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TWO MODIFIED PROXIMAL POINT ALGORITHMS FOR
CONVEX FUNCTIONS IN HADAMARD SPACES

YASUNORI KIMURA AND FUMIAKI KOHSAKA

ABSTRACT. We study the existence and approximation of minimizers of proper
lower semicontinuous convex functions in Hadamard spaces through the asymp-
totic behavior of sequences generated by two modified proximal point algorithms.

1. INTRODUCTION

The proximal point algorithm, first introduced by Martinet [22], is an iterative
method for approximating zero points of maximal monotone operators in Hilbert
spaces. The following is a specialization of the celebrated theorem by Rockafel-
lar [24, Theorem 1] to the convex minimization problem.

Theorem 1.1 ([24, Theorem 1]). Let X be a real Hilbert space, f a proper lower
semicontinuous conver function of X into |—o0,00], {\n} a sequence of positive real
numbers such that inf, A\, > 0, and {z,} a sequence defined by x1 € X and

. 1

) =g {10) 4 5 ol (=120
yeX n

Then the set argminy f of all minimizers of f is nonempty if and only if {x,} is

bounded. Further, if argminy f is nonempty, then {x,} is weakly convergent to an

element of argminy f.

In 1978, Brézis and Lions [7, Théoreme 9] obtained the following weak conver-
gence theorem under a weaker condition on the sequence {\,}.

Theorem 1.2 ([7, Théoréme 9]). Let X and f be the same as in Theorem 1.1,
{An} a sequence of positive real numbers such that y > A\, = oo, and {z,} a
sequence defined by x1 € X and (1.1). If argminy f is nonempty, then {x,} is
weakly convergent to an element of argminy f.

Later, Giiler [11, Corollary 5.1] found a counterexample showing that the se-
quence {x,} in Theorem 1.1 does not converge strongly in general.

2010 Mathematics Subject Classification. 47TH10, 47J05, 52A41, 90C25.

Key words and phrases. Convex function, fixed point, Hadamard space, minimizer, proximal
point algorithm, resolvent.

This work was supported by JSPS KAKENHI Grant Numbers 15K05007 and 25800094.



70 Y. KIMURA AND F. KOHSAKA

As is well known, the resolvent J; of f defined by

Iy = arguin { 55) + 3 Iy - 12}
yeX

for all x € X is a cornerstone in the convergence analysis of the proximal point
algorithm. In fact, the scheme (1.1) can be written as x, 41 = Jy, pxy for alln € N
and each J,, ¢ is a well defined single valued firmly nonexpansive mapping of X into
itself whose fixed point set is identical with argminy f. See [4,27] for more details
on convex analysis in Hilbert spaces.

In 2000, Kamimura and Takahashi [16] investigated the asymptotic behavior of
{z,} and {y,} defined by z1,y; € X,

(1.2) Tnt1 = onTp + (1 —an)In, p2n (Rn=1,2,...),
and
(13) Yn+1 = Qpy1 + (1 - an)J/\nfyn (7’L = 17 27 <o )7

respectively, where {a,, } is a sequence of [0, 1] and {\,} is a sequence of positive real
numbers. They [16, Theorems 6 and 7| showed under some additional assumptions
that {x,} converges weakly to an element of argminy f and that {y,} converges
strongly to Py;, where P denotes the metric projection of X onto argminy f. See [1,
3,15,20] for generalizations of these results to monotone operators in Banach spaces.
See also Eckstein and Bertsekas [10] for related results on the iterative scheme (1.2)
in Hilbert spaces.

On the other hand, in 1995, Jost [12] proposed a nonlinear generalization of
the concept of resolvent in Hadamard spaces. According to [6, Section 2.2], [12,
Lemma 2], and [23, Section 1.3], if f is a proper lower semicontinuous convex func-
tion of a Hadamard space X into |—o0o, cc], then the resolvent J; of f given by

(1.4) Jpx = argmin {f(y) + %d(y, x)z}
yeX

for all x € X is a well defined single valued mapping of X into itself. We also know
that Jy is nonexpansive and that the equality

(1.5) F(Jy) = argmin f
X
holds. See [6,13,14] for more details on this concept.

Recently, Bacdk [5, Theorem 1.4] obtained the following remarkable generaliza-
tion of Theorem 1.2 in Hadamard spaces.

Theorem 1.3 ([5, Theorem 1.4]). Let X be a Hadamard space, f a proper lower
semicontinuous convex function of X into |—o0, 00|, {\,} a sequence of positive real
numbers such that Y7 | A\, = 00, and {x,} a sequence defined by z1 € X and

Tngt1 = D frn (Rn=1,2,...).
If argminy f is nonempty, then {x,} is A-convergent to an element of argminy f.

The aim of this paper is to study the existence and approximation of a minimizer
of a proper lower semicontinuous convex function f of a Hadamard X into |—o0, o0
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through the asymptotic behavior of two iterative sequences {x,} and {y,} defined
by T1,Y1 € X7

(1.6) Tpg1 = Ty @ (1 — ) Iy, p2n (n=1,2,...),
and
(1.7) Ynt1 = o0 ® (L — o)y, fyn (n=1,2,...),

respectively, where v is a given point of X, {a,} is a sequence of [0, 1], and {\,} is a
sequence of positive real numbers. Note that if X is a real Hilbert space and y; = v,
then (1.6) and (1.7) are reduced to (1.2) and (1.3), respectively. In our main results,
Theorems 4.2 and 5.1, we show the equivalence of the existence of a minimizer of f
and the boundedness of {Jy, rxn} and {Jy, ryn} as well as the convergence of these
sequences to minimizers of f, respectively.

2. PRELIMINARIES

Throughout this paper, we denote by R the set of all real numbers, N the set of
all positive integers, R? the two dimensional Euclidean space with norm | - g2, X a
metric space with metric d, and F(T') the set of all fixed points of a mapping 7.

We need the following lemma.

Lemma 2.1 (]2, Lemma 2.3]). Let {s,} be a sequence of nonnegative real numbers,
{an} a sequence of [0,1] such that > 2 o = oo, and {t,} a sequence of real

numbers such that limsup,, t, < 0. If
(2.1) Snt1 < (1 — ap)sp + antyn
for all n € N, then lim, s,, = 0.

The following variant of Maingé’s lemma [21, Lemma 3.1] was first found by Sae-
jung and Yotkaew [25, Lemma 2.6]. Recently, Kimura and Saejung [17, Lemma 2.8]
filled in a slight gap of the original proof given in [25]. Note that it was assumed
in [17,25] that «,, < 1 for all n € N. However, the proof given in [17, Lemma 2.8]
is valid to the case below without any change.

Lemma 2.2 ([17, Lemma 2.8] and [25, Lemma 2.6]). Let {s,} be a sequence of
nonnegative real numbers, {an} a sequence of 10,1] such that > o> | oy, = 00, and
{tn} a sequence of real numbers such that limsup;t,, < 0 whenever {n;} is an
increasing sequence of N satisfying
lim sup(sm — sm+1) <0.
1—00

If (2.1) holds for all n € N, then lim,, s, = 0.

A metric space X is said to be uniquely geodesic if for each z,y € X, there exists
a unique mapping c of [0,!] into X such that ¢(0) = z, ¢(I) = y, and

d(c(t),c(t") = |t — ']
for all ¢,¢" € [0,1], where | = d(x,y). The image of ¢ is denoted by [z, y] and is called

the geodesic segment between x and y. For each a € [0,1], the point c((l - a)l)
is denoted by ax @ (1 — a)y. A uniquely geodesic metric space is simply called a
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uniquely geodesic space. A subset C of a uniquely geodesic space X is said to be
convex if [x,y] is contained by C for all x,y € C.

If X is a uniquely geodesic space and x1, 9, x3 are points in X, then there exist
T1,Z2, %3 € R? such that d(z;,z;) = |T; — Zj[e for all i,j € {1,2,3}. The sets A
and A defined by

A= [xl,xg] U [xg,a:g] U [1‘3,1‘1] and A= [.771,.@2] U [fg,ifg] U [573,@1]

are called a geodesic triangle with vertices x1, z2,r3 and a comparison triangle for
A, respectively. A point p € A is said to be a comparison point for p € A if

pE [z, xj], PEXz], and d(xs,p) =T — Plge

for some distinct 4,5 € {1,2,3}.
A metric space X is said to be a CAT(0) space if it is uniquely geodesic and

d(pa Q) S |ﬁ - Q|R2

whenever A is a geodesic triangle with vertices x1, 22,23 € X, A is a comparison
triangle for A, and p,§ € A are comparison points for p,q € A, respectively. Every
complete CAT(0) space is particularly called a Hadamard space. If X is a CAT(0)
space, then

(2.2) d(az ® (1 — a)y,z) < ad(z,2) + (1 — @)d(y, 2)
and
(2.3) d(az @ (1 - a)y, 2)2 < ad(z,2)? + (1 - a)d(y, 2)? — a(l — a)d(zx, y)?

for all z,y,z € X and «a € [0,1]. The inequality (2.2) implies that every CAT(0)
space is a convex metric space in the sense of Takahashi [26]. It is known that every
nonempty closed convex subset of a real Hilbert space and every open unit ball of
a real Hilbert space with the hyperbolic metric are Hadamard spaces; see Bacdk [6]
and Bridson and Haefliger [8] for more details on CAT(0) spaces and CAT (k) spaces
with x € R, respectively.

If C'is a nonempty closed convex subset of a Hadamard space X, then for each
x € X, there exists a unique & € C such that

d(z,z) = ;Ielg d(y, x).

The metric projection Po of X onto C' is defined by Po(z) = & for all z € X.

Let X be a CAT(0) space and {x,} a sequence of X. Then the asymptotic center
A({z,}) of the sequence {,} is defined by

n—00 y€X n—oo

.A({:Un}) = {Z € X :limsupd(z,z,) = inf limsup d(y,xn)} .

The sequence {x,} is said to be A-convergent if there exists p € X such that

A({zn.}) = {p}
for each subsequence {zy, } of {z}. In this case, {z,} is said to be A-convergent to
p. If {x,} is A-convergent to p € X, then it is bounded and its every subsequence
is A-convergent to p. We denote by wa ({xn}) the set of all ¢ € X such that there
exists a subsequence of {z,} which is A-convergent to ¢. If {z,,} is a sequence of a
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real Hilbert space H and p € H, then {z,} is A-convergent to p if and only if it is
weakly convergent to p. See [6,9,19] for more details on A-convergence. Since

2
limsup d(y, z,)* = <lim sup d(y, xn)>

n—oo n—o0

for each y € X, the concept of weak convergence discussed in [6, Chapter 3] coincides
with that of A-convergence.
The following lemmas are of fundamental importance.

Lemma 2.3 ([9, Proposition 7]; see also [6, Section 3.1]). The set A({zn}) is a
singleton for each bounded sequence {x,} of a Hadamard space.

Lemma 2.4 ([19, Section 3]; see also [6, Proposition 3.1.2]). Every bounded sequence
of a Hadamard space has a A-convergent subsequence.

Lemma 2.5 ([18, Proposition 3.1]). Let X be a complete CAT(1) space and {z,}
a sequence of X such that
T
inf li d(y, < —.
2w den) < 5

If the sequence {d(z,xy)} is convergent for each element z in wa ({zn}), then {z,}
is A-convergent to an element of X.

Using Lemma 2.5, we can show the following lemma.

Lemma 2.6. Let X be a Hadamard space and {x,} a bounded sequence of X. If
the sequence {d(z,xy,)} is convergent for each element z of wa ({xn}), then {x,} is
A-convergent to an element of X.

Proof. Since {x,} is bounded, there exists x € ]0, co[ such that

n
inf 1 d(y, n) < =.
inf 13;801;1)\/5 (Y n) < 3

Since (X,d) is a Hadamard space, it is also a complete CAT(k) space and hence
(X, /kd) is a complete CAT(1) space. It is easy to verify that

WA ({xn}) = wp ({xn}),
where the right hand side is the set of all ¢ € X such that there exists a subsequence
of {z,,} which is A-convergent to ¢ in (X, /kd). Thus Lemma 2.5 implies that there
exists p € X such that {z,} is A-convergent to some p in (X, /kd), that is,

{p} = {z € X : limsup /kd(z, zy,) = inf limsup \/Ed(y,:vm)}

i—00 ye 1—00
= {z € X :limsupd(z, z,,) = inf limsup d(y,xni)}
i—00 yeX o0
for each subsequence {z,} of {z,}. Therefore, the sequence {z,} is A-convergent
to p also in the space (X, d). O

Let X be a CAT(0) space. A function f: X — |—o0, 0] is said to be proper if
f(z) is finite for some z € X. It is also said to be convex if

flax e (1-a)y) <af(@)+ (1 —-a)f(y)
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whenever z,y € X and « € |0, 1[. We denote by I'H(X) the set of all proper lower
semicontinuous convex functions of X into |—oo, o0]. It is known [6, Lemma 3.2.3]
that if X is a Hadamard space and f is an element of I'hj(X), then f is A-lower
semicontinuous, that is,

f(p) < liminf f(x,)

n—oo

whenever {z,} is a sequence of X which is A-convergent to p € X. If C is a
nonempty closed convex subset of X, then the indicator function i of C, which is
defined by ic(x) = 0if x € C and oo if x € X \ C, is an element of I'H(X). See
Bacdk [6] for more details on convex analysis in Hadamard spaces.

3. FUNDAMENTAL PROPERTIES OF RESOLVENTS OF CONVEX FUNCTIONS

In this section, we study some fundamental properties of resolvents of proper
lower semicontinuous convex functions in Hadamard spaces.

Let X be a Hadamard space and f an element of I'p(X). According to [6,
Section 2.2], [12, Lemma 2], and [23, Section 1.3], for each € X, there exists a
unique z € X such that

@)+ e = int {700 + a2}
2 yeX 2

The resolvent J; of f is defined by Jyz = & for all x € X. In other words, Jy is given
by (1.4). It is also known that J¢ is nonexpansive and (1.5) holds. See [6,13,14]
for more details on this concept. If f is particularly the indicator function i¢ of a
nonempty closed convex subset C' of X, then .J; coincides with the metric projection
P of X onto C.

We first show the following lemma. The inequality (3.2) is a counterpart of [3,
Lemma 3.1] in the Hadamard space setting.

Lemma 3.1. Let X be a Hadamard space and f an element of Io(X). If A, >0
and z,y € X, then the inequalities

(3.1) d(Iapz, Jupy)? + d(Japz, 2)* + 20 (F(Iagz) — f(Tupy)) < d(Jupy, z)?

and

(3.2) A+ p)d(Iapz, Jupy)? + pd(Irpz, ) + Ad(Jupy, y)?
< Ad(Japz,y)? + pd(J,py, z)?

hold.

Proof. Let A\, u > 0 and x,y € X be given. In order to show (3.1), we set

2t = tJMfy &) (1 — t)J)\ffL‘
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for all t € ]0,1[. By the definition of Jyf, the convexity of Af, and (2.3), we have

1
M () + §d(J>\fﬂs,$)2

< Af(z) + %d(zt,x)Q
SEAf(Jpgy) + (L= )Af (Iap)
b 5 (g, + (U= (g, 2 — (L= 0d( gy, Trgr))
This implies that
2A(f(Iagz) = (Jupy)
< d(Jupy, ) — (1 = t)d(Irpz, Jupy)? — d(Jrpz, 2)?.
Letting t | 0, we obtain (3.1). It then follows from (3.1) that
pd( g, Jupy)® + pd(Inpa, 2)? + 220u(f (Iapz) = f(Jupy))
< pd(Jupy, x)’

and
A(Tupy, Tag)® + Ad(Tupys y)? + 20 (f (Tupy) = f(Iagz))
< Md(Jxg,y)*.
Adding these inequalities, we obtain (3.2). O

The following corollary follows from Lemma 3.1. Note that (3.4) is a well known
fact that each Jys is nonexpansive; see [6, Theorem 2.2.22] and [12, Lemma 4].

Corollary 3.2. Let X be a Hadamard space and f an element of I'\(X). Then
(3:3)  2d(Iagz, Iagy)® + d(Iagz, @) + d(Iagy, y)* < d(apa,y)? + d(Jagy, @)
and

(3.4) d(Iafz, Inpy) < d(z,y)

forall A >0 and x,y € X.

Proof. Let A > 0 and z,y € X be given. It directly follows from Lemma 3.1
that (3.3) holds. According to Ba¢ék [6, Corollary 1.2.5], the inequality

d(p,s)® +d(q.r)* — d(p,r)* — d(q,)* < 2d(p,q)d(r, s)
holds for all p,q,r,s € X. Thus (3.3) implies that
2d(rpr, Iapy)? < d(Iape,y)® + d(apy, 2)° = d(apz,x)® = d(Jxpy, y)?
< 2d(JIasz, Jrpy)d(z,y).
Hence J) is nonexpansive. O
Using Lemma 3.1, we next show the following lemma.

Lemma 3.3. Let X be a Hadamard space, f an element of I'h(X), {A\n} a sequence
of positive real numbers, and p an element of X. Then the following hold.
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(i) If inf, Ay > 0 and A({zn}) = {p} for some sequence {z,} of X satisfying
d(JIx, t2n,2n) — 0, then p is an element of argminy f;

(ii) if limy Ay, = 00 and A({Jx,zn}) = {p} for some bounded sequence {z,} of
X, then p is an element of argminy f.

Proof. We first show (i). Suppose that inf, A, > 0 and A({z,}) = {p} for some
sequence {z,} of X satisfying d(Jx,fzn,2,) — 0. Then the sequences {z,} and
{Jx,f#n} are bounded. It follows from (3.2) that

(A + 1)d( I, 120, Tp)* < Mnd (I, £20,0)? + d( T4, 2n)?

and hence
d(J)\ann, pr)2

1
< d(Jx, f2n,p)* + )\*(d(pr, 2n)® = d(Jyp, In,f2n)?)
mn
1
< d(J)\ann,p)2 + Td(zTh J)\nfzn) (d(pr7 Zn) + d(‘]fpv J)xnfzn)>

for all n € N. Since {1/A,} is bounded, d(Jx,fzn,2,) — 0, and both {z,} and
{Jx,f#n} are bounded, we have

(3.5) limsup d(Jy, rzn, Jrp)? < limsup d(Jy, f2n, p)*.
n—ro0 n—oo
On the other hand, it follows from d(Jy, fzn, zn) — 0 that
(3.6) lim sup d(zy,y) = limsup d(Jy, fzn,¥)
n—oo

n—o0

for all y € X. Thus, by (3.5) and (3.6), we obtain

(lim sup d(zp, pr)) g (lim sup d(Jy, 1 2n, JfP))

n—oQ n—o0

2

= limsup d(Jx, f2n, pr)2

n—00

< lim sup d(J)\anrnp)Q
n—oo
2

= (hmsup d(JAnfzn,p)>2 = <limsupd(zn,]7))

n—o0 n—oo
and hence
lim sup d(zn, Jrp) < limsup d(zy,,p) = inf limsup d(zy,, y).

n—o00 n—o0 y€X n—co
Thus we have Jrp € A({z,}) = {p} and hence we obtain Jsp = p. Therefore, it
follows from (1.5) that p € argminy f.
We next show (ii). Suppose that lim, A, = co and A({Jx, zn}) = {p} for some
bounded sequence {z,} of X. Using (3.2), we can see that
1
)\7” (pr7 zn)z

for all n € N. Since lim,, \,, = co and {z,} is bounded, we have

d(In, f2n, J5p)? < d(Jn, 20, 0)° +

limsup d(Jy, 20, J5p)> < limsup d(Jy, ;0. p)>
n—oo

n—oo
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and hence

limsup d(Jx, f2zn, J§p) < hmsupd(J,\ f2n,p) = inf limsupd(Jy, f2n,y).

n—00 Y€X n—oo

This gives us that p € argminy f. O

4. A A-CONVERGENT MODIFIED PROXIMAL POINT ALGORITHM

In this section, we study the asymptotic behavior of the sequence {z,,} generated
by (1.6).

Before obtaining one of our two main results in this paper, we show the following
convex minimization theorem.

Theorem 4.1. Let X be a Hadamard space, f an element of I'1(X), {zn} a bounded
sequence of X, {Bn} a sequence of positive real numbers such that Y > | Bn = o0,
and g the real function defined by

g(y) = limsup —=7—— Zl 7 Zﬂkd (y, zk

n—o0

for ally € X. Then g is a continuous and conver function such that argminy g is
a singleton.

Proof. Set 0, = ., 5 for all n € N and let g,, be the function defined by

1 n
= — § Brd(y, z1)*
On
=1

for alln € N and y € X.

We first show the continuity of g. Let {x,,} be a sequence of X converging to
a € X. Since {z,} and {z,,} are bounded, we have a real number M such that
d(a,zr) < M and d(xm;,2r) < M for all k,m € N. Then the triangle inequality
implies that

(1) In(Tm) < an z::@’k (Tm, a)? + 2d(xm, a)d(a, z,) + d(a, 2)°)
< (d(zm, a) + 2M)d(zm, a) + gn(a)

for all m,n € N. Taking the upper limit in (4.1) with respect to n, we obtain
g(zm) < (d(xm, a) + 2M)d(xm, a) + g(a).

Similarly, we can see that
g(a) < (d(a, Tm) + 2M)d(a, Tm) + g(Tm).

Thus we obtain
|9(zm) — g(a)| < (d(zm, @) +2M)d(zm, a)

for all m € N. This implies that g(z,,) — g(a) and hence g is continuous.
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We next show the convexity of g. If y1,y2 € X and « € |0, 1[, then we have
from (2.3) that

gn(ay1 @ (1 —a)ys)

1 n
= Z Brd(ayr & (1 — a)ys, Zk)2
" =1

< g'i > Be(ad(yr, z1)? + (1 — a)d(yz, z)* — a1 — @)d(y1,y2)?)

= agn(y1) + (1 = a)gn(y2) — a(l — @)d(y1, y2)?
for all n € N. This implies that

(4.2) glay1 @ (1 - a)yz) < ag(y) + (1 - a)g(yz) — a(l — a)d(yr, y2)*

and hence g is convex.
We next show that argminy g is nonempty. It is obvious that

I =infg(X) € [0, 00].

Then there exists a sequence {y,} of X such that g(y,) — I and g(yn) > g(yn+1)
for all n € N. If m > n, then it follows from (4.2) that

1 1 1 1 1
[ < g(gyn D §ym) < §g(yn) + ig(ym) - Zd(ynuym)2

and hence

d(ym ym) < 2\/@.

This implies that {y,,} is a Cauchy sequence and hence it converges to some p € X.
Since g is continuous and g(y,) — [, we obtain ¢g(p) = lim, g(y,) = [ and hence p
belongs to argminy g.

We finally show that argminy ¢ is a singleton. If p and p’ belong to argminy g,
then it follows from (4.2) that

1 1 1 1 1 1
l< (7 7/><7 - /—*d ,/2:l—*d ,/2
S9(5p@5p) < 59(0p) + 59(00') = 7d(p. ) 14, P)
and hence p = p’. Thus argminy g is a singleton. U

Now, we are ready to prove one of our two main results in this paper.

Theorem 4.2. Let X be a Hadamard space, f an element of [H(X), and {z,} a
sequence of X defined by x1 € X and

Tpt1 = 0@y @ (1 — o), p2n (n=1,2,...),
where {an,} is a sequence of [0,1] and {\,} is a sequence of positive real numbers
satisfying > o7 1 (1 — o)A, = 00. Then the following hold.

(i) The sequence {Jy,rxn} is bounded if and only if argminy f is nonempty;
(ii) if sup, o, < 1 and argminy f is nonempty, then {x,} and {Jx, fr,} are
A-convergent to an element o of argminy f.
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Proof. Set z, = Jy, ry for all n € N. Using Theorem 4.1, we show the only if part
of (i). Suppose that {z,} is bounded. Set

(4'3) Bn = (1 - an))\n and o, = Z/Bl
=1
for all n € N. According to Theorem 4.1, the real function g on X defined by

. 1 ¢
g(y) = limsup — > Brd(y, 2)*
k=1

n—oo On

for all y € X has a unique minimizer p € X. By the definition of {z,} and (2.3),
we have

2
d(Jsp, wps1)? = d(Jp, o ® (1 — )2k

(4.4)
< Oékd<pr7 ':Uk‘)Q + (1 - Oék)d(pr, Zk)g‘

It follows from (3.2) that
(4.5) ()\k + 1)d(zk., pr)2 < )\kd(zk,p)Z + d(pr, $k)2.
Thus, by (4.3), (4.4), and (4.5), we obtain

Brd(zk, Jyp)?

< Brd(zk,p)? + (1 — o) (d(Jyp, )? — d(Jyp, 21)°)

= Brd(zk,p)* + d(Jpp, 2x)® — (cd(Jyp, x)* + (1 — ag)d(Jsp, 21,)?)
< Brd(z,p)* + d(Jp, ) — d(Jpp, Tp1)?

and hence
iznzﬁkd(zk Jpp)? < izn:ﬁkd(zk p)* + id(J p,21)?
In 1 i  On k=1 7 In -

for all n € N. Thus, it follows from lim,, o, = oo that g(J¢p) < g(p). Since p is the
unique minimizer of g, we have Jyp = p and hence it follows from (1.5) that p is an
element of argminy f. Therefore, argminy f is nonempty.

We next show the if part of (i). If argminy f is nonempty, then there exists an
element u of argminy f. By (1.5), (2.2), and (3.4), we have

d(u, zng1) = d(u, Iy, fTng1) < d(u, Tpq1)
= d(u, anTy, ® (1 — an)zn)
< apd(u, zy) + (1 — ap)d(u, z)
< d(u,zy,)

for all n € N. Hence {z,,} and {z,} are bounded.
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We finally show (ii). Suppose that sup,, a,, < 1 and argminy f is nonempty. Let

u be an element of argminy f. Then, it follows from (2.3) and (3.1) that
d(u, Tpy1)?
< and(u, 20)% 4+ (1 — ay)d(u, 2,)?
< apd(u, )+ (1 — ay) (d(u, Tn)? — (2, 70)? = 200 (f(20) — f(u)))

= d(u, $n)2 - (1 - an) (d(zna l'n)Q + 2\, (f(zn) - 1nff(X))>
< d(u,nvn)2

for all n € N. Thus {d(u,z,)} is convergent for each u € argminy f. Since

(1 - an) (d(zm $n)2 + 2\, (f(zn) - lnff(X))> < d(uv -Tn)2 - d(uv $n+1)2a

we have
o0

Z(l - an) <d(zna$n)2 + 2)\n(f(zn) - lnff(X))> < d(u7x1)2'

n=1
This implies that

[ee]

(4.6) D (1= ap)d(zn, 2n)? < 00
n=1
and
(4.7) > (1= an)An(f(zn) — inf (X)) < 0.
n=1

By sup,, a, < 1 and (4.6), we have

(4.8) Zd(zn,xn)2 < 0.
n=1
By > 02 (1 — an)\, = 00 and (4.7), we also have

(4.9) hrginf(f(zn) —inf f(X)) = 0.
On the other hand, the definition of Jy, y implies that

Fon) < F(za) + 5l 20)? < f )

for all n € N. Thus, by the definition of {x,} and the convexity of f, we obtain

—oo < inf f(X) < f(zn41) < anf(zn) + (1 — an) f(2n) < f(2n)

for all n € N. Accordingly, the sequence {f(x,)} is convergent to some real number
B and hence {f(zy)} is bounded. Let {f(zy,)} be any subsequence of { f(z,)}. Since
sup,, o, < 1, we have a subsequence {anij} of {ay, } which tends to some vy € [0, 1].

Then, by letting j — oo in
1
<f($mj+1) - anij f(HJmJ )) < f(zni]-) < f(xni]-)7

1— a,,

)
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we know that {f (Znij )} tends to 3. Thus we conclude that

(4.10) nh—>ngo f(zn) =B = nh—>Igo f(@n).
Consequently, using (4.9) and (4.10), we obtain
(4.11) li_>m f(zy) = inf f(X).

Let z be an element of wa ({z}). Then there exists a subsequence {zy,} of {z,}
which is A-convergent to z. Since f is A-lower semicontinuous, it follows from (4.11)
that

f() < liminf f(z,,) = lim_f(z,) = inf f(X)

71— 00
and hence z € argminy f. Thus we know that wa ({z,}) is contained by argminy f.
Combining this property with the fact that {d(z,z,)} is convergent for each z in
argminy f, we know that {d(z,z,)} is convergent for each z in wa ({z,}). Accord-
ingly, Lemma 2.6 ensures that {z,} is A-convergent to an element z, of X. Since
it follows from (4.8) that d(zy,z,) — 0, the sequence {z,} is also A-convergent to
ZToo- Finally, since

{} = wA({xn}) C arg}r{nin 1,
we conclude that x, is an element of argminy f. O
As direct consequences of Theorem 4.2, we obtain the following two corollaries.

Corollary 4.3. Let X and f be the same as in Theorem 4.2 and {z,} a sequence
of X defined by x1 € X and

Tnt1 = Dnfrn (Rn=1,2,...),
where {\,} is a sequence of positive real numbers satisfying > .- An = 00. Then
the following hold.
(i) The sequence {xy,} is bounded if and only if argminy f is nonempty;
(ii) iof argminy f is nonempty, then {x,} is A-convergent to an element of
argminy f.

Remark 4.4. Note that (ii) is the result due to Bac¢ék [5, Theorem 1.4].

Corollary 4.5. Let X be a Hilbert space, f an element of I'h(X), and {z,} a
sequence of X defined by r1 € X and

Tpt1 = 0Ty + (1 =)y, p2n (n=1,2,...),
where {a,} is a sequence of [0,1] and {\,} is a sequence of positive real numbers
satisfying > oo 1 (1 — ap)Ap = 0.
(i) The sequence {Jy,xn} is bounded if and only if argminy f is nonempty;
(ii) if sup, o, < 1 and argminy f is nonempty, then {x,} and {Jx,fr,} are
weakly convergent to an element o of argminy f.

Remark 4.6. Note that the special case of (ii) where lim,, A,, = 0o is also a corollary
of the weak convergence theorem due to Kamimura and Takahashi [16, Theorem 3].
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5. A CONVERGENT MODIFIED PROXIMAL POINT ALGORITHM

In this section, we study the asymptotic behavior of the sequence {y,} generated
by (1.7).

The following is the other of our two main results in this paper.

Theorem 5.1. Let X be a Hadamard space, f an element of I'h(X), v an element
of X, and {yn} a sequence of X defined by y; € X and

(5.1) Ynt1 = a0 ® (L —an) Iy, fyn (n=1,2,...),
where {ay,} is a sequence of [0,1] and {\,} is a sequence of positive real numbers
such that lim, A, = co. Then the following hold.
(i) The sequence {Jx, fyn} is bounded if and only if argminy f is nonempty;
(i) if limy, o, = 0, > 07 | oy = 00, and argminy f is nonempty, then {y,} and
{Jx.fyn} are convergent to Pv, where P denotes the metric projection of X
onto argminy f.

Proof. Set z, = Jy, ryn for all n € N. We first show the only if part of (i). Suppose
that {z,} is bounded. By Lemma 2.3, we know that A({z,}) = {p} for some p € X.
It follows from (2.2) that

d(p7yn+1) = d(p7 anv @ (1 - an)zn)
< and(p,v) + (1 — an)d(p, 2n)
for all n € N. Thus the boundedness of {z,} implies that of {y,}. Noting that
lim,, A, = oo and A({Jx,syn}) = {p}, we have from (ii) of Lemma 3.3 that p is an
element of argminy f. Thus argminy f is nonempty.

We next show the if part of (i). If argminy f is nonempty, then it follows
from (1.5), (2.2) and (3.4) that

d(Pv,ypt1) = d(Pv, anv ® (1 — an)zn)
(5.2) < anpd(Pv,v) 4+ (1 — ay)d(Pv, z,,)
< max {d(Pv,v),d(Pv,y,)}

and hence

(5.3) d(Pv,y,) < max {d(Pv,v),d(Pv,y1)}
for all n € N. This implies that {y,} is bounded. Since

(5.4) d(Pv, zp) = d(Pv, Jy, fyn) < d(Pv,yn),

the sequence {z,} is also bounded.

We next show (ii). Suppose that lim,, o, = 0, > 07| ay, = 00, and argminy f is
nonempty. Then we know that (5.2), (5.3), and (5.4) hold. Hence {y,} and {z,}
are bounded. Using (1.5), (2.3), (3.4), and (5.4), we can see that

d(Pv,yni1)?

= d(Pv, anv ® (1 — an)zn)2

< and(Pv,v)? + (1 — an)d(Pv, z,)* — an(1 — ay)d(v, 2,)*

< (1 = an)d(Pv,yn)* + an (d(Pv, v)2 —d(v, 2)* + and(v, zn)2)

(5.5)
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for all n € N. Thus, letting

(5.6) $n = d(Pv,yn)® and t, = d(Pv,v)? —d(v, 2,)? + and(v, 2,)?,
we have

(5.7) S+l < (1= ap)sn + anty,

for all n € N.

Since {2y} is bounded, by Lemma 2.4, we have a subsequence {zy,, } of {z,} which
is A-convergent to some ¢ € X and
(5.8) lim d(v, zp,)? = liminf d(v, 2, )?.

1—00 n— o0

Since lim; A, = o0, A({JAnifyni}) = {q}, and {yp, } is bounded, it follows from (ii)
of Lemma 3.3 that ¢ is an element of argminy f. Using the A-lower semicontinuity
of the function d(v,-)? and (5.8), we then obtain

(5.9) d(v,q)? < liminf d(v, z,,)* = lim d(v, z,,)? = liminf d(v, 2,)?.
71— 00 1—00 n—,oo

Since d(Pv,v) < d(q,v), a, — 0, and {z,} is bounded, it follows from (5.9) that

limsupt, < d(Pv,v)? —liminf d(v, z,)? + lim sup o, d(v, z,,)?
n—00 n—00 n—00

< d(Pv,v)* —d(v,q)* <0.

Consequently, Lemma 2.1 implies that lim,, s, = 0 and hence {y,} is convergent to
Pv. Tt follows from (5.4) that {z,} is also convergent to Puv. O

As a direct consequence of Theorem 5.1, we obtain the following.

Corollary 5.2. Let X be a Hilbert space, f an element of I'1(X), v an element of
X, and {y,} a sequence of X defined by y1 € X and

Ynt1 = 0+ (1 — o), fyn (n=1,2,...),

where {ay,} is a sequence of [0,1] and {\,} is a sequence of positive real numbers
such that lim, A\, = co. Then the following hold.

(i) The sequence {Jy, fyn} is bounded if and only if argminy f is nonempty;
(i) of imp o, = 0, > 02y = 00, and argminy f is nonempty, then {y,}
and {Jx, fyn} are strongly convergent to Pv, where P denotes the metric

projection of X onto argminy f.

Remark 5.3. Note that (ii) is also a corollary of the strong convergence theorem due
to Kamimura and Takahashi [16, Theorem 1].

Applying Lemma 2.2, we can also show the following convergence theorem under
a different type of coefficient conditions on the sequences {a,} and {\,}.

Theorem 5.4. Let X be a Hadamard space, f an element of I'h(X) such that
argminy f is nonempty, v an element of X, and {y,} a sequence of X defined by
y1 € X and (5.1), where {a,} is a sequence of 10,1] and {\,} is a sequence of
positive real numbers such that lim, a,, =0, Y7 | @, = 00, and inf, A, > 0. Then
{yn} and {Jx, ryn} are convergent to Pv, where P denotes the metric projection of
X onto argminy f.
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Proof. Set zp, = Jy, fyn for all n € N. We denote by {s,} and {t,,} the sequences
defined by (5.6). Note that (5.4), (5.5) and (5.7) hold also in this case. Let {n;} be
any increasing sequence of N such that

(5.10) limsup(sp, — Sp,+1) < 0.
1—00

Using (3.3), (5.5), (5.10), and ay,; — 0, we have

lim sup d(zn,; , Yn, )2

1—00
< lim sup (d(Pv, yp,)? — d(Pv, 2,,)?)
1— 00
< limsup (d(Pv, Yni)? — d(Pv, Yn,+1)° + an, (d(Pv,v)?* — d(Pv, znl)2)>
1— 00
= lim sup(sni — sni+1) <0
1— 00
and hence we obtain
(5.11) lim d(zy,,yn;) = 0.

1—00

Since {zy,} is bounded, Lemma 2.4 implies that there exists a subsequence {2y, }
of {zp,} which is A-convergent to some ¢ € X and

(5.12) lim d(v, 2,,,)* = liminf d(v, 2,,)*.

j—00 i—00

It follows from (5.11) that

(5‘13) A({ynm}) = A({Znij}) = {Q}

Since inf; Ay, ; > inf, Ay > 0 and both (5.11) and (5.13) hold, it follows from (i) of
Lemma 3.3 that ¢ is an element of argminy f. Since d(v,-)? is A-lower semicontin-
uous and (5.12) holds, we have

d(v,q)? < liminf d(v, Znij)2 = lim d(v, znij)Q = liminf d(v, 2,,)%
j—o0 j—o0 i—00

This implies that

lim sup ¢,,, = limsup(d(Pv, v)? — d(v, zn,)? + an,d(v, zm)2)

1—>00 1—00

= d(Pv,v)? — liminf d(v, z,,)*

1—00

< d(Pv,v)? —d(v,q)* <0.

Consequently, Lemma 2.2 implies that lim,, s, = 0 and hence {y,} is convergent to
Pu. It follows from (5.4) that {z,} is also convergent to Pv. O
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