end{aligned}
$$

which implies $T_{\mu} u \in h_{\alpha}^{q}$ and $T_{\mu}=\iota_{\mu, q^{\prime}, \tau q^{\prime}}^{*} \iota_{\mu, p, \tau p}$. Hence $T_{\mu}=T_{\mu, p, q}: h_{\alpha}^{p} \rightarrow h_{\alpha}^{q}$ is well defined and

$$
\left\|T_{\mu, p, q}\right\| \leq\left\|\iota_{\mu, q^{\prime}, \tau q^{\prime}}^{*}\right\|\left\|\iota_{\mu, p, \tau p}\right\|=\left\|\iota_{\mu, q^{\prime}, \tau q^{\prime}}\right\|\left\|\iota_{\mu, p, \tau p}\right\|<\infty .
$$

References

[1] S.Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, 1992.
[2] H. Nakagawa and N. Suzuki, Carleson inequalities on parabolic Hardy spaces, to appear in Hokkaido Math. J.
[3] M. Nishio, K. Shimomura and N. Suzuki, α-parabolic Bergman spaces, Osaka J. of Math. 42 (2005), 133-162.
[4] M. Nishio, K. Shimomura and N. Suzuki, L^{p} boundedness of Bergman projections for α parabolic operators, Potential theory in Matsue, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006, pp. 305-318.
[5] M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson measures on parabolic Bergman spaces, Hokkaido Math. J. 36 (2007), 563-583.
[6] M. Nishio, N. Suzuki and M. Yamada, Weighted Berezin transformations with application to Toeplitz operators of Schatten class on parabolic Bergman spaces, Kodai Math. J. 32 (2009), 501-520.
[7] M. Nishio, N. Suzuki and M. Yamada, Carleson inequalities on parabolic Bergman spaces, Tohoku Math. J. 62 (2010), 269-286.
[8] E. M. Stein, Singular Integrals and Differential Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

Manuscript received 29 February 2016 revised 22 April 2016

H. Nakagawa

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 466-8602, Japan
E-mail address: m04026b@math.nagoya-u.ac.jp
N. Suzuki

Department of Mathematics, Meijo University, Tenpaku-ku, Nagoya, 468-8502, Japan E-mail address: suzukin@meijo-u.ac.jp

