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results. To be precise, Proposition 4.2 and what follows Theorem 4.8 is original
work. We conclude this note with questions which, to the best of our knowledge,
are open.

To summarize our work, let us call an “averaging procedure” any method which
consists of taking limits of successive convex combinations of functions. In short, this
note demonstrates that on one hand the (bad) topological properties of averaging
procedures can be established in (ZFC), and on the other hand the measure-theoretic
properties of such procedures are quite sensitive to the axioms of set theory.

2. Topological lemmas

We recall in this section some well-known applications of Baire category tech-
niques. Let P be a complete metric space. It will be called a Polish space if it is
moreover separable. A subset E of P is rare if its closure has empty interior. A
subset M of P is meager if it is contained in a countable union of rare sets, and
then its complement P\M is called a comeager set. Baire’s lemma states that any
comeager set is dense (and in particular non empty). We recall that a subset A of
a complete metric space P has the Baire property if there is an open set U such
that A∆U is meager. The collection of subsets which have the Baire property is a
σ-field, which contains of course the open sets and thus the Borel sets. A map from
P to a topological space S is called Baire measurable if the inverse image of every
open subset of S has the Baire property.

Our first lemma is usually called the topological 0-1 law.

Lemma 2.1. Let P be a Polish space, and G be a group of homeomorphisms of P
such that for all U, V non-empty open sets in P , there is g ∈ G such that g(U)∩V ̸=
∅. Let A ⊂ P with the Baire Property such that g(A) = A for all g ∈ G. Then A is
meager or comeager.

Proof. Let B = P \A. If A and B are both non-meager, then there exist two non-
empty open sets U and V such that U ∩B and V ∩A are both meager. Let g ∈ G
be such that the open set W := g(U)∩V is non-empty. Since g(U)∩B = g(U ∩B),
we have that W ∩B and W ∩A are both meager, and this is a contradiction. □
Example 2.2. The relation E0.

We see the Cantor set 2N as the set of subsets of N, the set 2<N as the set of
finite subsets of N, and we define on 2N the following relation:

uE0v if there is n ≥ 0 such that

u ∩ [n,+∞) = v ∩ [n,+∞).

Then the equivalence classes for E0 are the orbits of a group of homeomorphisms,
namely the group G0 of translations by finite subsets of N, that is:

G0 = {(u∆.), u ∈ 2<N}
where ∆ denotes the symmetric difference (that is, the group law) on the Cantor
set. Therefore any subset of 2N with the Baire property which is E0-saturated, is
meager or comeager. Informally, if B is a Baire measurable subset of 2N which does
not depend upon finitely many coordinates, then B is meager or comeager.
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Example 2.3. Free ultrafilters.

The map c defined by c(u) = N\u is an homeomorphism of 2N. If U is a free
ultrafilter (that is, U contains the Fréchet filter of cofinite sets, and is maximal
among filters with respect to inclusion), then c[U ] = 2N\U . If U has the Baire
property, then by the above it is meager or comeager. But both terms of this
dichotomy contradict c[U ] = 2N\U . Hence U fails the Baire property.

Our second lemma is a standard compactness argument (see [7], Lemma 7). The
“compactness” we use is actually the trivial fact that a set with two points is
compact. We recall that if A and B are subsets of N, the notation A < B means
that n < l for all n ∈ A and all l ∈ B.

Lemma 2.4. Let A be a subset of 2N. The following assertions are equivalent:

(1) A is comeager,
(2) there is a sequence I0 < I1 < I2 < · · · of successive subsets of N, and

an ⊂ In, such that for any u ∈ 2N, if the set {n : u ∩ In = an} is infinite,
then u ∈ A.

Proof. For the reverse implication, just note that

On = {u ∈ 2N
∣∣ ∃k ≥ n, u ∩ Ik = ak}

is a dense open set of 2N for any n ≥ 1, and that

∩n≥1On ⊂ A.

For the direct implication, assuming A is comeager, we write

2N \A ⊂ ∪n≥0Fn,

where each Fn is closed with empty interior. An easy induction argument provides
In and an such that

u ∩ In = an ⇒ u /∈ ∪i<nFi.
If u ∈ Fk, then u ∩ In ̸= an for all n > k, and the conclusion follows. □

It results from the proof that we can assume without loss of generality that the
Ik’s constitute a partition of ω into intervals. The following corollary easily follows.

Corollary 2.5. Let B be a subset of 2N such that:

u ∈ B, u ⊂ v ⇒ v ∈ B.

Then B is meager if and only if there exist I0 < I1 < I2 < · · · such that

u ∈ B ⇒ {n;u ∩ In = ∅} is finite.

Proof. The set

On = {u ∈ 2N
∣∣ ∃k ≥ n, u ∩ Ik ̸= ∅}

is a dense open set of 2N for any n ≥ 1, and thus our condition on B implies that B
is meager. Conversely, if B is meager, we have in the notation of Lemma 2.4 that
if v ∈ B then the set {n : v ∩ In = an} is finite. But since u ∈ B and u ⊂ v implies
that v ∈ B, it follows that if u ∈ B, then {n;u ∩ In = ∅} is finite.

□
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Corollary 2.5 applies of course to filters on N. We say that a filter F is free if its
contains the Fréchet filter. We can now state and prove a result from [27].

Theorem 2.6. Let F be a free filter on N. Then the following are equivalent:

(1) F has the Baire property.
(2) F is meager.
(3) there exist I0 < I1 < I2 < · · · such that if u ∈ F , then the set

{n;u ∩ In = ∅}
is finite.

Proof. It is obvious that (2) implies (1), and the converse implication follows from
Lemma 2.1 since F does not depend upon finitely many coordinates. Indeed if we
assume (1), then by Lemma 2.1, F is meager or comeager. Since the map c defined
by c(u) = N\u is an homeomorphism of 2N, if F is comeager there is u ∈ F such that
N\u ∈ F but this cannot be since F is a filter and this shows (2). The equivalence
between (2) and (3) follows immediately from Corollary 2.5. □

3. Topological properties of finitely additive measures on N.

We observed in Example 2.3 that the topological 0-1 law easily implies that a free
ultrafilter U fails the Baire property. The more elaborate Theorem 2.6 will allow
us to show that even an “integral” of ultrafilters (that is, a purely finitely additive
measure on N) cannot have the Baire property.

Indeed let us state and prove this result from [12]. We recall that a finitely
additive bounded measure on N is a bounded application from 2N to R such that
m(a ∪ b) = m(a) +m(b) if a ∩ b = ∅.

Theorem 3.1. let m be a finitely additive bounded measure on N, which is not
identically 0. We assume that m(f) = 0 for every finite subset f of N. Then the
set

Z = {u ∈ 2N; m(u) = 0}
fails the Baire property.

Proof. Assume first that m takes positive values and that m(N) = 1. We assume
that Z has the Baire property. Then the set F = {u ⊂ N; m(u) = 1} is a filter,
which is homeomorphic to Z by the complementation map c. By Theorem 2.6 this
filter is meager and it satisfies condition (3).

There is a family (Yt)t∈R of infinite subsets of N, indexed by the real numbers,
such that if t ̸= s then (Yt ∩ Ys) is finite. For any t ∈ R, we let

F (t) = ∪j∈YtIj .
If t ̸= s then F (t) ∩ F (s) is finite, and thus m(F (t) ∪ F (s)) = m(F (t)) +m(F (s)).
Since m is bounded, it follows that there is t0 ∈ R such that m(F (t0)) = 0 (actually,
this condition holds for all t’s outside some countable set). But then, u = N\F (t0) ∈
F and u ∩ Ij = ∅ for all j ∈ Yt0 , and this contradicts condition (3).

Let now m be an arbitrary bounded measure. Since m is bounded, we can write
m = m+ −m−, with m+ and m− positive measures and |m| = m+ +m−. We let

Z1 = {u ∈ 2N; |m|(u) = 0}.
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If m ̸= 0, the set Z1 is not meager by the above, and since Z1 ⊂ Z, the set Z
is not meager. If Z has the Baire property, it is therefore comeager by Lemma 2.1
since it does not depend upon finitely many coordinates. But if m(u0) ̸= 0 and
u ∈ Z1, we have m(u0∆u) = m(u0) and thus u0∆Z1 ∩ Z = ∅. This cannot be since
(u0∆Z1) is a translate of Z1 and is therefore not meager, while Z is comeager. □

Example 3.2. extending the density function, I.

A subset u of N has density α ∈ [0, 1] if

lim
n
(n−1Card(u ∩ {1, 2, ....n})) = α.

It is clear that the density function is finitely additive and vanishes on finite sets,
but of course it is not defined on every subset of N. The question occurs to know if
can be extended to some usable finitely additive bounded measure D defined on all
subsets of N. Theorem 3.1 above tells us that such an extension is necessarily quite
irregular: it cannot be Baire-measurable (and in particular, it cannot be a Borel
map from the Cantor set to R). However, we could replace the σ-field of Baire-
measurable sets by its measure theoretic analogue, namely the σ-field of universally
measurable sets. We will see below that it cannot be decided in (ZFC) whether a
universally measurable extension exists or not.

Along these lines, let us recall that by [26], the affine functions ϕ on the Hilbert
cube [0, 1]N (equipped with the product topology) which are Baire-measurable are
actually continuous. Note that the boundedness of ϕ is not part of the assumptions
in [26] but follows from the conclusion.

4. Medial limits and the axioms.

We recall that a real-valued function f defined on some Polish space P is called
universally measurable if for every Radon measure µ, there exists a Borel function
fµ such that fµ = f µ- almost everywhere. The following theorem has been shown
independently by J. P. R. Christensen and G. Mokobodzki (see [4], [19] or [8]),
provided that the Continuum Hypothesis (CH) is assumed.

Theorem 4.1. Assume the Continuum Hypothesis. Let P be a Polish space, and
let (fn) be a uniformly bounded sequence of universally measurable functions. Let
Cn = conv(fk; k ≥ n) and let Dn be the closure of Cn for the topology of pointwise
convergence. Then the intersection of the sequence (Dn) contains a universally
measurable function.

Proof. Let ω1 be the first uncountable ordinal. The Continuum Hypothesis provides
a complete list (µα)α<ω1 of all bounded Radon measures on P , indexed by the
countable ordinals.

We claim the existence, for all α < ω1, of sequences (c
α
k )k≥1 of convex combina-

tions of the sequence (fn) such that

(1) If β < α, then there exists N = Nβ,α such that for all n ≥ N , conv(cαk ; k ≥
n) ⊂ conv(cβk : k ≥ n).

(2) For all α < ω1, the sequence (cαn)n converges µα- almost everywhere.



180 GILLES GODEFROY

We proceed by transfinite induction. We first observe that (fn) is a bounded
sequence in the Hilbert space L2(P, µ0), hence by reflexivity of this Banach space
there is a sequence (c0k)k≥1 of successive convex combinations of the sequence (fn)
which converges in L2, and thus a subsequence - still denoted in the same manner
- which converges µ0- almost everywhere.

Assume now that ψ is a limit ordinal, and that the construction has been com-
pleted for all β < ψ. We pick a sequence (ωp) of ordinals which strictly increases to
ψ. We let gp = c

ωp
p , where we may and do assume that gp ∈ conv(cωl

k : k ≥ p) for
all l < p. Therefore if n ≥ p > l, we have

gn ∈ conv(cωl
k : k ≥ n) ⊂ conv(cωl

k : k ≥ p)

and therefore
conv(gn; n ≥ p) ⊂ conv(cωl

k : k ≥ p)

for all l < p. Using reflexivity again, we find a sequence of convex combinations

g′p ∈ conv(gn; n ≥ p) which converges µψ- almost everywhere. We define cψn = g′n.
We have therefore, if n ≥ p > l,

cψn ∈ conv(cωl
k : k ≥ p).

If β < ψ, there exists l0 such that β < ωl0 . By our induction hypothesis, there
exists p0 > l0 such that if p ≥ p0,

conv(c
ωl0
k : k ≥ p) ⊂ conv(cβk : k ≥ p)

and therefore for all p ≥ p0,

conv(cψk : k ≥ p) ⊂ conv(cβk : k ≥ p).

This concludes the construction in the case of limit ordinals. The case of successor
ordinals is similar but simpler.

For all ψ < ω1, we let gψ(x) = lim cψn(x) for all x ∈ P such that the limit
exists, which is the case µψ-almost everywhere. It is clear that gψ a µψ-measurable
function, defined µψ-almost everywhere. Condition (1) above shows that if α < ψ,
then gψ(x) is defined when gα(x) is defined, hence µα- almost everywhere, and
moreover gψ(x) = gα(x).

We may consistently define G(x) = gα(x), where α is the least ordinal for which
lim cαn(x) exists. The function G is defined everywhere since every Dirac measure
δx shows up in the list (µα)α<ω1 . Our construction shows that G is universally
measurable, and moreover that G = lim cαn µα-almost everywhere for all α < ω1. In
particular G ∈ Dn for all n, and this concludes the proof. □

We note that the above proof provides, under (CH), a universally measurable
function G such that for every Radon measure µ, there exists a sequence (cµk) of
successive convex combinations of the sequence (fn) such that lim cµk = G µ- almost
everywhere.

We recall that Komlos theorem [15] states that if (fn) is a bounded sequence in
a space L1(P, µ), there exists an infinite subset X on N such that for every infinite
subset Y of X, then

LimN (
1

N

∑
k∈YN

fk)
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exists µ-almost everywhere, where YN denotes the set consisting of the N smallest
elements of Y . We refer to [9] for a small improvement of Komlos theorem, where
it is shown that we can request that the convergence takes place almost everywhere
and in the quasi-Banach space L(1,∞).

It is tempting to conjecture that, under the Continuum Hypothesis, one could
show a universally measurable version of Komlos theorem, which would read as fol-
lows: let (fn) be a uniformly bounded sequence of universally measurable functions.
Then there exists a universally measurable function g such that for every bounded
Radon measure µ on P , there exists an infinite subset X on N such that for every
infinite subset Y of X,

LimN (
1

N

∑
k∈YN

fk) = g

µ-almost everywhere. But even a weaker version of this property fails, as shown by
the following observation.

Proposition 4.2. Let K = {0, 1}N be the Cantor set equipped with the product
topology, and let fn : K → {0, 1} be the sequence of coordinate functionals. Then
there is no universally measurable function g on K such that for every measure µ
with finite support and every infinite subset Y of N, there exists an infinite subset
Z of Y such that LimN ( 1

N

∑
k∈ZN

fk) = g µ-almost everywhere.

Proof. It suffices to show that if g is a function onK which satisfies the conclusion of
the theorem, then g is the characteristic function 1U of a free ultrafilter U . Indeed,
let us recall a result that goes back to W. Sierpinski [24].

Lemma 4.3. The characteristic function 1U of a free ultrafilter U is not measurable
for the Haar measure mH on K.

Indeed, by Kolmogorov’s 0-1 law, if it were measurable we would have mH(U) ∈
{0, 1}, but this cannot be since the complementation map c leaves m invariant and
maps U to its complement.

In particular, 1U is not universally measurable.
Pick now g which satisfies the conclusion of the proposition. If supp(µ) = F is

finite, our convergence assumption means that

LimN (
1

N

∑
k∈ZN

fk(x)) = g(x)

for every x ∈ F . Consider the set

XF = {Z ⊂ N; LimN (
1

N

∑
k∈ZN

fk(x)) = g(x) for all x ∈ F}

where only infinite sets Z are considered. It is easily checked (see [18], p. 105) that
the set XF is Borel in 2N. Hence it is Ramsey by Silver’s theorem [25], and since
every infinite subset of N contains an element of XF , the Ramsey property shows
that there is Z ∈ XF such that every infinite subset Y of Z belongs also to XF . But
then, it is easy to show that in fact,

lim
k∈Z

fk(x) = g(x)
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for all x ∈ F . Since F was an arbitrary finite subset of K, we have therefore that
g is a pointwise cluster point to the sequence (fn). But these cluster points are the
functions 1U , where U is a free ultrafilter. □
Example 4.4. Extending the density function, II.

The density function has been defined at the end of section 3. Applying Theorem
4.1 to the sequence fn(u) = n−1Card(u∩{1, 2, ....n}) shows that under the Contin-
uum Hypothesis, there exists a universally measurable map D on 2N which extends
the density function. Hence, although a ultrafilter is not universally measurable,
an “integral” of ultrafilters can be universally measurable, at least under (CH). In
other words, we can integrate the topological 0-1 law, but not the measure-theoretic
one.

Example 4.5. Medial limits, I

Following the terminology used in [16], we call a Medial limit any universally
measurable finitely additive measure m : 2N → [0, 1] which maps the singletons to
0 and N to 1. For instance, any universally measurable extension D of the density
function is a Medial limit. Theorem 4.1 shows that Medial limits exist under (CH),
and they exist as well under Martin’s axiom [21], and also under the weaker axiom
that the real line is not the union of less than c meager sets (see 538S in [8]). We
will see below that some axiom is needed.

Example 4.6. Medial limits, II

The notation “medial limits” sometimes denotes special linear forms G on l∞, as
follows. We let P = [−1, 1]N equipped with the product topology be the Hilbert
cube, or equivalently the unit ball of l∞ equipped with the weak* topology. The co-
ordinate functionals fn are continuous linear forms. Applying Theorem 4.1 provides
G ∈ c⊥0 ⊂ l∗∞ with ∥G∥ = 1 = G(1) which is universally measurable on (l∞, weak∗).
Of course, the restriction of G to {0, 1}N is a Medial limit in the sense I above. Note
that if (gn) is a uniformly bounded sequence of universally measurable functions on
some Polish space P , then the function G((gn)) is universally measurable, and it is
a limit of (gn) in the sense that it is invariant under the change of finitely many
gn’s.

G. Mokobodzki applied Medial limits to potential theory, and J. P. R. Christensen
to liftings, that is, pointwise evaluations of elements of L∞. We refer for instance
to ( [5], p. 194, see also [6]) for applications to Dixmier traces, and to [17] for
applications to social sciences.

We will now show the existence of models of (ZFC) in which there is no medial
limit (a theorem of [16]). For doing so, we first need a definition.

Definition 4.7. The Filter Dichotomy is the statement that for each non meager
filter F on N, there is a finite-to-one function h : N → N such that {h[x];x ∈ F} is
a ultrafilter.

Let us mention that this statement is called a dichotomy since, by Theorem ??,
when it holds then a filter F is mapped by a finite-to-one map either to the Fréchet
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filter or to an ultrafilter, and the first condition holds exactly when F is meager. It
is shown in [1] that the Filter Dichotomy holds in models of set theory previously
considered in [20], [2] and [3].

The statement below is slightly different from the formulation given in the original
article [16]. However the proof follows the same lines. Note that the conclusion
states that if the Filter Dichotomy is assumed, there is no Medial limit in the sense
I above, and thus no Medial limit in the sense II.

Theorem 4.8. Assume that the Filter Dichotomy holds. Let K = {0, 1}N be the
Cantor set equipped with the product topology, and let fn : K → {0, 1} be the
sequence of coordinate functionals. Let Cn = conv(fk; k ≥ n) and let Dn be the
closure of Cn for the topology of pointwise convergence. Then the intersection of
the sequence (Dn) contains no universally measurable function.

Proof. Let g : K → [0, 1] be a function which belongs to all Dn’s. It is clear that g
is a positive finitely additive measure with g(N) = 1, and which vanishes on finite
sets. By Theorem 3.1, the set

Z = {u ∈ 2N; g(u) = 0}
fails the Baire property, and since it is homeomorphic (by the complementation map
c) to the filter

F = {u ∈ 2N; g(u) = 1}
it follows that F fails the Baire property and thus is not meager. By the Filter
Dichotomy, there exists a finite-to-one map h : N → N such that {h[x];x ∈ F} is a
free ultrafilter U . We let

S = {h−1[u] : u ⊂ N}.
The subset S of 2N is clearly homeomorphic (by h) to 2N, and S∩F is homeomorphic
to U . We know by Lemma 4.3 that U is not measurable for the Haar measure on 2N,
and it follows that F is not universally measurable. Therefore g is not universally
measurable since F = g−1(1). □
Corollary 4.9. Assume the Filter Dichotomy. Let G ∈ l∗∞ be a universally mea-
surable linear form on (l∞, weak∗). Then G ∈ l1.

Proof. It suffices to show that if G ∈ c⊥0 ⊂ l∗∞ is universally measurable on
(l∞, weak∗) then G = 0. The set of weak* universally measurable elements of
l∗∞ is a band (see 538R in [8]) and thus we may assume that G is a positive linear
form, in other words a positive Radon measure on βN\N. But then, if G ̸= 0, the
restriction of G/∥G∥ to K = {0, 1}N belongs to all the Dn’s, and this contradicts
Theorem 4.8. □

We can show along the lines of the proof of Theorem 4.8 that Theorem 3.1 has
a (conditional) analogue in terms of universally measurable functions. Indeed one
has:

Proposition 4.10. Assume the Filter Dichotomy. Let m be a finitely additive
bounded measure on N, which is not identically 0. We assume that m(f) = 0 for
every finite subset f of N. Then the set

Z = {u ∈ 2N; m(u) = 0}
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is not universally measurable.

Proof. We pick A ∈ 2N such that m(A) ̸= 0. It follows that |m|(A) ̸= 0. We denote

F = {u ∈ 2A; |m|(u) = |m|(A)}
Then F fails the Baire property. By the Filter Dichotomy, there exists a finite-
to-one map h : A → N such that {h[x];x ∈ F} is a free ultrafilter U . We let
again

S = {h−1[u] : u ⊂ N}.
Then S ⊂ 2A satisfies: if v ∈ S and h(v) ∈ U , then |m|(v) = |m|(A). If v ∈ S and
h(v) ̸∈ U , then |m|(v) = 0. But then, h(v) ̸∈ U implies that m(v) = 0, and thus
h(v) ∈ U implies m(v) = m(A). The conclusion follows by Lemma 4.3. □

The last result of this section, which is again conditional to the Filter Dichotomy
(and fails under (CH)), uses the same approach. It concerns the spaces which are
stuck between c0 and its bidual. It extends Lemma 6 in [10], where the result is
shown in (ZFC) under the assumption that X is weak*-Suslin. The gist of the next
result is that the quotient space l∞/X is an “ergodic” space, which is somehow too
large for allowing a regular embedding into a countably separated space.

Proposition 4.11. Assume the Filter Dichotomy. Let X be a proper weak*-
universally measurable subspace of l∞ such that c0 ⊂ X ⊂ l∞. Then there is
no continuous linear injection from l∞/X into l∞.

Note that this Proposition implies in particular that the space X is not comple-
mented in l∞, or equivalently that it is not isomorphic to l∞. Under (CH), the
kernel of a Medial limit (see Example 4.6 above) is weak*-universally measurable,
contains c0 and is isomorphic to l∞.

Proof. Assume that such a linear injection exists. Then there is a sequence (mn)n ⊂
c⊥0 on norm-one linear forms such that X = ∩n≥1Ker(mn). Since X is a proper
subspace of l∞, we may and do assume that m1 ̸= 0. We define

µ =
∑
n≥1

2−n|mn|.

We pick A ⊂ N such that m1(A) ̸= 0. Then µ(A) > 0. We proceed as before with
the filter

G = {u ∈ 2A;µ(u) = µ(A)}
to find a finite-to-one map h : A→ N such that {h[x];x ∈ G} is a free ultrafilter U .
We let again

S = {h−1[u] : u ⊂ N}.
Then S ⊂ 2A satisfies: if v ∈ S and h(v) ∈ U , then µ(v) = µ(A). If v ∈ S and
h(v) ̸∈ U , then µ(v) = 0. But then, h(v) ̸∈ U implies that m1(v) = 0, and thus
h(v) ∈ U implies m1(v) = m1(A) ̸= 0. Denote

V = {v ∈ S; h(v) ̸∈ U}.
If we identify in the obvious way S with a subset of l∞(A) ⊂ l∞, we have therefore
that S ∩X = V , and then Lemma 4.3 shows that X is not universally measurable.

□



CONVEX COMBINATIONSOFMEASURABLE FUNCTIONSANDAXIOMS OFSET THEORY 185

5. Universally measurable linear forms

A sequence (xn) in a Banach space is called weakly unconditionnally convergent
(in short, w.u.c.) if for every x∗ ∈ X∗, one has∑

n≥1

|x∗(xn)| <∞.

Note that the partial sums of a w.u.c. sequence constitute a weakly Cauchy se-
quence. In particular, they weak* converge in any dual space E∗.

A Banach space E has Property (X) (see [13], [11]) if whenever x∗∗ ∈ E∗∗ satisfies

∑
n≥1

x∗∗(x∗n) = x∗∗(w∗ − LimN

N∑
n=1

x∗n)

for every w.u.c. sequence (x∗n) in E
∗, then x∗∗ ∈ E. In other words, E has property

(X) whenever one can check that an element x∗∗ ∈ E∗∗ is weak*-continuous by
testing it not on all weak*-convergent sequences - as for any separable space E -
but only on partial sums of w.u.c. sequences. In practice, property (X) means that
the elements of E are characterized within E∗∗ by some kind of σ-additivity. Hence
this property usually relies on some abstract Radon-Nikodym theorem.

It is easily seen that Property (X) is hereditary and, although it is of isomorphic
nature, any space with (X) is unique isometric predual of its dual ( [13], see [11]).
The space L1, and separable preduals of von Neumann algebras, have property (X).
It is shown in [22] that a separable space which is L-complemented in its bidual
has property (X), hence for instance quotients of L-complemented spaces by nicely
placed subspaces have (X) (see [14] for definitions).

The main result of this section is the following.

Theorem 5.1. (1) Assume the Continuum Hypothesis. Let E be a non-reflexive
Banach space. Then there exists x∗∗ ∈ E∗∗\E which is weak*-universally measurable
on E∗.

(2) Assume the Filter Dichotomy. Let E be a Banach space with property (X).
Then every x∗∗ ∈ E∗∗ which is weak*-universally measurable on E∗ belongs to E.

Proof. For showing (1), we rely on Rosenthal’s dichotomy [23]. If E is not reflexive
and does not contain l1, there exists a weakly Cauchy sequence in E which is not
weakly convergent in E. Its weak* limit in E∗∗ is a first Baire class function on
(E∗, weak∗), and is therefore a universally measurable linear form which does not
belong to E. If E contains a subspace Y isomorphic to l1, we find with (CH) some
G ∈ Y ⊥⊥ ⊂ E∗∗ a Medial limit which is weak*-universally measurable (on Y ∗, and
thus on E∗) and does not belong to E.

We now assume the Filter Dichotomy. Let x∗∗ ∈ E∗∗ be weak*- universally
measurable, where E has property (X). If (x∗n) is any w.u.c. sequence in E∗, we
can define G ∈ l∗∞ by the formula

G((tn)) =
∑
n∈N

x∗∗(tnx
∗
n).
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The linear from G is weak*- universally measurable on l∞, and thus by Corollary
4.9, G ∈ l1. But this implies that∑

n≥1

x∗∗(x∗n) = x∗∗(w∗ − LimN

N∑
n=1

x∗n)

and thus by Property (X), x∗∗ ∈ E. This shows (2). □
Let us conclude this work with some related questions, which appear to be open,

and hopefully not desperately hard.
Problems: 1. Let X be a norm-closed and weak*-Suslin linear subspace of l∞.

We assume that X is linearly isomorphic to l∞. Is X weak*-closed? Note that
Lemma 6 in [10] provides a positive answer if c0 ⊂ X.

2. Let (fn) be a uniformly bounded sequence of continuous functions on a Polish
space P . Assume the Continuum Hypothesis. Does there exist a universally mea-
surable function h such that for every Radon measure µ, there exists Yµ ⊂ N such
that (N−1(

∑
(Yµ)N

fj)) converges µ-almost everywhere to h when N → ∞?

3. Let m be a finitely additive bounded measure on N, which is not identically
0, and such that m(f) = 0 for every finite subset f of N. We assume the Filter
Dichotomy. Does it follow that the set

Z = {u ∈ 2N; m(u) = 0}
is not mH -measurable, where mH denotes the canonical (Haar) measure on 2N?

We refer to [27–29] for relevant techniques and results on measurable filters.
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