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A multi-valued mapping T : D(T ) ⊆ E → 2E is called L-Lipschitzian if there exists
L ≥ 0 such that,

(1.1) ∀ x, y ∈ D(T ), D(Tx, Ty) ≤ L∥x− y∥.

In (1.1) if L ∈ [0, 1), T is said to be a contraction, while T is nonexpansive if L = 1.
Let T : D(T ) ⊆ E → 2E be a multi-valued mapping on E. A point x ∈ D(T ) is

called a fixed point of T if x ∈ Tx. The set F (T ) = {x ∈ D(T ) : x ∈ Tx} is called
a fixed point set of T . Let K be a subset of a real Hilbert space H. A mapping
T : K → CB(K) is said to be pseudocontractive (see [18,19,23]), if the inequality

(1.2) ⟨u− v, x− y⟩ ≤ ∥x− y∥2,

holds for each x, y ∈ K,u ∈ Tx, v ∈ Ty. In this case,

∥x− y − (u− v)∥2 + 2⟨u− v, x− y⟩ ≤ 2∥x− y∥2 + ∥x− y − (u− v)∥2,

which implies that

∥u− v∥2 ≤ ∥x− y∥2 + ∥x− y − (u− v)∥2.

Hence, T : K → CB(K) is said to be pseudocontractive multi-valued mapping, if
∀ x, y ∈ K

(1.3) ∥u− v∥2 ≤ ∥x− y∥2 + ∥x− y − (u− v)∥2, ∀u ∈ Tx, v ∈ Ty.

We observe that (1.3) implies that ∀ x, y ∈ K,

(1.4) D2(Tx, Ty) ≤ ∥x− y∥2 + ∥x− y − (u− v)∥2, ∀u ∈ Tx, v ∈ Ty,

known as pseudocontractive-type multi-valued mapping (see, [30]).

Now we give an example of pseudocontractive multi-valued mapping.

Example 1.1. Define T : R → CB(R) by

Tx :=


x+ 1, x < 0,

[−1, 1], x = 0,

x− 1, x > 0.

We observe that F (T ) = {0}. One can easily show that T is pseudocontractive
multi-valued mapping.

A mapping T : K → CB(H) is said to be k-strongly pseudocontractive (see [18,19]),
if there exists k ∈ (0, 1) such that the inequality

(1.5) ⟨u− v, x− y⟩ ≤ k∥x− y∥2,

holds for each x, y ∈ K,u ∈ Tx, v ∈ Ty. The following is an example of k-strongly
pseudocontractive multi-valued mapping.
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Example 1.2. Define T : R → CB(R) by

Tx :=


{1}, x < 0,

[−1, 1], x = 0,

{−1}, x > 0.

Clearly, F (T ) = {0}. One can easily show that T is a k-strongly pseudocontractive
multi-valued mapping.

Remark 1.3. Note that the class of pseudocontractive multi-valued mappings in-
cludes the class of k-strongly pseudocontractive multi-valued mappings. The fol-
lowing example shows that the inclusion is proper.

Example 1.4. The mapping T given in Example 1.1 is a pseudocontractive map-
ping which is not k-strongly pseudocontractive multi-valued mapping. To see this,
take x = −3 and y = −2. Then u = −2, v = −1, and ⟨u− v, x− y⟩ = 1 = |x− y|2.
Hence, there is no k ∈ [0, 1) such that ⟨u−v, x−y⟩ ≤ k|x−y|2, ∀u ∈ Tx, v ∈ Ty.
Therefore, T is not k-strongly pseudocontractive mapping.

Definition 1.5. Let E be a Banach space. Let T : D(T ) ⊆ E → 2E be a multi-
valued mapping. I − T is said to be demiclosed at zero, if for any sequence {xn} ⊆
D(T ) such that {xn} converges weakly to p and D({xn}, Txn) → 0, then p ∈ Tp.

Multi-valued Pseudocontractive mappings are also related with the important
class of nonlinear monotone mappings, where A : K → CB(H) is called monotone,
if for any x, y ∈ K,

(1.6) ⟨u− v, x− y⟩ ≥ 0, ∀u ∈ Ax, v ∈ Ay.

A mapping A : K → CB(H) is said to be k-strongly monotone mapping if for all
x, y ∈ K, there exists k ∈ [0, 1), such that

(1.7) ⟨u− v, x− y⟩ ≥ k∥x− y∥2, ∀u ∈ Ax, v ∈ Ay.

We note that T is pseudocontractive if and only if A := I − T is monotone and
hence x ∈ F (T ) if and only if x ∈ N(A) := {x ∈ K : 0 ∈ Ax}.

Existence of fixed points of multi-valued contractions and nonexpansive map-
pings via the Hausdorff metric have been proved by several authors (See for in-
stance, Markin [17], Nadler [20], Lim [15]). Since then, the theory for nonexpansive
and their generalizations has developed greatly with applications in control theory,
convex optimization, differential inclusion and economics (see, for example, [9] and
references therein). For early results involving fixed points of multi-valued map-
pings and their applications see, for example, Brouwer [2], Daffer [4], Downing and
Kirk [6], Geanakoplos [8], Kakutani [12], Nash [21, 22], Cholamjiak et al. [3], Khan
et al. [13], Woldeamanuel et al. [30] and the references therein.

In [11], Jung and Morales established a convergence theorem of Mann-type se-
quence to a unique fixed point of k-strongly pseudocontractive multi-valued map-
ping.
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In [30], Woldeamanuel et al. proved that for a Lipschitz pseudocontractive-type
mapping T : K → CB(K), where K is a nonempty closed and convex subset of a
real Hilbert space, the sequence {xn} generated from an arbitrary x1 = w ∈ K by
the scheme,

(1.8)


yn = (1− βn)xn + βnun, un ∈ Txn,

zn = γnwn + (1− γn)xn, wn ∈ Tyn,

xn+1 = αnw + (1− αn)zn, n ≥ 1

converges strongly to a fixed point of the mapping, under some conditions on the
parameters, provided I − T is demiclosed at zero. However, we observe that this
demiclosed condition is strong.

Motivated by the above results, it is our purpose in this paper to prove strong
convergence of Scheme (1.8) to a fixed point of a Lipschitz pseudocontractive map-
ping T : K → CB(K), under some mild conditions, where K is a nonempty closed
and convex subset of a real Hilbert space H, without the assumption that I − T is
demiclosed at zero. The assumption that T (p) = {p}, ∀p ∈ F (T ) is not required.
Our work improves most of the results that have been proved for the multi-valued
case.

Let K be a subset of a real Hilbert space H. The following notations will be used
in the sequel:

i. ⇀ for weak convergence and → for strong convergence.
ii. Given a closed convex subset K of real Hilbert space H, PK denotes the

nearest point projection from H onto K, that is, PKx is the unique point
in K with the property ∥x− PKx∥ ≤ ∥x− y∥, for all y ∈ K.

2. Preliminaries

We first recall some definitions, notations and results which will be needed in
proving our main results.

Lemma 2.1 ([29]). Let H be a real Hilbert space. Then, Given any x, y in H, the
following equations hold:

∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2, ∀t ∈ [0, 1],

Lemma 2.2. [10] Let H be a real Hilbert space. Then, the following equation holds:
If {xn} is a sequence in H such that xn ⇀ z ∈ H, then

lim sup
n→∞

∥xn − y∥2 = lim sup
n→∞

∥xn − z∥2 + ∥z − y∥2, ∀y ∈ H.

Lemma 2.3 ([1]). Let K be a nonempty, closed and convex subset of a real Hilbert
space H. If x ∈ H and z ∈ K, then, z = PK(x) if and only if ⟨x − z, y − z⟩ ≤
0, ∀y ∈ K.

Lemma 2.4 ([31]). Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnδn, n ≥ n0,
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where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: lim
n→∞

αn =

0,
∞∑
n=1

αn = ∞, and lim sup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.5 ([16]). Let {an} be a sequence of real numbers such that there exists a
subsequence {ni} of {n} such that ani < ani+1, for all i ∈ N. Then, there exists a
nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1

In fact, mk := max{j ≤ k : aj < aj+1}.
Lemma 2.6. Let H be a real Hilbert space. Then,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H

Lemma 2.7 ([20]). Let K be a real Hilbert space H. Let A,B ∈ CB(H) and a ∈ A.
If γ > 0, then there exists b ∈ B such that D(a, b) ≤ D(A,B) + γ.

3. Main Results

Lemma 3.1. Let H be a real Hilbert space. Suppose K is a closed, convex, nonempty
subset of H. Assume that T : K → CB(K) is pseudocontractive multi-valued map-
ping with F (T ) ̸= ∅. Then, F (T ) is closed and convex.

Proof. For λ > 0, define Jλ : K → K by Jλ := (I + λ(I − T ))−1, where Jλ is
the resolvent of A := I − T . It is known that Jλ is a single-valued nonexpansive
mapping, defined on the range of I+λ(I−T ) and hence F (Jλ) is closed and convex
(see, [23, 32]). Thus, since F (T ) ̸= ∅, we only need to show that F (Jλ) = F (T ).
Now,

p ∈ F (Jλ) ⇔ Jλp = p

⇔ p = (I + λ(I − T ))−1p

⇔ p ∈
(
I + λ(I − T )

)
p

⇔ 0 ∈ λ(I − T )p

⇔ p ∈ Tp

Thus, F (Jλ) = F (T ), which shows that F (T ) is closed and convex. □
Lemma 3.2. Let H be a real Hilbert space. Suppose K is a closed, convex, nonempty
subset of H. Assume that T : K → CB(K) is Lipschitz pseudocontractive multi-
valued mapping. Then, there is a single-valued nonexpansive mapping S : K → K,
such that for some λ > 0 and for any y ∈ K, S(y) is a fixed point of Ty(x) :=
(1− λ)y + λTx.

Proof. Let L be the Lipschitz constant of T , and choose 0 < λ <
1

2(L+ 1)
. For

each y ∈ K, define the mapping Ty : K → CB(K) by Ty(x) := (1 − λ)y + λTx.
Then, for any x, z ∈ K,

D(Ty(x), Ty(z)) = max{ sup
u∈Ty

x inf
v∈Ty

z∥(1− λ)y + λu− ((1− λ)y + λv)∥,
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sup
w∈Ty

z inf
t∈Ty

x∥(1− λ)y + λw − ((1− λ)y + λt)∥}

= max{ sup
u∈Ty

x inf
v∈Ty

z∥λu− λv∥, sup
w∈Ty

z inf
t∈Ty

x∥λw − λt∥}

= λmax{ sup
u∈Tx

inf
v∈Tz

∥u− v∥, sup
w∈Tz

inf
t∈Tx

∥w − t∥}

= λD(Tx, Tz)

≤ λL∥x− z∥

≤ L

2(L+ 1)
∥x− z∥

Put k = L
2(L+1) . Then, k ∈ (0, 1), which makes Ty a multi-valued contraction. Now,

as K is closed and convex, by Nadler’s fixed point Theorem [20], Ty has a fixed point
in K, say S(y), i.e., S(y) ∈ (1− λ)y + λT (S(y)). Notice that for any y ∈ K, there
exists v ∈ T (S(y)) such that S(y) = (1− λ)y+ λv ∈ K. Using the assumption that
T is pseudocontractive, we next show that S is single-valued nonexpansive mapping.
If x, y ∈ K, there exists u ∈ T (S(x)), v ∈ T (S(y)) such that S(x) = (1− λ)x+ λu
and S(y) = (1− λ)y + λv. Thus,

∥S(x)− S(y)∥2 = ⟨S(x)− S(y), S(x)− S(y)⟩
= ⟨(1− λ)(x− y) + λ(u− v), S(x)− S(y)⟩
= (1− λ)⟨x− y, S(x)− S(y)⟩+ λ⟨u− v, S(x)− S(y)⟩
≤ (1− λ)∥x− y∥∥S(x)− S(y)∥+ λ∥S(x)− S(y)∥2

This gives,
(1− λ)∥S(x)− S(y)∥2 ≤ (1− λ)∥x− y∥∥S(x)− S(y)∥,
i.e.,

∥S(x)− S(y)∥ ≤ ∥x− y∥,
which shows that S single-valued nonexpansive mapping.

□
Lemma 3.3. Let H be a real Hilbert space. Suppose K is a closed, convex, nonempty
subset of H. Assume that T : K → CB(K) is Lipschitz pseudocontractive multi-
valued mapping. Then I − T is demiclosed at zero.

Proof. Let {xn} ⊆ K be such that xn ⇀ p and suppose D({xn}, Txn) → 0. We
want to show that 0 ∈ (I − T )p, i.e., p ∈ Tp. Let yn ∈ Txn, be such that

(3.1) ∥xn − yn∥ ≤ D({xn}, Txn) → 0.

Now, define f : H → [0,∞) by f(x) := lim sup
n→∞

∥xn − x∥2. Then, by Lemma 2.2 we

get that
f(x) = lim sup ∥xn − p∥2 + ∥p− x∥2, ∀x ∈ H.

which implies that

(3.2) f(x) = f(p) + ∥p− x∥2, ∀x ∈ H.

In particular, for S as in Lemma 3.2 we get that

(3.3) f(S(p)) = f(p) + ∥S(p)− p∥2.
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From the definition of S, we have that S(xn) = (1 − λn)xn + λnun, for some un ∈
T (S(xn)). But then, by Lemma 2.7 there exists yn ∈ Txn such that ||un − yn|| ≤
2D(T (Sxn), Txn). Thus, we have

∥xn − S(xn)∥ = λ∥xn − un∥
= λ∥xn − yn + yn − un∥
≤ λ∥xn − yn∥+ λ∥yn − un∥
≤ λ∥xn − yn∥+ 2λD(Txn, T (S(xn))

≤ λ∥xn − yn∥+ 2λL∥xn − S(xn)∥
≤ λ∥xn − yn∥+ a∥xn − S(xn)∥,

for a = L
(1+L) . This gives that (1− a)∥xn − S(xn)∥ ≤ λ∥xn − yn∥, which implies,

(3.4) ∥xn − S(xn)∥ ≤ λ

1− a
∥xn − yn∥ ≤ λ

1− a
D({xn}, Txn) → 0,

as n → ∞. Also, using (3.4), and the fact that S is nonexpansive, from Lemma 3.2,

f(S(p)) = lim sup ∥xn − S(p)∥2

= lim sup ∥xn − S(xn) + S(xn)− S(p)∥2

≤ lim sup(∥xn − S(xn)∥+ ∥S(xn)− S(p)∥)2

≤ lim sup(∥xn − S(xn)∥+ ∥xn − p∥)2

≤ lim sup ∥xn − p∥2 = f(p).(3.5)

Now, from (3.3) and (3.5), we get ∥S(p) − p∥2 = 0 which implies p = S(p), i. e.,
p ∈ F (S). It is easy to see that F (S) = F (T ), so, we get that p ∈ Tp. Therefore,
I − T is demiclosed at zero. □
Theorem 3.4. Let H be a real Hilbert space and K be a non-empty, closed and
convex subset of H. Let T : K → CB(K) be a Lipschitz pseudocontractive multi-
valued mapping with Lipschitz constant L. Assume that F (T ) is non-empty. Let
{xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(3.6)


yn = (1− βn)xn + βnun,

zn = γnwn + (1− γn)xn,

xn+1 = αnw + (1− αn)zn, n ≥ 1,

where un ∈ Txn, wn ∈ Tyn such that ||un − wn|| ≤ 2D(Txn, T yn), and {αn}, {βn},
{γn} ⊂ (0, 1) satisfy the following conditions:

(i) 0 ≤ αn ≤ c < 1, ∀n ≥ 1 such that lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞,

(ii) 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 + 1 + 1
, ∀n ≥ 1.

Then, {xn} converges strongly to some point p ∈ F (T ) nearest to w.

Proof. Let p = PF (T )(w). Now, using Lemma 2.1 we get that

∥xn+1 − p∥2 = ∥αn(w − p) + (1− αn)(zn − p)∥2

≤ αn∥w − p∥2 + (1− αn)∥zn − p∥2
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= αn∥w − p∥2 + (1− αn)∥γn(wn − p) + (1− γn)(xn − p)∥2

= αn∥w − p∥2 + (1− αn)γn∥wn − p∥2 + (1− αn)(1− γn)

×∥xn − p∥2 − (1− αn)γn(1− γn)∥wn − xn∥2

≤ αn∥w − p∥2 + (1− αn)(1− γn)∥xn − p∥2 + (1− αn)γn[
∥yn − p∥2 + ∥yn − p− (wn − p)∥2

]
−(1− αn)γn(1− γn)∥wn − xn∥2

= αn∥w − p∥2 + (1− αn)(1− γn)∥xn − p∥2 + (1− αn)γn[
∥yn − p∥2 + ∥yn − wn∥2

]
− (1− αn)γn(1− γn)∥wn − xn∥2.

Thus,

(3.7) ∥xn+1 − p∥2 ≤ αn∥w − p∥2 + (1− αn)(1− γn)∥xn − p∥2 + (1− αn)

× γn∥yn − p∥2 + (1− αn)γn∥yn − wn∥2 − (1− αn)γn(1− γn)∥wn − xn∥2.
On the other hand, using (3.6), the fact that ∥un − wn∥ ≤ 2D(Txn, T yn), Lemma
2.1 and T is Lipschitz,

∥yn − wn∥2 = ∥(1− βn)(xn − wn) + βn(un − wn)∥2

= (1− βn)∥xn − wn∥2 + βn∥un − wn∥2 − βn(1− βn)∥xn − un∥2

≤ (1− βn)∥xn − wn∥2 + βn4D(Txn, T yn)
2 − βn(1− βn)∥xn − un∥2

≤ (1− βn)∥xn − wn∥2 + βn4L
2∥xn − yn∥2 − βn(1− βn)∥xn − un∥2

= (1− βn)∥xn − wn∥2 + 4β3
nL

2∥xn − un∥2 − βn(1− βn)∥xn − un∥2.
Hence,

(3.8) ∥yn − wn∥2 ≤ (1− βn)∥xn − wn∥2 − βn(1− βn − 4L2β2
n)∥xn − un∥2

Again, using the assumption that T is pseudocontractive,

∥yn − p∥2 = ∥(1− βn)xn + βnun − p)∥2

= ∥(1− βn)(xn − p) + βn(un − p)∥2

= (1− βn)∥xn − p∥2 + βn∥un − p∥2 − βn(1− βn)∥xn − un∥2

≤ (1− βn)∥xn − p∥2 + βn
[
∥xn − p∥2 + ∥xn − un∥2

]
−βn(1− βn)∥xn − un∥2

= ∥xn − p∥2 + β2
n∥xn − un∥2.

Thus,

(3.9) ∥yn − p∥2 ≤ ∥xn − p∥2 + β2
n∥xn − un∥2.

Now, substituting (3.8), (3.9) into (3.7),

∥xn+1 − p∥2 ≤ αn∥w − p∥2 + (1− αn)(1− γn)∥xn − p∥2 + (1− αn)γn∥xn − p∥2

+(1− αn)γnβ
2
n∥xn − un∥2 + (1− αn)γn(1− βn)∥xn − wn∥2

−βn(1− αn)γn(1− βn − 4L2β2
n)∥un − xn∥2

−(1− αn)γn(1− γn)∥wn − xn∥2,
which reduces to
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(3.10) ∥xn+1 − p∥2 ≤ αn∥w − p∥2 + (1− αn)∥xn − p∥2 − βn(1− αn)

× γn(1− 2βn − 4L2β2
n)∥un − xn∥2 + (1− αn)γn(γn − βn)∥xn − wn∥2

From the hypothesis (ii) in (3.6) we have that

1− 2βn − 4L2β2
n ≥ 1− 2β − 4L2β2(3.11)

γn ≤ βn.(3.12)

Using (3.11) and (3.12) in (3.10) we get that

(3.13) ∥xn+1 − p∥2 ≤ (1− αn)∥xn − p∥2 + αn∥w − p∥2.

Thus, by induction

∥xn+1 − p∥2 ≤ max{∥x1 − p∥2, ∥w − p∥2}, ∀n ≥ 1.

This implies that {xn}, {yn} and {zn} are all bounded.

Furthermore, from (3.6), Lemma 2.6 and (3.10) we get that

∥xn+1 − p∥2

= ∥(1− αn) (γnwn + (1− γn)xn) + αnw − p)∥2

= ∥(1− αn) ((γnwn + (1− γn)xn)− p) + αn(w − p)∥2

≤ (1− αn)∥γnwn + (1− γn)xn − p∥2 + 2αn⟨w − p, xn+1 − p⟩
= (1− αn)

[
γn∥wn − p∥2 + (1− γn)∥xn − p∥2 − γn(1− γn)∥xn − wn∥2

]
+2αn⟨w − p, xn+1 − p⟩

≤ (1− αn)
[
γn(∥yn − p∥2 + ∥yn − wn∥2) + (1− γn)∥xn − p∥2

−γn(1− γn)∥xn − wn∥2
]
+ 2αn⟨w − p, xn+1 − p⟩

≤ (1− αn)γn∥yn − p∥2 + (1− αn)γn∥yn − wn∥2 + (1− αn)(1− γn)

×∥xn − p∥2 − (1− αn)γn(1− γn)∥xn − wn∥2 + 2αn⟨w − p, xn+1 − p⟩
≤ (1− αn)γn∥xn − p∥2 + (1− αn)γnβ

2
n∥xn − un∥2 + (1− αn)γn

×
[
(1− βn)∥xn − wn∥2 − βn(1− βn − 4L2β2

n)∥xn − un∥2
]

+(1− αn)(1− γn)∥xn − p∥2 − (1− αn)γn(1− γn)∥wn − xn∥2

+2αn⟨w − p, xn+1 − p⟩
≤ (1− αn)∥xn − p∥2 − (1− αn)γnβn(1− 2βn − 4L2β2

n)∥xn − un∥2

+2αn⟨w − p, xn+1 − p⟩+ (1− αn)γn(γn − βn)∥xn − wn∥2.

This implies that,

∥xn+1 − p∥2 ≤ (1− αn)∥xn − p∥2 − (1− αn)γnβn(1− 2βn − 4L2β2
n)

×∥xn − un∥2 + 2αn⟨w − p, xn+1 − p⟩,(3.14)

and hence by (i) and (ii) we have

∥xn+1 − p∥2 ≤ (1− αn)∥xn − p∥2 − (1− c)α2(1− 2β − 4L2β2)∥xn − un∥2

+2αn⟨w − p, xn+1 − p⟩.(3.15)
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Now we consider the following two cases:

Case 1. Suppose that there exists n0 ∈ N such that {∥xn − p∥} is non-increasing,
∀n ≥ n0. Then, we get that {∥xn − p∥} is convergent. So, from (3.15) we have that

(1− c)α2(1− 2β − 4L2β2)∥xn − un∥2 ≤ (1− αn)∥xn − p∥2 − ∥xn+1 − p∥2

+2αn⟨w − p, xn+1 − p⟩.

Thus, from the fact that αn → 0, we get lim
n→∞

∥xn − un∥ = 0 which implies that

d(xn, Txn) ≤ ||xn − un|| → 0 as n → ∞.(3.16)

Now, from (3.6)

yn − xn = βn(un − xn) → 0,

and hence we get that

∥zn − xn∥ = γn∥wn − xn∥ = γn∥wn − un + un − xn∥
≤ γn∥wn − un∥+ γn∥un − xn∥
≤ 2γnD(Tyn, Txn) + γn∥un − xn∥
≤ 2γnL∥yn − xn∥+ γn∥un − xn∥ → 0.(3.17)

Thus, from (3.6), (3.17), the fact that ∥w − zn∥ is bounded and αn → 0, we obtain

∥xn+1 − xn∥ = ∥xn+1 − zn + zn − xn∥
≤ ∥xn+1 − zn∥+ ∥zn − xn∥
= αn∥w − zn∥+ ∥zn − xn∥ → 0.(3.18)

Now, since {∥xn − p∥} is bounded there exists a subsequence {xnj+1} of {xn+1}
such that

lim sup
n→∞

⟨w − p, xn+1 − p⟩ = lim
j→∞

⟨w − p, xnj+1 − p⟩,

and xnj+1 ⇀ z, for some z ∈ K. Now, from (3.18) we get xnj ⇀ z. Hence, from
(3.16) and the fact that I − T is demiclosed by Lemma 3.3, we get that z ∈ F (T ).
Therefore, by Lemma 2.3 we obtain that

lim sup
n→∞

⟨w − p, xn+1 − p⟩ = lim
j→∞

⟨w − p, xnj+1 − p⟩

= ⟨w − p, z − p⟩ ≤ 0(3.19)

Now, from (3.15) we have that

(3.20) ∥xn+1 − p∥2 ≤ (1− αn)∥xn − p∥2 + 2αn⟨w − p, xn+1 − p⟩.

It then follows from (3.20), (3.19) and Lemma 2.4 that ∥xn − p∥ → 0 i.e., xn → p.

Case 2. Suppose there exists a subsequence {nk} of {n} such that

∥xnk
− p∥ < ∥xnk+1 − p∥, ∀k ∈ N.

Thus, by Lemma 2.5, there is a nondecreasing sequence {mk} ⊂ N such that mk →
∞, ∥xmk

− p∥ ≤ ∥xmk+1 − p∥ and ∥xk − p∥ ≤ ∥xmk+1 − p∥, ∀k ∈ N. Now, from
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(3.15) and the fact that αn → 0 we get that xmk
− umk

→ 0, when umk
∈ Txmk

.
Hence as in Case 1, xmk+1 − xmk

→ 0 and that

(3.21) lim sup
k→∞

⟨w − p, xmk+1 − p⟩ ≤ 0.

From (3.15) we have that

(3.22) ∥xmk+1 − p∥2 ≤ (1− αmk
)∥xmk

− p∥2 + 2αmk
⟨w − p, xmk+1 − p⟩

and since ∥xmk
− p∥ ≤ ∥xmk+1 − p∥, (3.22) implies that

αmk
∥xmk

− p∥2 ≤ ∥xmk
− p∥2 − ∥xmk+1 − p∥2 + 2αmk

⟨w − p, xmk+1 − p⟩
≤ 2αmk

⟨w − p, xmk+1 − p⟩,

which implies

∥xmk
− p∥2 ≤ 2⟨w − p, xmk+1 − p⟩.

So, from (3.21) we get that ∥xmk
− p∥ → 0 ≤ 0 and hence this with (3.22) give that

∥xmk+1− p∥ → 0. But, ∥xk − p∥ ≤ ∥xmk+1− p∥, ∀k ∈ N. Thus, xk → p. Therefore,
{xn} converges strongly to some point p ∈ F (T ) nearest to w. □

Remark 3.5. We note that, since every Lipschitz k-strongly pseudocontractive
multi-valued mapping is Lipschitz pseudocontractive multi-valued mapping the
above theorem holds for a Lipschitz k-strongly pseudocontractive multi-valued map-
ping.

If, in Theorem 3.4 we assume that PT is Lipschitz pseudocontractive multi-valued
mapping, then we get the following corollary.

Corollary 3.6. Let H be a real Hilbert space and K be a non-empty, closed and
convex subset of H. Let T : K → CB(K) be a multi-valued mapping. Let PT

be a Lipschitz pseudocontractive mapping with Lipschitz constant L. Suppose also
that F (T ) is non-empty. Let {xn} be the sequence generated from an arbitrary
x1 = w ∈ K by

(3.23)


yn = (1− βn)xn + βnun,

zn = γnwn + (1− γn)xn,

xn+1 = αnw + (1− αn)zn, n ≥ 1

where un ∈ PTxn, wn ∈ PT yn such that ||un − wn|| ≤ 2D(PTxn, PT yn), and {αn},
{βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

i. 0 ≤ αn ≤ c < 1, ∀n ≥ 1 such that lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 + 1 + 1
, ∀n ≥ 1.

Then, {xn} converges strongly to some point p ∈ F (T ) nearest to w.

If, in Theorem 3.4 we assume that PT : K → CBC(K) is Lipschitz pseudocon-
tractive mapping, then PT (x) is singleton and hence the following corollary follows.
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Corollary 3.7. Let H be a real Hilbert space and K be a non-empty, closed and
convex subset of H. Let T : K → CBC(K), be a multi-valued mapping. Let PT

be a Lipschitz pseudocontractive mappings with Lipschitz constant L. Suppose also
that F (T ) is non-empty. Let {xn} be the sequence generated from an arbitrary
x1 = w ∈ K by

(3.24)


yn = (1− βn)xn + βnPTxn,

zn = γnPT yn + (1− γn)xn,

xn+1 = αnw + (1− αn)zn, n ≥ 1

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

i. 0 ≤ αn ≤ c < 1, ∀n ≥ 1 such that lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 + 1 + 1
, ∀n ≥ 1.

Then, {xn} converges strongly to some point p ∈ F (T ) nearest to w.

Next we state and prove a convergence theorem for a zero of a monotone mapping.

Theorem 3.8. Let H be a real Hilbert space. Let A : H → CB(H) be a Lipschitz
monotone mapping with Lipschitz constant L. Assume N(A) ̸= ∅. Let {xn} be the
sequence generated from an arbitrary x1 = w ∈ H by

(3.25)


yn = xn − βnun,

zn = xn − γnwn,

xn+1 = αnw + (1− αn)zn, n ≥ 1

where un ∈ Axn, wn ∈ Ayn such that ||un −wn|| ≤ 2D(Axn, Ayn) + ||xn − yn||, and
{αn}, {βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

i. 0 ≤ αn ≤ c < 1, ∀n ≥ 1 such that lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L′2 + 1 + 1
, ∀n ≥ 1 for L′ := 1 + L.

Then, {xn} converges strongly to a zero point of A nearest to w.

Proof. Let Tx := (I − A)x. Then T is Lipschitz pseudocontractive mapping with
Lipschitz constant L′ := (1 + L) and F (T ) = N(A) ̸= ∅. Now replacing A with
(I − T ) in (3.25) we get Scheme (3.6). Hence the result follows from Theorem
3.4. □

Remark 3.9. Our work improves Theorem 1 and Theorem 2 of Song and Wang [28]
and Theorem 2.7 of Shahzad and Zegeye [26] and extends the work of Daman
and Zegeye [5] for the multi-valued case. In all our results the assumption that
T (p) = {p}, ∀p ∈ F (T ) is not required.
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