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As is well known, the resolvent Jf of f defined by

Jfx = argmin
y∈X

{
f(y) +

1

2
∥y − x∥2

}
for all x ∈ X is a cornerstone in the convergence analysis of the proximal point
algorithm. In fact, the scheme (1.1) can be written as xn+1 = Jλnfxn for all n ∈ N
and each Jλnf is a well defined single valued firmly nonexpansive mapping of X into
itself whose fixed point set is identical with argminX f . See [4, 27] for more details
on convex analysis in Hilbert spaces.

In 2000, Kamimura and Takahashi [16] investigated the asymptotic behavior of
{xn} and {yn} defined by x1, y1 ∈ X,

xn+1 = αnxn + (1− αn)Jλnfxn (n = 1, 2, . . . ),(1.2)

and

yn+1 = αny1 + (1− αn)Jλnfyn (n = 1, 2, . . . ),(1.3)

respectively, where {αn} is a sequence of [0, 1] and {λn} is a sequence of positive real
numbers. They [16, Theorems 6 and 7] showed under some additional assumptions
that {xn} converges weakly to an element of argminX f and that {yn} converges
strongly to Py1, where P denotes the metric projection ofX onto argminX f . See [1,
3,15,20] for generalizations of these results to monotone operators in Banach spaces.
See also Eckstein and Bertsekas [10] for related results on the iterative scheme (1.2)
in Hilbert spaces.

On the other hand, in 1995, Jost [12] proposed a nonlinear generalization of
the concept of resolvent in Hadamard spaces. According to [6, Section 2.2], [12,
Lemma 2], and [23, Section 1.3], if f is a proper lower semicontinuous convex func-
tion of a Hadamard space X into ]−∞,∞], then the resolvent Jf of f given by

Jfx = argmin
y∈X

{
f(y) +

1

2
d(y, x)2

}
(1.4)

for all x ∈ X is a well defined single valued mapping of X into itself. We also know
that Jf is nonexpansive and that the equality

F(Jf ) = argmin
X

f(1.5)

holds. See [6, 13,14] for more details on this concept.
Recently, Bačák [5, Theorem 1.4] obtained the following remarkable generaliza-

tion of Theorem 1.2 in Hadamard spaces.

Theorem 1.3 ([5, Theorem 1.4]). Let X be a Hadamard space, f a proper lower
semicontinuous convex function of X into ]−∞,∞], {λn} a sequence of positive real
numbers such that

∑∞
n=1 λn = ∞, and {xn} a sequence defined by x1 ∈ X and

xn+1 = Jλnfxn (n = 1, 2, . . . ).

If argminX f is nonempty, then {xn} is ∆-convergent to an element of argminX f .

The aim of this paper is to study the existence and approximation of a minimizer
of a proper lower semicontinuous convex function f of a Hadamard X into ]−∞,∞]
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through the asymptotic behavior of two iterative sequences {xn} and {yn} defined
by x1, y1 ∈ X,

xn+1 = αnxn ⊕ (1− αn)Jλnfxn (n = 1, 2, . . . ),(1.6)

and

yn+1 = αnv ⊕ (1− αn)Jλnfyn (n = 1, 2, . . . ),(1.7)

respectively, where v is a given point of X, {αn} is a sequence of [0, 1], and {λn} is a
sequence of positive real numbers. Note that if X is a real Hilbert space and y1 = v,
then (1.6) and (1.7) are reduced to (1.2) and (1.3), respectively. In our main results,
Theorems 4.2 and 5.1, we show the equivalence of the existence of a minimizer of f
and the boundedness of {Jλnfxn} and {Jλnfyn} as well as the convergence of these
sequences to minimizers of f , respectively.

2. Preliminaries

Throughout this paper, we denote by R the set of all real numbers, N the set of
all positive integers, R2 the two dimensional Euclidean space with norm | · |R2 , X a
metric space with metric d, and F(T ) the set of all fixed points of a mapping T .

We need the following lemma.

Lemma 2.1 ([2, Lemma 2.3]). Let {sn} be a sequence of nonnegative real numbers,
{αn} a sequence of [0, 1] such that

∑∞
n=1 αn = ∞, and {tn} a sequence of real

numbers such that lim supn tn ≤ 0. If

sn+1 ≤ (1− αn)sn + αntn(2.1)

for all n ∈ N, then limn sn = 0.

The following variant of Maingé’s lemma [21, Lemma 3.1] was first found by Sae-
jung and Yotkaew [25, Lemma 2.6]. Recently, Kimura and Saejung [17, Lemma 2.8]
filled in a slight gap of the original proof given in [25]. Note that it was assumed
in [17, 25] that αn < 1 for all n ∈ N. However, the proof given in [17, Lemma 2.8]
is valid to the case below without any change.

Lemma 2.2 ([17, Lemma 2.8] and [25, Lemma 2.6]). Let {sn} be a sequence of
nonnegative real numbers, {αn} a sequence of ]0, 1] such that

∑∞
n=1 αn = ∞, and

{tn} a sequence of real numbers such that lim supi tni ≤ 0 whenever {ni} is an
increasing sequence of N satisfying

lim sup
i→∞

(
sni − sni+1

)
≤ 0.

If (2.1) holds for all n ∈ N, then limn sn = 0.

A metric space X is said to be uniquely geodesic if for each x, y ∈ X, there exists
a unique mapping c of [0, l] into X such that c(0) = x, c(l) = y, and

d
(
c(t), c(t′)

)
=

∣∣t− t′
∣∣

for all t, t′ ∈ [0, l], where l = d(x, y). The image of c is denoted by [x, y] and is called
the geodesic segment between x and y. For each α ∈ [0, 1], the point c

(
(1 − α)l

)
is denoted by αx ⊕ (1 − α)y. A uniquely geodesic metric space is simply called a
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uniquely geodesic space. A subset C of a uniquely geodesic space X is said to be
convex if [x, y] is contained by C for all x, y ∈ C.

If X is a uniquely geodesic space and x1, x2, x3 are points in X, then there exist
x̄1, x̄2, x̄3 ∈ R2 such that d(xi, xj) = |x̄i − x̄j |R2 for all i, j ∈ {1, 2, 3}. The sets ∆
and ∆̄ defined by

∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] and ∆̄ = [x̄1, x̄2] ∪ [x̄2, x̄3] ∪ [x̄3, x̄1]

are called a geodesic triangle with vertices x1, x2, x3 and a comparison triangle for
∆, respectively. A point p̄ ∈ ∆̄ is said to be a comparison point for p ∈ ∆ if

p ∈ [xi, xj ], p̄ ∈ [x̄i, x̄j ], and d(xi, p) = |x̄i − p̄|R2

for some distinct i, j ∈ {1, 2, 3}.
A metric space X is said to be a CAT(0) space if it is uniquely geodesic and

d(p, q) ≤ |p̄− q̄|R2

whenever ∆ is a geodesic triangle with vertices x1, x2, x3 ∈ X, ∆̄ is a comparison
triangle for ∆, and p̄, q̄ ∈ ∆̄ are comparison points for p, q ∈ ∆, respectively. Every
complete CAT(0) space is particularly called a Hadamard space. If X is a CAT(0)
space, then

d
(
αx⊕ (1− α)y, z

)
≤ αd(x, z) + (1− α)d(y, z)(2.2)

and

d
(
αx⊕ (1− α)y, z

)2 ≤ αd(x, z)2 + (1− α)d(y, z)2 − α(1− α)d(x, y)2(2.3)

for all x, y, z ∈ X and α ∈ [0, 1]. The inequality (2.2) implies that every CAT(0)
space is a convex metric space in the sense of Takahashi [26]. It is known that every
nonempty closed convex subset of a real Hilbert space and every open unit ball of
a real Hilbert space with the hyperbolic metric are Hadamard spaces; see Bačák [6]
and Bridson and Haefliger [8] for more details on CAT(0) spaces and CAT(κ) spaces
with κ ∈ R, respectively.

If C is a nonempty closed convex subset of a Hadamard space X, then for each
x ∈ X, there exists a unique x̂ ∈ C such that

d(x̂, x) = inf
y∈C

d(y, x).

The metric projection PC of X onto C is defined by PC(x) = x̂ for all x ∈ X.
Let X be a CAT(0) space and {xn} a sequence of X. Then the asymptotic center

A
(
{xn}

)
of the sequence {xn} is defined by

A
(
{xn}

)
=

{
z ∈ X : lim sup

n→∞
d(z, xn) = inf

y∈X
lim sup
n→∞

d(y, xn)

}
.

The sequence {xn} is said to be ∆-convergent if there exists p ∈ X such that

A
(
{xni}

)
= {p}

for each subsequence {xni} of {xn}. In this case, {xn} is said to be ∆-convergent to
p. If {xn} is ∆-convergent to p ∈ X, then it is bounded and its every subsequence
is ∆-convergent to p. We denote by ω∆

(
{xn}

)
the set of all q ∈ X such that there

exists a subsequence of {xn} which is ∆-convergent to q. If {xn} is a sequence of a
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real Hilbert space H and p ∈ H, then {xn} is ∆-convergent to p if and only if it is
weakly convergent to p. See [6, 9, 19] for more details on ∆-convergence. Since

lim sup
n→∞

d(y, xn)
2 =

(
lim sup
n→∞

d(y, xn)

)2

for each y ∈ X, the concept of weak convergence discussed in [6, Chapter 3] coincides
with that of ∆-convergence.

The following lemmas are of fundamental importance.

Lemma 2.3 ([9, Proposition 7]; see also [6, Section 3.1]). The set A
(
{xn}

)
is a

singleton for each bounded sequence {xn} of a Hadamard space.

Lemma 2.4 ([19, Section 3]; see also [6, Proposition 3.1.2]). Every bounded sequence
of a Hadamard space has a ∆-convergent subsequence.

Lemma 2.5 ([18, Proposition 3.1]). Let X be a complete CAT(1) space and {xn}
a sequence of X such that

inf
y∈X

lim sup
n→∞

d(y, xn) <
π

2
.

If the sequence {d(z, xn)} is convergent for each element z in ω∆

(
{xn}

)
, then {xn}

is ∆-convergent to an element of X.

Using Lemma 2.5, we can show the following lemma.

Lemma 2.6. Let X be a Hadamard space and {xn} a bounded sequence of X. If
the sequence {d(z, xn)} is convergent for each element z of ω∆

(
{xn}

)
, then {xn} is

∆-convergent to an element of X.

Proof. Since {xn} is bounded, there exists κ ∈ ]0,∞[ such that

inf
y∈X

lim sup
n→∞

√
κd(y, xn) <

π

2
.

Since (X, d) is a Hadamard space, it is also a complete CAT(κ) space and hence
(X,

√
κd) is a complete CAT(1) space. It is easy to verify that

ω∆

(
{xn}

)
= ω′

∆

(
{xn}

)
,

where the right hand side is the set of all q ∈ X such that there exists a subsequence
of {xn} which is ∆-convergent to q in (X,

√
κd). Thus Lemma 2.5 implies that there

exists p ∈ X such that {xn} is ∆-convergent to some p in (X,
√
κd), that is,

{p} =

{
z ∈ X : lim sup

i→∞

√
κd(z, xni) = inf

y∈X
lim sup
i→∞

√
κd(y, xni)

}
=

{
z ∈ X : lim sup

i→∞
d(z, xni) = inf

y∈X
lim sup
i→∞

d(y, xni)

}
for each subsequence {xni} of {xn}. Therefore, the sequence {xn} is ∆-convergent
to p also in the space (X, d). □

Let X be a CAT(0) space. A function f : X → ]−∞,∞] is said to be proper if
f(x) is finite for some x ∈ X. It is also said to be convex if

f
(
αx⊕ (1− α)y

)
≤ αf(x) + (1− α)f(y)
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whenever x, y ∈ X and α ∈ ]0, 1[. We denote by Γ0(X) the set of all proper lower
semicontinuous convex functions of X into ]−∞,∞]. It is known [6, Lemma 3.2.3]
that if X is a Hadamard space and f is an element of Γ0(X), then f is ∆-lower
semicontinuous, that is,

f(p) ≤ lim inf
n→∞

f(xn)

whenever {xn} is a sequence of X which is ∆-convergent to p ∈ X. If C is a
nonempty closed convex subset of X, then the indicator function iC of C, which is
defined by iC(x) = 0 if x ∈ C and ∞ if x ∈ X \ C, is an element of Γ0(X). See
Bačák [6] for more details on convex analysis in Hadamard spaces.

3. Fundamental properties of resolvents of convex functions

In this section, we study some fundamental properties of resolvents of proper
lower semicontinuous convex functions in Hadamard spaces.

Let X be a Hadamard space and f an element of Γ0(X). According to [6,
Section 2.2], [12, Lemma 2], and [23, Section 1.3], for each x ∈ X, there exists a
unique x̂ ∈ X such that

f(x̂) +
1

2
d(x̂, x)2 = inf

y∈X

{
f(y) +

1

2
d(y, x)2

}
.

The resolvent Jf of f is defined by Jfx = x̂ for all x ∈ X. In other words, Jf is given
by (1.4). It is also known that Jf is nonexpansive and (1.5) holds. See [6, 13, 14]
for more details on this concept. If f is particularly the indicator function iC of a
nonempty closed convex subset C of X, then Jf coincides with the metric projection
PC of X onto C.

We first show the following lemma. The inequality (3.2) is a counterpart of [3,
Lemma 3.1] in the Hadamard space setting.

Lemma 3.1. Let X be a Hadamard space and f an element of Γ0(X). If λ, µ > 0
and x, y ∈ X, then the inequalities

d(Jλfx, Jµfy)
2 + d(Jλfx, x)

2 + 2λ
(
f(Jλfx)− f(Jµfy)

)
≤ d(Jµfy, x)

2(3.1)

and

(λ+ µ)d(Jλfx, Jµfy)
2 + µd(Jλfx, x)

2 + λd(Jµfy, y)
2

≤ λd(Jλfx, y)
2 + µd(Jµfy, x)

2
(3.2)

hold.

Proof. Let λ, µ > 0 and x, y ∈ X be given. In order to show (3.1), we set

zt = tJµfy ⊕ (1− t)Jλfx
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for all t ∈ ]0, 1[. By the definition of Jλf , the convexity of λf , and (2.3), we have

λf(Jλfx) +
1

2
d(Jλfx, x)

2

≤ λf(zt) +
1

2
d(zt, x)

2

≤ tλf(Jµfy) + (1− t)λf(Jλfx)

+
1

2

(
td(Jµfy, x)

2 + (1− t)d(Jλfx, x)
2 − t(1− t)d(Jµfy, Jλfx)

2
)
.

This implies that

2λ
(
f(Jλfx)− f(Jµfy)

)
≤ d(Jµfy, x)

2 − (1− t)d(Jλfx, Jµfy)
2 − d(Jλfx, x)

2.

Letting t ↓ 0, we obtain (3.1). It then follows from (3.1) that

µd(Jλfx, Jµfy)
2 + µd(Jλfx, x)

2 + 2λµ
(
f(Jλfx)− f(Jµfy)

)
≤ µd(Jµfy, x)

2

and

λd(Jµfy, Jλfx)
2 + λd(Jµfy, y)

2 + 2λµ
(
f(Jµfy)− f(Jλfx)

)
≤ λd(Jλfx, y)

2.

Adding these inequalities, we obtain (3.2). □

The following corollary follows from Lemma 3.1. Note that (3.4) is a well known
fact that each Jλf is nonexpansive; see [6, Theorem 2.2.22] and [12, Lemma 4].

Corollary 3.2. Let X be a Hadamard space and f an element of Γ0(X). Then

2d(Jλfx, Jλfy)
2 + d(Jλfx, x)

2 + d(Jλfy, y)
2 ≤ d(Jλfx, y)

2 + d(Jλfy, x)
2(3.3)

and

d(Jλfx, Jλfy) ≤ d(x, y)(3.4)

for all λ > 0 and x, y ∈ X.

Proof. Let λ > 0 and x, y ∈ X be given. It directly follows from Lemma 3.1
that (3.3) holds. According to Bačák [6, Corollary 1.2.5], the inequality

d(p, s)2 + d(q, r)2 − d(p, r)2 − d(q, s)2 ≤ 2d(p, q)d(r, s)

holds for all p, q, r, s ∈ X. Thus (3.3) implies that

2d(Jλfx, Jλfy)
2 ≤ d(Jλfx, y)

2 + d(Jλfy, x)
2 − d(Jλfx, x)

2 − d(Jλfy, y)
2

≤ 2d(Jλfx, Jλfy)d(x, y).

Hence Jλf is nonexpansive. □

Using Lemma 3.1, we next show the following lemma.

Lemma 3.3. Let X be a Hadamard space, f an element of Γ0(X), {λn} a sequence
of positive real numbers, and p an element of X. Then the following hold.
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(i) If infn λn > 0 and A
(
{zn}

)
= {p} for some sequence {zn} of X satisfying

d(Jλnfzn, zn) → 0, then p is an element of argminX f ;
(ii) if limn λn = ∞ and A

(
{Jλnfzn}

)
= {p} for some bounded sequence {zn} of

X, then p is an element of argminX f .

Proof. We first show (i). Suppose that infn λn > 0 and A
(
{zn}

)
= {p} for some

sequence {zn} of X satisfying d(Jλnfzn, zn) → 0. Then the sequences {zn} and
{Jλnfzn} are bounded. It follows from (3.2) that

(λn + 1)d(Jλnfzn, Jfp)
2 ≤ λnd(Jλnfzn, p)

2 + d(Jfp, zn)
2

and hence

d(Jλnfzn, Jfp)
2

≤ d(Jλnfzn, p)
2 +

1

λn

(
d(Jfp, zn)

2 − d(Jfp, Jλnfzn)
2
)

≤ d(Jλnfzn, p)
2 +

1

λn
d(zn, Jλnfzn)

(
d(Jfp, zn) + d(Jfp, Jλnfzn)

)
for all n ∈ N. Since {1/λn} is bounded, d(Jλnfzn, zn) → 0, and both {zn} and
{Jλnfzn} are bounded, we have

lim sup
n→∞

d(Jλnfzn, Jfp)
2 ≤ lim sup

n→∞
d(Jλnfzn, p)

2.(3.5)

On the other hand, it follows from d(Jλnfzn, zn) → 0 that

lim sup
n→∞

d(zn, y) = lim sup
n→∞

d(Jλnfzn, y)(3.6)

for all y ∈ X. Thus, by (3.5) and (3.6), we obtain(
lim sup
n→∞

d(zn, Jfp)
)2

=
(
lim sup
n→∞

d(Jλnfzn, Jfp)
)2

= lim sup
n→∞

d(Jλnfzn, Jfp)
2

≤ lim sup
n→∞

d(Jλnfzn, p)
2

=
(
lim sup
n→∞

d(Jλnfzn, p)
)2

=
(
lim sup
n→∞

d(zn, p)
)2

and hence

lim sup
n→∞

d(zn, Jfp) ≤ lim sup
n→∞

d(zn, p) = inf
y∈X

lim sup
n→∞

d(zn, y).

Thus we have Jfp ∈ A
(
{zn}

)
= {p} and hence we obtain Jfp = p. Therefore, it

follows from (1.5) that p ∈ argminX f .
We next show (ii). Suppose that limn λn = ∞ and A

(
{Jλnfzn}

)
= {p} for some

bounded sequence {zn} of X. Using (3.2), we can see that

d(Jλnfzn, Jfp)
2 ≤ d(Jλnfzn, p)

2 +
1

λn
d(Jfp, zn)

2

for all n ∈ N. Since limn λn = ∞ and {zn} is bounded, we have

lim sup
n→∞

d(Jλnfzn, Jfp)
2 ≤ lim sup

n→∞
d(Jλnfzn, p)

2
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and hence

lim sup
n→∞

d(Jλnfzn, Jfp) ≤ lim sup
n→∞

d(Jλnfzn, p) = inf
y∈X

lim sup
n→∞

d(Jλnfzn, y).

This gives us that p ∈ argminX f . □

4. A ∆-convergent modified proximal point algorithm

In this section, we study the asymptotic behavior of the sequence {xn} generated
by (1.6).

Before obtaining one of our two main results in this paper, we show the following
convex minimization theorem.

Theorem 4.1. Let X be a Hadamard space, f an element of Γ0(X), {zn} a bounded
sequence of X, {βn} a sequence of positive real numbers such that

∑∞
n=1 βn = ∞,

and g the real function defined by

g(y) = lim sup
n→∞

1∑n
l=1 βl

n∑
k=1

βkd(y, zk)
2

for all y ∈ X. Then g is a continuous and convex function such that argminX g is
a singleton.

Proof. Set σn =
∑n

l=1 βl for all n ∈ N and let gn be the function defined by

gn(y) =
1

σn

n∑
k=1

βkd(y, zk)
2

for all n ∈ N and y ∈ X.
We first show the continuity of g. Let {xm} be a sequence of X converging to

a ∈ X. Since {zn} and {xm} are bounded, we have a real number M such that
d(a, zk) ≤ M and d(xm, zk) ≤ M for all k,m ∈ N. Then the triangle inequality
implies that

gn(xm) ≤ 1

σn

n∑
k=1

βk
(
d(xm, a)2 + 2d(xm, a)d(a, zk) + d(a, zk)

2
)

≤
(
d(xm, a) + 2M

)
d(xm, a) + gn(a)

(4.1)

for all m,n ∈ N. Taking the upper limit in (4.1) with respect to n, we obtain

g(xm) ≤
(
d(xm, a) + 2M

)
d(xm, a) + g(a).

Similarly, we can see that

g(a) ≤
(
d(a, xm) + 2M

)
d(a, xm) + g(xm).

Thus we obtain

|g(xm)− g(a)| ≤
(
d(xm, a) + 2M

)
d(xm, a)

for all m ∈ N. This implies that g(xm) → g(a) and hence g is continuous.
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We next show the convexity of g. If y1, y2 ∈ X and α ∈ ]0, 1[, then we have
from (2.3) that

gn
(
αy1 ⊕ (1− α)y2

)
=

1

σn

n∑
k=1

βkd
(
αy1 ⊕ (1− α)y2, zk

)2
≤ 1

σn

n∑
k=1

βk
(
αd(y1, zk)

2 + (1− α)d(y2, zk)
2 − α(1− α)d(y1, y2)

2
)

= αgn(y1) + (1− α)gn(y2)− α(1− α)d(y1, y2)
2

for all n ∈ N. This implies that

g
(
αy1 ⊕ (1− α)y2

)
≤ αg(y1) + (1− α)g(y2)− α(1− α)d(y1, y2)

2(4.2)

and hence g is convex.
We next show that argminX g is nonempty. It is obvious that

l = inf g(X) ∈ [0,∞[ .

Then there exists a sequence {yn} of X such that g(yn) → l and g(yn) ≥ g(yn+1)
for all n ∈ N. If m ≥ n, then it follows from (4.2) that

l ≤ g
(1
2
yn ⊕ 1

2
ym

)
≤ 1

2
g(yn) +

1

2
g(ym)− 1

4
d(yn, ym)2

and hence

d(yn, ym) ≤ 2
√

g(yn)− l.

This implies that {yn} is a Cauchy sequence and hence it converges to some p ∈ X.
Since g is continuous and g(yn) → l, we obtain g(p) = limn g(yn) = l and hence p
belongs to argminX g.

We finally show that argminX g is a singleton. If p and p′ belong to argminX g,
then it follows from (4.2) that

l ≤ g
(1
2
p⊕ 1

2
p′
)
≤ 1

2
g(p) +

1

2
g(p′)− 1

4
d(p, p′)2 = l − 1

4
d(p, p′)2

and hence p = p′. Thus argminX g is a singleton. □

Now, we are ready to prove one of our two main results in this paper.

Theorem 4.2. Let X be a Hadamard space, f an element of Γ0(X), and {xn} a
sequence of X defined by x1 ∈ X and

xn+1 = αnxn ⊕ (1− αn)Jλnfxn (n = 1, 2, . . . ),

where {αn} is a sequence of [0, 1[ and {λn} is a sequence of positive real numbers
satisfying

∑∞
n=1(1− αn)λn = ∞. Then the following hold.

(i) The sequence {Jλnfxn} is bounded if and only if argminX f is nonempty;
(ii) if supn αn < 1 and argminX f is nonempty, then {xn} and {Jλnfxn} are

∆-convergent to an element x∞ of argminX f .
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Proof. Set zn = Jλnfxn for all n ∈ N. Using Theorem 4.1, we show the only if part
of (i). Suppose that {zn} is bounded. Set

βn = (1− αn)λn and σn =

n∑
l=1

βl(4.3)

for all n ∈ N. According to Theorem 4.1, the real function g on X defined by

g(y) = lim sup
n→∞

1

σn

n∑
k=1

βkd(y, zk)
2

for all y ∈ X has a unique minimizer p ∈ X. By the definition of {xn} and (2.3),
we have

d(Jfp, xk+1)
2 = d

(
Jfp, αkxk ⊕ (1− αk)zk

)2
≤ αkd(Jfp, xk)

2 + (1− αk)d(Jfp, zk)
2.

(4.4)

It follows from (3.2) that

(λk + 1)d(zk, Jfp)
2 ≤ λkd(zk, p)

2 + d(Jfp, xk)
2.(4.5)

Thus, by (4.3), (4.4), and (4.5), we obtain

βkd(zk, Jfp)
2

≤ βkd(zk, p)
2 + (1− αk)

(
d(Jfp, xk)

2 − d(Jfp, zk)
2
)

= βkd(zk, p)
2 + d(Jfp, xk)

2 −
(
αkd(Jfp, xk)

2 + (1− αk)d(Jfp, zk)
2
)

≤ βkd(zk, p)
2 + d(Jfp, xk)

2 − d(Jfp, xk+1)
2

and hence

1

σn

n∑
k=1

βkd(zk, Jfp)
2 ≤ 1

σn

n∑
k=1

βkd(zk, p)
2 +

1

σn
d(Jfp, x1)

2

for all n ∈ N. Thus, it follows from limn σn = ∞ that g(Jfp) ≤ g(p). Since p is the
unique minimizer of g, we have Jfp = p and hence it follows from (1.5) that p is an
element of argminX f . Therefore, argminX f is nonempty.

We next show the if part of (i). If argminX f is nonempty, then there exists an
element u of argminX f . By (1.5), (2.2), and (3.4), we have

d(u, zn+1) = d(u, Jλn+1fxn+1) ≤ d(u, xn+1)

= d
(
u, αnxn ⊕ (1− αn)zn

)
≤ αnd(u, xn) + (1− αn)d(u, zn)

≤ d(u, xn)

for all n ∈ N. Hence {xn} and {zn} are bounded.
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We finally show (ii). Suppose that supn αn < 1 and argminX f is nonempty. Let
u be an element of argminX f . Then, it follows from (2.3) and (3.1) that

d(u, xn+1)
2

≤ αnd(u, xn)
2 + (1− αn)d(u, zn)

2

≤ αnd(u, xn)
2 + (1− αn)

(
d(u, xn)

2 − d(zn, xn)
2 − 2λn

(
f(zn)− f(u)

))
= d(u, xn)

2 − (1− αn)
(
d(zn, xn)

2 + 2λn

(
f(zn)− inf f(X)

))
≤ d(u, xn)

2

for all n ∈ N. Thus {d(u, xn)} is convergent for each u ∈ argminX f . Since

(1− αn)
(
d(zn, xn)

2 + 2λn

(
f(zn)− inf f(X)

))
≤ d(u, xn)

2 − d(u, xn+1)
2,

we have
∞∑
n=1

(1− αn)
(
d(zn, xn)

2 + 2λn

(
f(zn)− inf f(X)

))
≤ d(u, x1)

2.

This implies that
∞∑
n=1

(1− αn)d(zn, xn)
2 < ∞(4.6)

and
∞∑
n=1

(1− αn)λn

(
f(zn)− inf f(X)

)
< ∞.(4.7)

By supn αn < 1 and (4.6), we have
∞∑
n=1

d(zn, xn)
2 < ∞.(4.8)

By
∑∞

n=1(1− αn)λn = ∞ and (4.7), we also have

lim inf
n→∞

(
f(zn)− inf f(X)

)
= 0.(4.9)

On the other hand, the definition of Jλnf implies that

f(zn) ≤ f(zn) +
1

2λn
d(zn, xn)

2 ≤ f(xn)

for all n ∈ N. Thus, by the definition of {xn} and the convexity of f , we obtain

−∞ < inf f(X) ≤ f(xn+1) ≤ αnf(xn) + (1− αn)f(zn) ≤ f(xn)

for all n ∈ N. Accordingly, the sequence {f(xn)} is convergent to some real number
β and hence {f(zn)} is bounded. Let {f(zni)} be any subsequence of {f(zn)}. Since
supn αn < 1, we have a subsequence {αnij

} of {αni} which tends to some γ ∈ [0, 1[.

Then, by letting j → ∞ in

1

1− αnij

(
f(xnij

+1)− αnij
f(xnij

)
)
≤ f(znij

) ≤ f(xnij
),
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we know that {f(znij
)} tends to β. Thus we conclude that

lim
n→∞

f(zn) = β = lim
n→∞

f(xn).(4.10)

Consequently, using (4.9) and (4.10), we obtain

lim
n→∞

f(xn) = inf f(X).(4.11)

Let z be an element of ω∆

(
{xn}

)
. Then there exists a subsequence {xni} of {xn}

which is ∆-convergent to z. Since f is ∆-lower semicontinuous, it follows from (4.11)
that

f(z) ≤ lim inf
i→∞

f(xni) = lim
n→∞

f(xn) = inf f(X)

and hence z ∈ argminX f . Thus we know that ω∆

(
{xn}

)
is contained by argminX f .

Combining this property with the fact that {d(z, xn)} is convergent for each z in
argminX f , we know that {d(z, xn)} is convergent for each z in ω∆

(
{xn}

)
. Accord-

ingly, Lemma 2.6 ensures that {xn} is ∆-convergent to an element x∞ of X. Since
it follows from (4.8) that d(zn, xn) → 0, the sequence {zn} is also ∆-convergent to
x∞. Finally, since

{x∞} = ω∆

(
{xn}

)
⊂ argmin

X
f,

we conclude that x∞ is an element of argminX f . □

As direct consequences of Theorem 4.2, we obtain the following two corollaries.

Corollary 4.3. Let X and f be the same as in Theorem 4.2 and {xn} a sequence
of X defined by x1 ∈ X and

xn+1 = Jλnfxn (n = 1, 2, . . . ),

where {λn} is a sequence of positive real numbers satisfying
∑∞

n=1 λn = ∞. Then
the following hold.

(i) The sequence {xn} is bounded if and only if argminX f is nonempty;
(ii) if argminX f is nonempty, then {xn} is ∆-convergent to an element of

argminX f .

Remark 4.4. Note that (ii) is the result due to Bačák [5, Theorem 1.4].

Corollary 4.5. Let X be a Hilbert space, f an element of Γ0(X), and {xn} a
sequence of X defined by x1 ∈ X and

xn+1 = αnxn + (1− αn)Jλnfxn (n = 1, 2, . . . ),

where {αn} is a sequence of [0, 1[ and {λn} is a sequence of positive real numbers
satisfying

∑∞
n=1(1− αn)λn = ∞.

(i) The sequence {Jλnfxn} is bounded if and only if argminX f is nonempty;
(ii) if supn αn < 1 and argminX f is nonempty, then {xn} and {Jλnfxn} are

weakly convergent to an element x∞ of argminX f .

Remark 4.6. Note that the special case of (ii) where limn λn = ∞ is also a corollary
of the weak convergence theorem due to Kamimura and Takahashi [16, Theorem 3].
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5. A convergent modified proximal point algorithm

In this section, we study the asymptotic behavior of the sequence {yn} generated
by (1.7).

The following is the other of our two main results in this paper.

Theorem 5.1. Let X be a Hadamard space, f an element of Γ0(X), v an element
of X, and {yn} a sequence of X defined by y1 ∈ X and

yn+1 = αnv ⊕ (1− αn)Jλnfyn (n = 1, 2, . . . ),(5.1)

where {αn} is a sequence of [0, 1] and {λn} is a sequence of positive real numbers
such that limn λn = ∞. Then the following hold.

(i) The sequence {Jλnfyn} is bounded if and only if argminX f is nonempty;
(ii) if limn αn = 0,

∑∞
n=1 αn = ∞, and argminX f is nonempty, then {yn} and

{Jλnfyn} are convergent to Pv, where P denotes the metric projection of X
onto argminX f .

Proof. Set zn = Jλnfyn for all n ∈ N. We first show the only if part of (i). Suppose
that {zn} is bounded. By Lemma 2.3, we know that A

(
{zn}

)
= {p} for some p ∈ X.

It follows from (2.2) that

d(p, yn+1) = d
(
p, αnv ⊕ (1− αn)zn

)
≤ αnd(p, v) + (1− αn)d(p, zn)

for all n ∈ N. Thus the boundedness of {zn} implies that of {yn}. Noting that
limn λn = ∞ and A

(
{Jλnfyn}

)
= {p}, we have from (ii) of Lemma 3.3 that p is an

element of argminX f . Thus argminX f is nonempty.
We next show the if part of (i). If argminX f is nonempty, then it follows

from (1.5), (2.2) and (3.4) that

d(Pv, yn+1) = d
(
Pv, αnv ⊕ (1− αn)zn

)
≤ αnd(Pv, v) + (1− αn)d(Pv, zn)

≤ max {d(Pv, v), d(Pv, yn)}
(5.2)

and hence

d(Pv, yn) ≤ max {d(Pv, v), d(Pv, y1)}(5.3)

for all n ∈ N. This implies that {yn} is bounded. Since

d(Pv, zn) = d(Pv, Jλnfyn) ≤ d(Pv, yn),(5.4)

the sequence {zn} is also bounded.
We next show (ii). Suppose that limn αn = 0,

∑∞
n=1 αn = ∞, and argminX f is

nonempty. Then we know that (5.2), (5.3), and (5.4) hold. Hence {yn} and {zn}
are bounded. Using (1.5), (2.3), (3.4), and (5.4), we can see that

d(Pv, yn+1)
2

= d
(
Pv, αnv ⊕ (1− αn)zn

)2
≤ αnd(Pv, v)2 + (1− αn)d(Pv, zn)

2 − αn(1− αn)d(v, zn)
2

≤ (1− αn)d(Pv, yn)
2 + αn

(
d(Pv, v)2 − d(v, zn)

2 + αnd(v, zn)
2
)(5.5)
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for all n ∈ N. Thus, letting
sn = d(Pv, yn)

2 and tn = d(Pv, v)2 − d(v, zn)
2 + αnd(v, zn)

2,(5.6)

we have

sn+1 ≤ (1− αn)sn + αntn(5.7)

for all n ∈ N.
Since {zn} is bounded, by Lemma 2.4, we have a subsequence {zni} of {zn} which

is ∆-convergent to some q ∈ X and

lim
i→∞

d(v, zni)
2 = lim inf

n→∞
d(v, zn)

2.(5.8)

Since limi λni = ∞, A
(
{Jλnif

yni}
)
= {q}, and {yni} is bounded, it follows from (ii)

of Lemma 3.3 that q is an element of argminX f . Using the ∆-lower semicontinuity
of the function d(v, ·)2 and (5.8), we then obtain

d(v, q)2 ≤ lim inf
i→∞

d(v, zni)
2 = lim

i→∞
d(v, zni)

2 = lim inf
n→∞

d(v, zn)
2.(5.9)

Since d(Pv, v) ≤ d(q, v), αn → 0, and {zn} is bounded, it follows from (5.9) that

lim sup
n→∞

tn ≤ d(Pv, v)2 − lim inf
n→∞

d(v, zn)
2 + lim sup

n→∞
αnd(v, zn)

2

≤ d(Pv, v)2 − d(v, q)2 ≤ 0.

Consequently, Lemma 2.1 implies that limn sn = 0 and hence {yn} is convergent to
Pv. It follows from (5.4) that {zn} is also convergent to Pv. □

As a direct consequence of Theorem 5.1, we obtain the following.

Corollary 5.2. Let X be a Hilbert space, f an element of Γ0(X), v an element of
X, and {yn} a sequence of X defined by y1 ∈ X and

yn+1 = αnv + (1− αn)Jλnfyn (n = 1, 2, . . . ),

where {αn} is a sequence of [0, 1] and {λn} is a sequence of positive real numbers
such that limn λn = ∞. Then the following hold.

(i) The sequence {Jλnfyn} is bounded if and only if argminX f is nonempty;
(ii) if limn αn = 0,

∑∞
n=1 αn = ∞, and argminX f is nonempty, then {yn}

and {Jλnfyn} are strongly convergent to Pv, where P denotes the metric
projection of X onto argminX f .

Remark 5.3. Note that (ii) is also a corollary of the strong convergence theorem due
to Kamimura and Takahashi [16, Theorem 1].

Applying Lemma 2.2, we can also show the following convergence theorem under
a different type of coefficient conditions on the sequences {αn} and {λn}.

Theorem 5.4. Let X be a Hadamard space, f an element of Γ0(X) such that
argminX f is nonempty, v an element of X, and {yn} a sequence of X defined by
y1 ∈ X and (5.1), where {αn} is a sequence of ]0, 1] and {λn} is a sequence of
positive real numbers such that limn αn = 0,

∑∞
n=1 αn = ∞, and infn λn > 0. Then

{yn} and {Jλnfyn} are convergent to Pv, where P denotes the metric projection of
X onto argminX f .
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Proof. Set zn = Jλnfyn for all n ∈ N. We denote by {sn} and {tn} the sequences
defined by (5.6). Note that (5.4), (5.5) and (5.7) hold also in this case. Let {ni} be
any increasing sequence of N such that

lim sup
i→∞

(
sni − sni+1

)
≤ 0.(5.10)

Using (3.3), (5.5), (5.10), and αni → 0, we have

lim sup
i→∞

d(zni , yni)
2

≤ lim sup
i→∞

(
d(Pv, yni)

2 − d(Pv, zni)
2
)

≤ lim sup
i→∞

(
d(Pv, yni)

2 − d(Pv, yni+1)
2 + αni

(
d(Pv, v)2 − d(Pv, zni)

2
))

= lim sup
i→∞

(
sni − sni+1

)
≤ 0

and hence we obtain

lim
i→∞

d(zni , yni) = 0.(5.11)

Since {zni} is bounded, Lemma 2.4 implies that there exists a subsequence {znij
}

of {zni} which is ∆-convergent to some q ∈ X and

lim
j→∞

d(v, znij
)2 = lim inf

i→∞
d(v, zni)

2.(5.12)

It follows from (5.11) that

A
(
{ynij

}
)
= A

(
{znij

}
)
= {q}.(5.13)

Since infj λnij
≥ infn λn > 0 and both (5.11) and (5.13) hold, it follows from (i) of

Lemma 3.3 that q is an element of argminX f . Since d(v, ·)2 is ∆-lower semicontin-
uous and (5.12) holds, we have

d(v, q)2 ≤ lim inf
j→∞

d(v, znij
)2 = lim

j→∞
d(v, znij

)2 = lim inf
i→∞

d(v, zni)
2.

This implies that

lim sup
i→∞

tni = lim sup
i→∞

(
d(Pv, v)2 − d(v, zni)

2 + αnid(v, zni)
2
)

= d(Pv, v)2 − lim inf
i→∞

d(v, zni)
2

≤ d(Pv, v)2 − d(v, q)2 ≤ 0.

Consequently, Lemma 2.2 implies that limn sn = 0 and hence {yn} is convergent to
Pv. It follows from (5.4) that {zn} is also convergent to Pv. □
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