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(a) H is continuous on S̄ and sup
z∈S̄

∥∥∥ H(z)
1+|z|2

∥∥∥
X0+X1

< ∞,

(b) H is holomorphic on S,
(c) for all j = 0, 1, H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s)) ∈ Xj and

(1.3) sup
t,s∈R,s̸=0

∥H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s))∥Xj

s2
< ∞.

The space H(X0, X1) is equipped with the norm

∥H∥H(X0,X1)

≡ max
j=0,1

sup
t,s∈R,s ̸=0

∥H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s))∥Xj

s2
.

(3) Let θ ∈ (0, 1). Define the complex interpolation space Hθ[X0, X1] with
respect to X = (X0, X1) to be the set of all vectors f ∈ X0 +X1 such that
f = H ′′(θ) for some H ∈ H(X0, X1). The norm on Hθ[X0, X1] is defined by

∥f∥Hθ[X0,X1] ≡ inf{∥H∥H(X0,X1) : f = H ′′(θ) for some H ∈ H(X0, X1)}.
The first main result of this paper is as follows:

Theorem 1.1. Under (1.2), we have

Hθ[Mp0
q0 ,M

p1
q1 ] = Mp

q .

Based on Theorem 1.1, we consider the role of this functor. Let U be a linear
subspace of L0 having the lattice property; |g| ≤ |f | with f ∈ U implies g ∈ U .
Denote by UMp

q the closure of U ∩Mp
q in Mp

q . Our second theorem is as follows:

Theorem 1.2. Under (1.2), we have

Hθ[UMp0
q0 , UMp1

q1 ] =
∩

0<a<b<∞
{f ∈ Mp

q : χ[a,b](|f |)f ∈ UMp
q}.

Theorems 1.1 and 1.2 will be proved in Section 3. From Theorems 1.1 and 1.2,
the output of this functor is the same as that of the Calderón second complex
interpolation functor, which we recall in Section 2.

The interpolation of Morrey spaces has a long history due to some bad aspects of
Morrey spaces we describe below. Due to this fact, we have the following difficulties
when 1 < q < p < ∞:

(1) The Morrey space Mp
q is not reflexive; see [16, Example 5.2] and [19, The-

orem 1.3].
(2) The Morrey space Mp

q does not have D(Rn) as a dense closed subspace;
see [18, Proposition 2.16].

(3) The Morrey space Mp
q is not separable; see [18, Proposition 2.16].

(4) The Morrey space is not a Banach function space; see [16, Example 3.3].

Among difficulties we encounter when we handle Morrey spaces, the control of the
boundary is the most serious one. In fact, when we deal with the Calderón first
complex interpolation functor, we have to consider seriously the function F : S →
Mp0

q0+Mp1
q1 defined in (2.5) such that F is continous in the boundary S\S. When we

deal with the second complex interpolation functor this problem can be overcome.
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However, it is not the case that Lipschitz continuity of the functions having the
value in Banach spaces guarantees the almost everywhere differentiability; see [9,
Proposition 5]. This misleading fact comes from the Rademacher theorem which
asserts that Lipschitz continuous functions are almost everywhere differentiable.
This theorem is true for Rn, whose proof requires the special case in R; see [6, Section
3.1, p. 81]. In the case of R, we relied upon the fact that any Lipschitz functions
can be decomposed into a difference of monotone functions. So, we can not consider
the derivative on the boundary when the function assumes its value in a Banach
space; see the proof of [8, Theorem 2] for how we coped with the problem.

Despite a counterexample by Blasco, Ruiz, and Vega [2, 15], the interpolation
theory of Morrey spaces progressed so much. As for the real interpolation results,
Burenkov and Nursultanov obtained an interpolation result in local Morrey spaces
[3]. Nakai and Sobukawa generalized their results to Bu

w setting [13]. We made a
significant progress in the complex interpolation theory of Morrey spaces. In [5, p.
35] Cobos, Peetre, and Persson pointed out that

[Mp0
q0 ,M

p1
q1 ]θ ⊂ Mp

q

as long as 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 < ∞, and 1 ≤ q ≤ p < ∞ satisfy

(1.4)
1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+

θ

q1
.

As it is shown in [10, Theorem 3(ii)], when an interpolation functor F satisfies

F [Mp0
q0 ,M

p1
q1 ] = Mp

q

under the condition (1.4), then

(1.5)
q0
p0

=
q1
p1

holds. Lemarié-Rieusset showed this assertion by using the counterexample by Ruiz
and Vega [15]. Lemarié-Rieusset also proved that we can choose the second complex
interpolation functor introduced by Calderón [4] in 1964. Meanwhile, as for the
interpolation result under (1.4) and (1.5) by using the first complex interpolation
functor by Calderón [4], Lu, Yang, and Yuan obtained the following description:

[Mp0
q0 ,M

p1
q1 ]θ = Mp0

q0 ∩Mp1
q1

Mp
q

in [12, Theorem 1.2]. They also extended this result by placing themselves in the
setting of a metric measure space. Their technique is to calculate the Calderón
product.

More and more attention has been paid for the closed subspaces of the Morrey
space Mp

q with 1 ≤ q < p < ∞. Here, we list some of them as examples of U .

Definition 1.3. Let 1 ≤ q ≤ p < ∞.

(1) [16, Definition 4.5] A function f inMp
q is said to have “absolutely continuous

norm” in Mp
q if ∥fχEk

∥Mp
q
→ 0 for every sequence {Ek}∞k=1 satisfying Ek →

∅ a.e. The set of all functions in Mp
q of absolutely continuous norm is

denoted by M̂p
q .

(2) [21, Definition 2.23]
◦
Mp

q denotes the closure with respect to Mp
q of C∞

c .
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(3) [21, Section 2] ∗Mp
q denotes the closure with respect to Mp

q the set formed
by all compactly supported functions in Mp

q .
(4) Let E be a measurable set and denote by L0(E) the set of all measurable

functions that vanish outside E.

Another important space is
⋄
Mp

q . Recall that
⋄
Mp

q denotes the closure with respect
to Mp

q of the set of all smooth functions f such that ∂αf ∈ Mp
q for all multi-indexes

α [21, Definition 2.23]. Note that this space does not have the lattice property. The

closed subspaces M̂p
q and

⋄
Mp

q arise naturally. We refer to [21, Theorem 2.29] for
⋄
Mp

q and to [16, Theorems 4.3 and 4.6] for M̃p
q = M̂p

q .

Proposition 1.4 ([9, 21]). Let 1 < q ≤ p < ∞, 1 < q0 ≤ p0 < ∞, and 1 < q1 ≤
p1 < ∞ satisfy p0 < p < p1 and (1.2).

We have
◦
Mp

q ⊂ M̃p
q = M̂p

q ⊂ ∗Mp
q(1.6)

◦
Mp

q ⊂
⋄
Mp

q(1.7)

M̃p
q ⊂ Mp0

q0 ∩Mp1
q1

Mp
q

(1.8)

M̃p
q ⊂ [M̃p0

q0 ,M̃
p1
q1 ]

θ.(1.9)

Mp0
q0 ∩Mp1

q1

Mp
q ⊊

⋄
Mp

q .(1.10)

We have no inclusionship other than (1.6)–(1.10) and all the inclusions above are
strict.

Finally we compare our interpolation functors with the ones defined in the pre-
vious papers. In [7] they defined an interpolation functors as follows:

Definition 1.5 ([7, Definition 2.1]). Let X0 and X1 be as above. Let n = 1, 2, . . .
and 1 ≤ p < ∞.

(1) Let D ≡ {z ∈ C : |z| < 1}.
(2) Define P (D, X0 ∩X1) to be the set of all polynomials in D of the form

p(z) =

N∑
j=1

zjaj ,

where N ∈ N is arbitrary and aj ∈ X0 ∩X1 for j = 1, 2, . . . , N .

(3) Denote by A(D, X) the closure of P (D, X0 ∩X1) with respect to the norm

∥p∥ ≡ sup
z∈D

∥p(z)∥X0∩X1 .

(4) The space [X]D(n,∞) as a set is the set of all x ∈ X0 + X1 for which it is

realized as x = f (n)(0) for some f ∈ A(D, X). As a Banach space, it is
realized as the quotient space of A(D, X) modulo K(n), where

K(n) ≡ {f ∈ A : f (n)(0) = 0}.
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(5) For a simply connected domain D having C1-boundary, use a homeomor-
phism Φ : D → D such that Φ|D is analytic on D to define A(D,X).

The fact that [X]D(n,∞) is the interpolation space of (X0, X1) can be found in [7,
Theorem 2.8].

Meanwhile, Schechter defined the space X
(n)
θ,ρ as follows:

Definition 1.6. Let ρ : S̄ → C be a continuous function on S̄ such that ρ is
holomorphic on S.

(1) The space H̃(X0, X1; ρ) denotes the set of all continuous functions F in S̄
such that ρ−1F is holomorphic in S and that

(1.11) ∥f(j + iη)∥Xj ≤ C|ρ(j + iη)| (j = 0, 1, η ∈ R)

for some constant C. The minimum constant C satisfying (1.11) is denoted
by ∥f∥H̃(X0,X1;ρ)

.

(2) The space X
(n)
θ,ρ denotes the set of all x ∈ X0 + X1 for which there exists

f ∈ H̃(X0, X1; ρ) such that x = f (n)(θ). The norm is given by

∥x∥
X

(n)
θ,ρ

= inf{∥f∥H̃(X0,X1;ρ)
: x = f (n)(θ)}.

Note that the notation H̃(X0, X1; ρ) stands for the space H(X0, X1; ρ), defined
in [17, p.119]. As it is written in [17, Proposition 2.7], one can consider the functor
for the first order difference. In fact, Schechter proposed to consider

∥f(j + it2)− f(j + it1)∥Xj ≤ M

∫ t2

t1

|ρ(j + it)| dt

for M > 0 and t1, t2 ∈ R satisfying t1 < t2 together with the smallest M in [17,
(2.9)]. The resulting space is called the primed space. In his terminology, our space
can be understood as the doubly primed space with ρ = 1.

2. Preliminaries

2.1. Interpolation functors of the first and the second kind. We recall the
definition of the complex interpolation functors as follows:

Definition 2.1 ([1,4], Calderón’s first complex interpolation space). Suppose that
X = (X0, X1) is a compatible couple of Banach spaces.

(1) The space F(X0, X1) is defined as the set of all functions F : S̄ → X0 +X1

such that
(a) F is continuous on S̄ and sup

z∈S̄
∥F (z)∥X0+X1 < ∞,

(b) F is holomorphic on S,
(c) the functions t ∈ R 7→ F (j + it) ∈ Xj are bounded and continuous on

R for j = 0, 1.
The space F(X0, X1) is equipped with the norm

∥F∥F(X0,X1) ≡ max

{
sup
t∈R

∥F (it)∥X0 , sup
t∈R

∥F (1 + it)∥X1

}
.
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(2) Let θ ∈ (0, 1). Define the complex interpolation space [X0, X1]θ with respect
to X = (X0, X1) to be the set of all f ∈ X0 + X1 such that f = F (θ) for
some F ∈ F(X0, X1). The norm on [X0, X1]θ is defined by

∥f∥[X0,X1]θ ≡ inf{∥F∥F(X0,X1) : f = F (θ) for some F ∈ F(X0, X1)}.

It is known in [4] that [X0, X1]θ and F(X0, X1) are Banach spaces. See also [1,
Theorem 4.1.2].

Let X be a Banach space. The space Lip(R, X) is defined to be the set of all
functions F : R → X for which the quantity

∥F∥Lip(R,X) ≡ sup
−∞<s<t<∞

∥F (t)− F (s)∥X
|t− s|

< ∞.

Definition 2.2 ([1, 4], Calderón’s second complex interpolation space). Suppose
that X = (X0, X1) is a compatible couple of Banach spaces.

(1) Define G(X0, X1) as the set of all functions G : S̄ → X0 +X1 such that

(a) G is continuous on S̄ and sup
z∈S̄

∥∥∥ G(z)
1+|z|

∥∥∥
X0+X1

< ∞,

(b) G is holomorphic on S,
(c) the functions

t ∈ R 7→ G(j + it)−G(j) ∈ Xj

are Lipschitz continuous on R for j = 0, 1.
The space G(X0, X1) is equipped with the norm

∥G∥G(X0,X1) ≡ max
{
∥G(i·)∥Lip(R,X0), ∥G(1 + i·)∥Lip(R,X1)

}
.(2.1)

(2) Let θ ∈ (0, 1). Define the complex interpolation space [X0, X1]
θ with respect

to X = (X0, X1) to be the set of all functions f ∈ X0 + X1 such that
f = G′(θ) for some G ∈ G(X0, X1). The norm on [X0, X1]

θ is defined by

∥f∥[X0,X1]θ ≡ inf{∥G∥G(X0,X1) : f = G′(θ) for some G ∈ G(X0, X1)}.

The space [X0, X1]
θ is called the Calderón’s second complex interpolation

space, or the upper complex interpolation space of (X0, X1).

The following theorem is known:

Theorem 2.3. Assume (1.2).

(1) [12] [Mp0
q0 ,M

p1
q1 ]θ coincides with the closure of Mp0

q0 ∩Mp1
q1 in Mp

q.
(2) [11] [Mp0

q0 ,M
p1
q1 ]

θ = Mp
q.

2.2. Some inequalities on complex analysis. The estimates in the following
lemmas are trivial since

ez + e−z − 2

z2
− 1 =

1

12
z2 + · · · (z ∈ C).

We prove Lemmas 2.4 and 2.5 in the appendix.

Lemma 2.4. Let A > 0, ε ∈ (0, 12), and w ∈ C. Assume that ε > 2|w|. Then the
following statements hold:
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(1) If 0 < A ≤ 1,

Aε

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣ ≤ Cε|w|.(2.2)

(2) If A > 1,

A−ε

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣ ≤ Cε|w|.(2.3)

Lemma 2.5. Let q0 > q1 and f ∈ L0. First define q : S → C, F : S → L0,
G : S → L0, and H : S → L0 by:

(2.4)
1

q(z)
≡ 1− z

q0
+

z

q1
(z ∈ S),

(2.5) F (z) ≡ sgn(f) exp

(
q

q(z)
log |f |

)
(z ∈ S),

(2.6) G(z) ≡ (z − θ)

∫ 1

0
F (θ + (z − θ)t) dt (z ∈ S),

(2.7) H(z) ≡ (z − θ)

∫ 1

0
G(θ + (z − θ)t) dt (z ∈ S),

respectively. Define F0, F1, G0, G1,H0,H1 : S → L0 by:

(2.8) F0(z) ≡ F (z)χ{|f |≤1}, F1(z) ≡ F (z)χ{|f |>1},

(2.9) G0(z) ≡ G(z)χ{|f |≤1}, G1(z) ≡ G(z)χ{|f |>1},

and

(2.10) H0(z) ≡ H(z)χ{|f |≤1}, H1(z) ≡ H(z)χ{|f |>1}.

Then, for any z ∈ S, we have

|H(z)| ≤ 5(1 + |z|2)(|f |q/q0 + |f |q/q1).(2.11)

For any z ∈ C with ε < Re(z) < 1− ε, we have

(2.12)

∣∣∣∣H0(z + w)− 2H0(z) +H0(z − w)

w2
− F0(z)

∣∣∣∣ ≤ Cε|w| · |f |
q
q0

and

(2.13)

∣∣∣∣H1(z + w)− 2H1(z) +H1(z − w)

w2
− F1(z)

∣∣∣∣ ≤ Cε|w| · |f |
q
q1 ,

where the constant Cε depending only on ε ∈ (0, 1/2).
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2.3. Closed subspaces. For later consideration, we need the following lemmas:

Lemma 2.6 ([14, Lemma 2.5]). Let 0 < η and 0 < q ≤ p < ∞. If f ∈ Mp
q, then

|f |η ∈ Mp/η
q/η with

∥|f |η∥Mp/η
q/η

= ∥f∥ηMp
q
.

Lemma 2.7. Let U be a closed subspace enjoying the lattice property. Then UMp
q

has the lattice property.

Proof. Let 0 ≤ |g| ≤ |f | and f ∈ UMp
q . Then we can choose a sequence {fj}∞j=1 ⊆

U∩Mp
q converges to f in Mp

q . Set gj ≡ χ{f ̸=0}g ·f−1 ·fj . Then {gj}∞j=1 is convergent

to g in Mp
q . □

Lemma 2.8. Let U be a subspace of measurable functions enjoying the lattice prop-
erty. If E is a measurable subset such that χE ∈ UMp

q, then χE ∈ UMp0
q0 ∩UMp1

q1 .

Proof. Let χE ∈ UMp
q and ε > 0. Choose gε ∈ U ∩Mp

q such that

∥χE − gε∥Mp
q
< ε.

Define hε ≡ χ{gε ̸=0}∩E . Then

|χE − hε| = χE − hε ≤ |χE − gε|.
Consequently, for j = 0, 1, we have

∥χE − hε∥Mpj
qj

= ∥χE − hε∥
q/qj
Mp

q
< εq/qj .

This shows that χE ∈ UMp0
q0 ∩ UMp1

q1 . □

Lemma 2.9 ([9]). Let U be a subspace of measurable functions enjoying the lattice
property. Then we have

Mp
q ∩ UMp

q
Mp0

q0
+Mp1

q1 ⊂
∩

0<a<b<∞

{
f ∈ Mp

q : χ{a≤|f |≤b}f ∈ UMp
q

}
.

3. Proofs

3.1. Proof of Theorem 1.1. Note that, by our assumption, we have
p0
q0

=
p1
q1

=
p

q
.

Let f ∈ Mp
q . Then define H, F , and G as in Lemma 2.5. By using the inequality

(2.11), we get

sup
z∈S

∥∥∥∥ H(z)

1 + |z|2

∥∥∥∥
Mp0

q0
+Mp1

q1

≤ 5
(
∥f∥q/q0Mp

q
+ ∥f∥q/q1Mp

q

)
.

For ε ∈ (0, 12), define Sε ≡ {z ∈ C : ε < Re(z) < 1− ε}. Let z ∈ Sε and w ∈ C with
2|w| < ε. By combining the inequalities (2.12) and (2.13), we have∥∥∥∥H(z + w)− 2H(z) +H(z − w)

w2
− F (z)

∥∥∥∥
Mp0

q0
+Mp1

q1
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≤ Cε

(
∥f∥

q
q0

Mp
q
+ ∥f∥

q
q1

Mp
q

)
|w|,

This shows that H is holomorphic. Note that

H ′′(z)(x) = G′(z)(x) = F (z)(x).

Thus, for j = 0, 1 and s, t ∈ R with s ̸= 0, we have∥∥∥∥H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s))

s2

∥∥∥∥
M

pj
qj

=
1

s2

∥∥∥∥∫ s

0

∫ u

−u
H ′′(j + i(t+ v)) dv du

∥∥∥∥
M

pj
qj

≤ 1

s2

∥∥∥∥∫ s

0

∫ u

−u
|H ′′(j + i(t+ v))| dv du

∥∥∥∥
M

pj
qj

=
1

s2

∥∥∥∥∫ s

0

∫ u

−u
|F (j + i(t+ v))|dvdu

∥∥∥∥
M

pj
qj

=

∥∥∥∥|f | q
qj

∥∥∥∥
M

pj
qj

= ∥f∥q/qjMp
q

This implies that H satisfies (1.3). Then H ∈ H(Mp0
q0 ,M

p1
q1 ). We have f ∈

Hθ[Mp0
q0 ,M

p1
q1 ], since H ′′(θ) = F (θ) = f .

Conversely, we assume that f ∈ Hθ[Mp0
q0 ,M

p1
q1 ]. Then, f = H ′′(θ) in the topology

of Mp0
q0 +Mp1

q1 for some H ∈ H(Mp0
q0 ,M

p1
q1 ). Define

Kk(z) =
H(z + i2−k)− 2H(z) +H(z − i2−k)

(2−ki)2
(z ∈ S).

Observe that f = lim
k→∞

Kk(θ) in the topology of Mp0
q0 +Mp1

q1 . Hence, there exists a

subsequence {Kkl(θ)}∞l=1 ⊆ {Kk(θ)}∞k=1 such that

lim
l→∞

Kkl(θ)(x) = f(x) a.e. x ∈ Rn.(3.1)

Since

∥Kk∥F(Mp0
q0

,Mp1
q1 )

= max
j=0,1

sup
t∈R

∥Kk(j + it)∥Mpj
qj

= max
j=0,1

sup
t∈R

∥∥∥∥H(j + i(t+ 2−k))− 2H(j + it) +H(j + i(t− 2−k))

(2−k)2

∥∥∥∥
M

pj
qj

≤ ∥H∥H(Mp0
q0

,Mp1
q1

)

we have Kk ∈ F(Mp0
q0 ,M

p1
q1 ). Consequently, Kk(θ) ∈ [Mp0

q0 ,M
p1
q1 ]θ ⊆ Mp

q . By
Fatou’s lemma, we get

∥f∥Mp
q
≤ lim inf

l→∞
∥Kkl(θ)∥Mp

q

≲ lim inf
l→∞

∥Kkl(θ)∥[Mp0
q0

,Mp1
q1

]θ



224 D. I. HAKIM AND Y. SAWANO

≤ lim inf
l→∞

∥Kkl∥F(Mp0
q0

,Mp1
q1

)

≤ ∥H∥H(Mp0
q0

,Mp1
q1

) < ∞,

as desired.

3.2. Proof of Theorem 1.2. Let f ∈ Hθ[UMp0
q0 , UMp1

q1 ]. By Theorem 1.1, we
have f ∈ Mp

q . Choose H ∈ H(UMp0
q0 , UMp1

q1 ) such that H ′′(θ) = f . Let z ∈ S and
k ∈ N. Define

Fk(z) ≡
H(z + i/k)− 2H(z) +H(z − i/k)

(i/k)2
.

Observe that Fk(θ) ∈ [UMp0
q0 , UMp1

q1 ]θ ⊆ UMp
q . By combining Lemma 2.9 and

f = lim
k→∞

Fk(θ) in UMp0
q0 + UMp1

q1 , we have

f ∈
∩

0<a<b<∞

{
f ∈ Mp

q : χ{a≤|f |≤b}f ∈ UMp
q

}
.

Conversely, let f ∈ Mp
q be such that χ{a≤|f |≤b}f ∈ UMp

q for all 0 < a < b <
∞. Without loss of generality, we may assume that q0 > q1. Then define H(z)
by (2.7). For a ∈ (0, 1), write Ha(z) ≡ χ[a,a−1](|f |)H(z) by the lattice property

Ha(z) ∈ UMp0
q0 ∩ UMp1

q1 . Define H0(z) and H1(z) by (2.10). Write Ha,0(z) ≡
χ{a≤|f |≤a−1}H0(z) and Ha,1(z) ≡ χ{a≤|f |≤a−1}H1(z). For z ∈ S, we have

|H0(z)−Ha,0(z)| ≤ χ{|f |≤a}|H(z)|,

χ{|f |≤a}|F (z)| = χ{|f |≤a}|f |
q
q0 |f |qRe(w)

(
1
q1

− 1
q0

)
≤ χ{|f |≤a}|f |

q
q0 ,(3.2)

and

G(z) =

∫ z

θ
F (w) dw =

∫ z

θ
sgn(f)|f |

q(1−w)
q0

+ qw
q1 dw =

F (z)− F (θ)

q
(

1
q1

− 1
q0

)
log |f |

.(3.3)

By combining (3.2) and (3.3), we have

χ{|f |≤a}|G(z)| ≤ χ{|f |≤a}
|F (z)|+ |F (θ)|

q
(

1
q1

− 1
q0

)
| log |f ||

≤ χ{|f |≤a}
|F (z)|+ |F (θ)|

q
(

1
q1

− 1
q0

)
| log |f ||

≤ 2χ{|f |≤a}
|f |

q
q0

q
(

1
q1

− 1
q0

)
log(a−1)

.

Consequently,

|H0(z)−Ha,0(z)| ≤ χ{|f |≤a}|H(z)|

= χ{|f |≤a}

∣∣∣∣∫ z

θ
G(w) dw

∣∣∣∣
≲ |z − θ|χ{|f |≤a}

|f |q/q0
log(a−1)
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When a → 0+, we have

∥H0(z)−Ha,0(z)∥Mp0
q0

≲ |z − θ|
log(a−1)

∥|f |q/q0∥Mp0
q0

=
|z − θ|
log(a−1)

∥f∥q/q0Mp
q
→ 0.

Therefore, H0(z) ∈ UMp0
q0 . By a similar argument, we also have

∥H1(z)−Ha,1(z)∥Mp1
q1

≲ |z − θ|

−q
(

1
q1

− 1
q0

)
log a

∥f∥q/q1Mp
q
→ 0,

as a → 0. This implies H1(z) ∈ UMp1
q1 . Thus, H(z) ∈ UMp0

q0 + UMp1
q1 .

Write H+
a ≡ χ(a−1,∞)(|f |)H and H−

a ≡ χ(0,a)(|f |)H. Let t, s ∈ R and j = 0, 1.
By using the identity

H(j + i(t+ s))−2H(j + it) +H(j + i(t− s))

=
F (j + i(t+ s))− 2F (j + it) + F (j + i(t− s))(

q
(

1
q1

− 1
q0

)
log |f |

)2 ,

we have

∥(1−χ(a,a−1)(|f |))(H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s)))∥Mpj
qj

≤ ∥H+
a (j + i(t+ s))− 2H+

a (j + it) +H+
a (j + i(t− s))∥Mpj

qj

+ ∥H−
a (j + i(t+ s))− 2H−

a (j + it) +H−
a (j + i(t− s))∥Mpj

qj

≤
C∥f∥q/qjMp

q

(log a)2
.

As a result,

H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s))

= lim
a↓0

(Ha(j + i(t+ s))− 2Ha(j + it) +Ha(j + i(t− s)))

in Mpj
qj and hence

H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s)) ∈ UMpj
qj .

Since H ∈ H(Mp0
q0 ,M

p1
q1 ), we have

max
j=0,1

sup
t,s∈R,s̸=0

∥H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s))∥
UM

pj
qj

s2

= max
j=0,1

sup
t,s∈R,s ̸=0

∥H(j + i(t+ s))− 2H(j + it) +H(j + i(t− s))∥Mpj
qj

s2

< ∞.

Therefore H ∈ H(UMp0
q0 , UMp1

q1 ). Thus, H(θ) ∈ Hθ[UMp0
q0 , UMp1

q1 ].
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4. Appendix–some fundamental calculations

4.1. Proof of Lemma 2.4. Since∣∣exp(w logA)− 2 + exp(−w logA)− (w logA)2
∣∣

≤
∞∑
n=2

|w logA|2n

(2n)!

≤ |w logA|3
∞∑
n=2

|w logA|2n−3

(2n− 3)!

≤ |w logA|3 exp(|w logA|)

we have lim
A→1

exp(w logA)−2+exp(−w logA)
(w logA)2

− 1 = 0 and∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣ ≤ |w logA| exp
(ε
2
| logA|

)
,

for all A ̸= 1. Consequently, for every 0 < A < 1, we have

Aε

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣ ≤ −Aε/2 log(A)|w|.

We can check that sup
0<A≤1

−Aε/2 log(A) = 2
eε . Thus, we choose Cε ≡ 2

eε to get (2.2).

Similarly, for A > 1, we also have

A−ε

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣ ≤ A−ε/2 log(A)|w| ≤ Cε|w|,

as desired.

4.2. Proof of Lemma 2.5. For z ∈ S, we have

|F (z)| = |f |
q(1−Re(z))

q0
+

qRe(z)
q1 ≤ |f |

q
q0 + |f |

q
q1 .

Thus, |G(z)| ≤ |z−θ|
(
|f |q/q0 + |f |q/q1

)
≤ (1+ |z|)

(
|f |q/q0 + |f |q/q1

)
. Consequently,

|H(z)| ≤ |z − θ|(1 + θ + |z|)
(
|f |q/q0 + |f |q/q1

)
≤ 5(1 + |z|2)

(
|f |q/q0 + |f |q/q1

)
.

Let ε ∈ (0, 1/2), z ∈ C be such that ε < Re(z) < 1 − ε, and w ∈ C with |w| < ε
2 .

Write A = |f |q
(

1
q1

− 1
q0

)
. By using the identity

H0(z + w)− 2H0(z) +H0(z − w) =
F0(z + w)− 2F0(z) + F0(z − w)(

q
(

1
q1

− 1
q0

)
log |f |

)2 ,

and also the inequality (2.2), we have∣∣∣∣H0(z + w)− 2H0(z) +H0(z − w)

w2
− F0(z)

∣∣∣∣
= |F0(z)|

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣
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= χ{|f |≤1}|f |q/q0ARe(z)

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣
≤ χ{|f |≤1}|f |q/q0Aε

∣∣∣∣exp(w logA)− 2 + exp(−w logA)

(w logA)2
− 1

∣∣∣∣
≤ Cε|f |q/q0 |w|.

By using a similar argument and the inequality (2.2), we also can obtain (2.13).
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