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Now, several forms of generalized Minty and generalized Stampacchia vector
equilibrium-like problems are stated as follows:

Problem (I). Generalized Minty vector equilibrium-like problem (GMVELP):
Find x̄ ∈ K such that for each x ∈ K

Φ(w, x̄, x) ̸≤C(x̄)\{0} 0, for some w ∈ A(x̄, T (x)),

which is equivalent to find x̄ ∈ K such that

Φ(A(x̄, T (x)), x̄, x) ̸⊆ −C(x̄) \ {0}, for all x ∈ K.

Problem (II). Generalized weak Minty vector equilibrium-like problem
(GWMVELP): Find x̄ ∈ K such that for each x ∈ K

Φ(w, x̄, x) ̸≤intC(x̄) 0, for some w ∈ A(x̄, T (x)),

which is equivalent to find x̄ ∈ K such that

Φ(A(x̄, T (x)), x̄, x) ̸⊆ −intC(x̄), for all x ∈ K.

Problem (III). Generalized Stampacchia vector equilibrium-like problem
(GSVELP): Find x̄ ∈ K such that for each x ∈ K

Φ(w̄, x̄, x) ̸≤C(x̄)\{0} 0, for some w̄ ∈ A(x̄, T (x̄)),

which is equivalent to find x̄ ∈ K such that

Φ(A(x̄, T (x̄)), x̄, x) ̸⊆ −C(x̄) \ {0}, for all x ∈ K.

Problem (IV). Generalized weak Stampacchia vector equilibrium-like prob-
lem (GWSVELP): Find x̄ ∈ K such that for each x ∈ K

Φ(w̄, x̄, x) ̸≤intC(x̄) 0, for some w̄ ∈ A(x̄, T (x̄)),

which is equivalent to find x̄ ∈ K such that

Φ(A(x̄, T (x̄)), x̄, x) ̸⊆ −intC(x̄), for all x ∈ K.

It can be easily seen that every solution of GMVELP (respectively, GSVELP) is
a solution of GWMVELP (respectively, GWSVELP). In particular, if A(x, u) = u
for each (x, u) ∈ K × L(X,Y ) and Φ(w, x, y) = ⟨w, η(y, x)⟩ for each (w, x, y) ∈
L(X,Y ) × K × K, where η : K × K → X is a function, then Problems (I)-(IV)
reduce to corresponding forms of generalized Minty and generalized Stampacchia
vector variational-like inequality problems studied in [4].

Next, we recall some concepts and notations. A nonempty subset C of a vector
space Y is a convex cone if λC ⊆ C for all λ ≥ 0 and C + C ⊆ C. A convex cone
C is pointed if C ∩ (−C) = {0}. A cone C is proper if it is properly contained in
Y . Note that C is a proper cone if and only if 0 ̸∈ intC, where intC denotes the
interior of C. A pointed convex cone C induces a partial order ≤C on Y defined by
x ≤C y whenever y − x ∈ C. In this case, (Y,≤C) is an ordered vector space with
an order relation ≤C . The weak order ̸≤intC on an ordered vector space (Y,≤C)
with intC ̸= ∅ is defined by x ̸≤intC y whenever y − x ̸∈ intC.

Let X and Y be two topological spaces. We say that a multifunction φ : X → 2Y

is closed, or has closed graph if its graph given by

G(φ) = {(x, y) ∈ X × Y : y ∈ φ(x)}
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is a closed subset of X × Y .
For any two Hausdorff topological vector spaces (t.v.s.) X and Y , let L(X,Y )

denote the family of all continuous linear operators from X into Y . When Y is the
set R of real numbers, L(X,Y ) is the usual dual space X∗ of X. For any x ∈ X and
any u ∈ L(X,Y ), we shall write the value u(x) as ⟨u, x⟩. We suppose throughout

this paper that K is a nonempty closed convex subset of X, T : K → 2L(X,Y ) is a
set-valued mapping, Φ : L(X,Y )×K×K → Y and A : K×L(X,Y ) → L(X,Y ) are
two functions, and {C(x) : x ∈ K} is a family of closed, convex and pointed cones
of Y (i.e., C : K → 2Y is a cone mapping) such that intC(x) ̸= ∅ for all x ∈ K.

Let ℧ be the family of all bounded subsets of X whose union is total in X, i.e.,
the linear hull of

∪
{S : S ∈ ℧} is dense in X. Let B be a neighborhood base of 0

in Y . When S runs through ℧ and V through B, the family

M(S, V ) = {u ∈ L(X,Y ) : ⟨u, x⟩ ∈ V,∀x ∈ S}
is a neighborhood base of 0 in L(X,Y ) for a unique translation-invariant topology,
called the topology of uniform convergence on the sets S ∈ ℧, or briefly the τ -
topology; see [24]. Throughout this paper, we suppose that the space L(X,Y ) is
equipped with the τ -topology.

Lemma 1.1 (see [10]). Let (Y,≤C) be an ordered topological vector space with a
closed, convex and pointed cone C with intC ̸= ∅. Then for each x, y ∈ Y , one has

(1) y − x ∈ intC and y ̸∈ intC ⇒ x ̸∈ intC.
(2) y − x ∈ C and y ̸∈ intC ⇒ x ̸∈ intC.
(3) y − x ∈ −intC and y ̸∈ −intC ⇒ x ̸∈ −intC.
(4) y − x ∈ −C and y ̸∈ −intC ⇒ x ̸∈ −intC.

We denote by F(X) the family of all nonempty finite subsets of X. Let F : Y →
2X be a set-valued mapping. Then F is said to be transfer closed-valued iff for each
(y, x) ∈ Y ×X with x ̸∈ F (y), there exists y′ ∈ Y such that x ̸∈ clF (y′). If B ⊆ Y
and A ⊆ X, then we call F : B → 2A transfer closed-valued iff the multi-valued
mapping y 7→ F (y) ∩ A is transfer closed-valued. When X = Y and A = B, we
call F transfer closed-valued on A. Let K be a convex subset of a vector space X.
Then a mapping F : K → 2X is called a KKM mapping iff for each nonempty finite
subset A of K, convA ⊂ F (A), where convA denotes the convex hull of A, and
F (A) =

∪
{F (x) : x ∈ A}.

Theorem 1.2 (see [17]). Let K be a nonempty and convex subset of a Hausdorff

t.v.s. X. Suppose that Γ , Γ̂ : K → 2K are two set-valued mappings such that the
following conditions are satisfied:

(A1) Γ̂ (x) ⊆ Γ (x), ∀x ∈ K;

(A2) Γ̂ is a KKM map;
(A3) for each A ∈ F(K), Γ is transfer closed-valued on convA;
(A4) for each A ∈ F(K), clK(

∩
x∈convA Γ (x)) ∩ convA = (

∩
x∈convA Γ (x)) ∩

convA;
(A5) there is a nonempty compact convex set B ⊆ K, such that clK(

∩
x∈B Γ (x))

is compact.

Then,
∩

x∈K Γ (x) ̸= ∅.
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Remark 1.3. Suppose that in addition to conditions (A1), (A2) and (A5), two
conditions (A3) and (A4) in Theorem 1.2 are replaced by the condition that for
each x ∈ K, Γ (x) is closed. In this case, it is easy to see that the conclusion is still
valid, i.e.,

∩
x∈K Γ (x) ̸= ∅; see [17] for more details.

2. Existence Results for GVELPs

Let X and Y be two Hausdorff topological vector spaces (t.v.s.), and let L(X,Y )
be a t.v.s. equipped with the topology τ of uniform convergence. Suppose that K
is a nonempty closed convex subset of X, T : K → 2L(X,Y ) is a set-valued mapping,
Φ : L(X,Y ) × K × K → Y and A : K × L(X,Y ) → L(X,Y ) are two functions,
and {C(x) : x ∈ K} is a family of closed, convex and pointed cones of Y (i.e.,
C : K → 2Y is a cone mapping) such that intC(x) ̸= ∅ for all x ∈ K. We introduce
the following monotonicity concepts.

Definition 2.1. For any y ∈ K, a function Φ : L(X,Y )×K×K → Y is said to be

(a) C(y)-pseudomonotone w.r.t. T and A on K if for all x ∈ K

Φ(A(y, T (x)), x, y) ⊆ C(y) \ {0} ⇒ Φ(A(y, T (y)), y, x) ⊆ −C(y) \ {0};
(b) C(y)-quasimonotone w.r.t. T and A on K if for all x ∈ K

Φ(A(y, T (x)), x, y) ⊆ intC(y) ⇒ Φ(A(y, T (y)), y, x) ⊆ −C(y) \ {0};
(c) C(y) -strictly quasimonotone w.r.t. T and A on K if for all x ∈ K

Φ(A(y, T (x)), x, y) ⊆ intC(y) ⇒ Φ(A(y, T (y)), y, x) ⊆ −intC(y);

(d) C(y)-properly quasimonotone w.r.t. T and A on K if for all {x1, x2, . . . , xn}
⊆ K and for all y ∈ conv{x1, x2, . . . , xn}, there exists i ∈ {1, 2, . . . , n} such
that

Φ(A(y, T (y)), y, xi) ⊆ C(y) \ {0};
(e) C(y)-weakly properly quasimonotone w.r.t. T and A on K if for all

{x1, x2, . . . , xn} ⊆ K and for all y ∈ conv{x1, x2, . . . , xn}, there exists
i ∈ {1, 2, . . . , n} such that

Φ(A(y, T (y)), y, xi) ̸⊆ −intC(y),

that is, Φ(w, y, xi) ̸≤intC(y) 0, for some w ∈ A(y, T (y)).

Definition 2.2. Φ : L(X,Y ) ×K ×K → Y is called an equilibrium-like function
if Φ(u, x, y) + Φ(u, y, x) = 0 for each (u, x, y) ∈ L(X,Y )×K ×K.

We obtain the following existence result for solutions of GSVELPs under
C(y)-proper quasimonotonicity and for solutions of GMVELPs under C(y)-
pseudomonotonicity.

Theorem 2.3. For any y ∈ K, let the function Φ : L(X,Y ) × K × K → Y be
C(y)-properly quasimonotone w.r.t. T and A. Assume that

(i) the set-valued map Γ : K → 2K defined by

Γ (x) = {y ∈ K : Φ(w, y, x) ̸≤C(y)\{0} 0 for some w ∈ A(y, T (y))}
is closed valued;
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(ii) there exist a nonempty compact set M ⊂ K and a nonempty compact convex
set B ⊂ K such that for each y ∈ K \ M , there exists x ∈ B such that
y ̸∈ Γ (x).

Then Problem (III) holds (i.e., the GSVELP has a solution). Furthermore, if Φ
is C(y)-pseudomonotone w.r.t. T and A and is an equilibrium-like function, then
Problem (I) also holds (i.e., the GMVELP also has a solution).

Proof. We claim that Γ is a KKM mapping on K. Indeed, assume Γ is not a KKM
map, then there exists {x1, x2, . . . , xn} ⊂ K, ti ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 ti = 1

such that y =
∑n

i=1 tixi ̸∈
∪n

i=1 Γ (xi). Thus for any w ∈ A(y, T (y))

Φ(w, y, xi) ≤C(y)\{0} 0, i = 1, 2, . . . , n;

that is, for any i = 1, 2, . . . , n

Φ(A(y, T (y)), y, xi) ⊆ −C(y) \ {0},

which contradicts the C(y)-proper quasimonotonicity of Φ w.r.t. A and T on K.
Hence, Γ is a KKM mapping on K.

By condition (ii), Γ (x) is a closed subset of a compact set and hence compact.
Then by Theorem 1.2 ∩

x∈K
Γ (x) ̸= ∅,

that is, there exists x̄ ∈ K such that for each x ∈ K

Φ(w̄, x̄, x) ̸≤C(x̄)\{0} 0 for some w̄ ∈ A(x̄, T (x̄)).

Hence the GSVELP has a solution.
Further, suppose that x̄ is not a solution of the GMVELP. Then there exists

x ∈ K such that

Φ(w, x̄, x) ≤C(x̄)\{0} 0, for all w ∈ A(x̄, T (x)).

Since Φ is an equilibrium-like function, we have

0 ≤C(x̄)\{0} Φ(w, x, x̄), for all w ∈ A(x̄, T (x));

that is, Φ(A(x̄, T (x)), x, x̄) ⊆ C(x̄) \ {0}. By the C(x)-pseudomonotonicity of Φ
w.r.t. T and A, we have

Φ(A(x̄, T (x̄)), x̄, x) ⊆ −C(x̄) \ {0},

and thus, x̄ ∈ K is not a solution of the GSVELP, a contradiction. □

Remark 2.4. In Theorem 2.3, if we put A(x, u) = u for each (x, u) ∈ K×L(X,Y )
and Φ(w, x, y) = ⟨w, η(y, x)⟩ for each (w, x, y) ∈ L(X,Y ) × K × K, where η :
K ×K → X is a function, then Theorem 2.3 reduces to Theorem 8 of [4]. In this
case, if η is affine in the first variable and η(x, x) = 0 for all x ∈ K, then trivially
Φ is C-properly quasimonotone w.r.t. T and A. Therefore, condition 4 in Theorem
2.3 in [29] is superfluous, since it can be easily deduced from condition 3 in this
theorem. Therefore, Theorem 2.3 also improves and generalizes Theorems 2.1 and
2.3 in [29] in the settings of t.v.s. and GVELPs.
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Simple examples can be easily constructed to show that the C(x)-properly quasi-
monotonicity of Φ w.r.t. T and A does not imply that the affineness of Φ in the third
variable. When X and Y are normed spaces, we establish the following existence
result for a solution of the GWMVELP.

Theorem 2.5. For all y ∈ K, let T : K → 2L(X,Y ) be compact-valued, and Φ
be C(y)-properly quasimonotone w.r.t. T and A, and C(y)-strictly quasimonotone
w.r.t. T and A. Assume that

(i) the set-valued mapping W : K → 2Y defined by W (x) = Y \ (intC(x)) is
closed;

(ii) for each z ∈ K, Φ(·, z, ·) : L(X,Y ) × K → Y is continuous, and A is
continuous;

(iii) there exist a nonempty compact set M ⊂ K and a nonempty compact convex
set B ⊂ K such that for each x ∈ K \M , there exists y ∈ B such that

y ̸∈ Γ (x) := {y ∈ K : Φ(w, y, x) ̸≤intC(y) 0 for some w ∈ A(y, T (y))}.
Then Problem (II) holds (i.e., the GWMVELP has a solution).

Proof. Repeating the same argument as the first part of the proof of Theorem 2.3,
we know that Γ is a KKM mapping.

We claim that the set-valued mapping Γ̂ defined by

Γ̂ (x) := {y ∈ K : 0 ̸≤intC(y) Φ(w, x, y) for some w ∈ A(y, T (x))}, ∀x ∈ K,

is closed valued.
Let {yn} be a sequence in Γ̂ (x) convergent to y ∈ K. Then

0 ̸≤intC(yn) Φ(wn, x, yn) for some wn ∈ A(yn, T (x)),

and therefore, there exists un ∈ T (x) such that wn = A(yn, un) and

zn = Φ(A(yn, un), x, yn) ̸∈ intC(yn).

Then zn ∈ W (yn), and hence, (yn, zn) ∈ Graph(W ). Since T (x) is compact, {un}
has a convergent subsequence in T (x). Let {unk

} be a subsequence of {un} that
converges to u0 ∈ T (x). By the continuity of A, {A(ynk

, unk
)} converges to A(y, u0).

Also, since Φ(·, x, ·) : L(X,Y )×K → Y is continuous, it follows that

z0 = lim
k→∞

znk
= lim

k→∞
Φ(A(ynk

, unk
), x, ynk

) = Φ(A(y, u0), x, y).

Since Graph(W ) is closed, we have (y, z0) ∈ Graph(W ), and hence,

0 ̸≤intC(y) Φ(w, x, y) with w = A(y, u0) ∈ A(y, T (x)).

Thus, y ∈ Γ̂ (x).

Since Φ is C(x)-strictly quasimonotone w.r.t. T and A, we have Γ (x) ⊆ Γ̂ (x) for

all x ∈ K. Therefore, Γ̂ is also a KKM mapping. By Theorem 1.2,∩
x∈K

Γ̂ (x) ̸= ∅.

Therefore, there exists x̄ ∈ K such that for each x ∈ K

0 ̸≤intC(x̄) Φ(w, x, x̄) for some w ∈ A(x̄, T (x)).

Hence the GWMVELP has a solution. □
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Remark 2.6. When K is compact, then the condition (iii) of Theorem 2.5 is
trivially satisfied.

3. Applications of GMVELPs to VOPs

Throughout this section, unless otherwise specified, we assume that K is a
nonempty subset of Rn and η : K × K → Rn is a given map. The interior of
K is denoted by intK.

Let f = (f1, . . . , fℓ) : Rn → Rℓ be a vector-valued function. We consider the
following vector optimization problem (VOP):

Minimize f(x) = (f1(x), . . . , fℓ(x)) subject to x ∈ K.

A point x̄ ∈ K is said to be an efficient (or Pareto) solution of the VOP if

f(y) ̸≤Rℓ
+\{0} f(x̄), ∀y ∈ K,

where Rℓ
+ is the nonnegative orthant of Rℓ and 0 is the zero vector of Rℓ. It is

equivalent to find x̄ ∈ K such that

f(y)− f(x̄) = (f1(y)− f1(x̄), . . . , fℓ(y)− fℓ(x̄)) ̸∈ −Rℓ
+ \ {0}, for all y ∈ K.

Definition 3.1 (see [15]). Let g : K → R be locally Lipschitz at a given point
x ∈ K. The Clarke’s generalized directional derivative of g at x ∈ K in the direction
of a vector v ∈ K, denoted by g◦(x; v), is defined by

g◦(x; v) = lim sup
y→x,t↓0

g(y + tv)− g(y)

t
.

Definition 3.2 (see [15]). Let g : K → R be locally Lipschitz at a given point
x ∈ K. The Clarke’s generalized subdifferential of g at x ∈ K, denoted by ∂cg(x),
is defined by

∂cg(x) = {ξ ∈ Rn : g◦(x; v) ≥ ⟨ξ, v⟩, ∀v ∈ Rn},
where ⟨·, ·⟩ denotes the scalar product in Rn.

We note that ∂cg(x) is a nonempty, convex and compact subset of Rn if g is
locally Lipschitz on K. Next, let f = (f1, . . . , fℓ) : K → Rℓ be a vector-valued
function. Let each component fi of f be locally Lipschitz on K for i ∈ {1, 2, . . . , ℓ}.
Then the Clarke’s generalized subdifferential of f at x ∈ K is the set

∂cf(x) = ∂cf1(x)× ∂cf2(x)× · · · × ∂cfℓ(x).

Let ϕ : Rn × K × K → R be an equilibrium-like function, that is, ϕ(u, x, y) +
ϕ(u, y, x) = 0 for all (u, x, y) ∈ Rn ×K ×K.

Definition 3.3. Let x and y be points in K ⊆ Rn and suppose that g : K → R is
locally Lipschitz on an open set containing the line segment [x, y]. Then g is said to
satisfy the Lebourg mean value condition with respect to ϕ if there exists a point
z ∈ (x, y) such that

g(x)− g(y) ∈ ϕ(∂cg(z), y, x),

where (x, y) denotes the line segment joining x and y excluding the end points x
and y.
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A mapping η : K ×K → Rn is said to be skew if for all x, y ∈ K,

η(y, x) + η(x, y) = 0.

Definition 3.4. Let x be an arbitrary point of K. The set K is said to be invex
at x with respect to η if for all y ∈ K,

x+ tη(y, x) ∈ K, for all t ∈ [0, 1].

K is said to be invex with respect to η if K is invex at every point x ∈ K with
respect to η.

Condition C. Let K ⊆ Rn be an invex set with respect to η : K×K → Rn. Then
η is said to satisfy Condition C with respect to ϕ if for all x, y ∈ K and t ∈ [0, 1],

(a) η(x, x + tη(y, x)) = −tη(y, x) and ϕ(u, x + tη(y, x), x) = −tϕ(u, x, y), ∀u ∈
Rn;

(b) η(y, x+ tη(y, x)) = (1− t)η(y, x) and ϕ(u, x+ tη(y, x), y) = (1− t)ϕ(u, x, y),
∀u ∈ Rn.

Obviously, if we put η(y, x) = y− x and ϕ(u, x, y) = ⟨u, η(y, x)⟩ for all (u, x, y) ∈
Rn×K×K, then η satisfies Condition C with respect to ϕ, where ⟨·, ·⟩ denotes the
scalar product inRn. In addition, the examples of the map η that satisfies Condition
C with respect to ϕ can be constructed according to [24, 25]. Furthermore, we also
consider the following Condition C†.

Condition C†. Let K ⊆ Rn be an invex set with respect to η : K ×K → Rn. We
say that the mapping η : K ×K → Rn satisfies the Condition C∗ with respect to ϕ
if for all x, y ∈ K and t ∈ [0, 1],

(a) η(x, x+ tη(y, x)) = −α(t)η(y, x) and ϕ(u, x+ tη(y, x), x) = −α(t)ϕ(u, x, y),
∀u ∈ Rn;

(b) η(y, x+tη(y, x)) = β(t)η(y, x) and ϕ(u, x+tη(y, x), y) = β(t)ϕ(u, x, y),∀u ∈
Rn,
where α(t) > 0, β(t) > 0 for all t ∈ (0, 1).

Remark 3.5. We note that if η satisfies the Condition C with respect to ϕ, then
it satisfies the Condition C† with respect to ϕ. However, the converse is not true in
general. Simple examples can be constructed eaasily by using Examples in [18].

Definition 3.6. Let ϕ : Rn × K × K → R be an equilibrium-like function and
g : K → R is locally Lipschitz on K. Then g is said to be

(a) invex with respect to ϕ on K if ϕ(ξ, x, y) ≤ g(y)− g(x) for all x, y ∈ K and
ξ ∈ ∂cg(x);

(b) pseudoinvex with respect to ϕ on K if ϕ(ξ, x, y) ≥ 0 ⇒ g(y) ≥ g(x) for all
x, y ∈ K and ξ ∈ ∂cg(x);

(c) strictly pseudoinvex with respect to ϕ on K if Φ(ξ, x, y) ≥ 0 ⇒ g(y) > g(x)
for all x, y ∈ K with x ̸= y and ξ ∈ ∂cg(x);

(d) quasiinvex with respect to ϕ on K if g(y) ≤ g(x) ⇒ ϕ(ξ, x, y) ≤ 0 for all
x, y ∈ K and ξ ∈ ∂cg(x).
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Definition 3.7 (see [4]). Let K ⊆ Rn be an invex set with respect to η. A function
g : K → R is said to be

(a) preinvex with respect to η if

g(x+ tη(y, x)) ≤ tg(y) + (1− t)g(x), for all x, y ∈ K and t ∈ [0, 1];

(b) prequasiinvex with respect to η on K if for all x, y ∈ K, 0 ≤ t ≤ 1,

g(x+ tη(y, x)) ≤ max{g(x), g(y)};

(c) semi-strictly prequasiinvex with respect to η on K if for all x, y ∈ K, 0 <
t < 1 with g(x) ̸= g(y),

g(x+ tη(y, x)) < max{g(x), g(y)}.

Definition 3.8. Let ϕ : Rn × K × K → R be an equilibrium-like function and
g : K ⊆ Rn → R be locally Lipschitz on K. Then ∂cg is said to be quasimonotone
with respect to ϕ if for all x, y ∈ K, ξ ∈ ∂cg(x) and ζ ∈ ∂cg(y), one has ϕ(ξ, x, y) > 0
⇒ ϕ(ζ, y, x) ≤ 0.

Let K be a nonempty subset of Rn and η : K ×K → Rn be a given map. Let
f = (f1, f2, . . . , fℓ) : Rn → Rℓ be a vector-valued function such that each fi is
locally Lipschitz on K, that is, f has the Clarke’s generalized subdifferential on
K. Let Φ : L(Rn,Rℓ) × K × K → Rℓ be an equilibrium-like function, that is,
Φ(u, x, y) + Φ(u, y, x) = 0 for all (u, x, y) ∈ L(Rn,Rℓ) ×K ×K. We consider the
following generalized Minty vector equilibrium-like problems (GMVELPs):

(P1) GMVELP. Find x̄ ∈ K such that for each x ∈ K, there exists ζ =
(ζ1, ζ2, . . . , ζℓ) ∈ ∂cf(x) satisfying

Φ(ζ, x̄, x) ̸≤Rℓ
+\{0} 0.

(P2) GGMVELP. Find x̄ ∈ K such that for each x ∈ K

Φ(ζ, x̄, x) ̸≤Rℓ
+\{0} 0, ∀ζ ∈ ∂cf(x),

where ζ = (ζ1, ζ2, . . . , ζℓ) ∈ ∂cf(x).
(P3) GWMVELP. Find x̄ ∈ K such that for each x ∈ K, there exists ζ =

(ζ1, ζ2, . . . , ζℓ) ∈ ∂cf(x) satisfying

Φ(ζ, x̄, x) ̸≤intRℓ
+
0.

In particular, if Φ(u, x, y) = ⟨u, η(y, x)⟩ℓ for all (u, x, y) ∈ L(Rn,Rℓ) ×K ×K,
then the above GMVELP, GGMVELP and GWMVELP reduce to the GMVVLIP,
GGMVVLIP and GWMVVLIP considered and studied in [4]. The GGMVVLIP
and GWMVVLIP are considered and studied in [19] with further applications to
the VOP. The relationship between a solution of the GMVVLIP and an efficient
solution of the VOP is established in [1] under the condition that each fi is preinvex.
The existence of solutions of the GGMVVLIP is studied in [2]. When η(y, x) =
y − x, then the GGMVVLIP reduces to the generalized Minty vector variational
inequality problem considered and studied in [4]. Of course, the GGMVVLIP is
more general than the GMVVLIP as every solution of the GGMVVLIP is a solution
of the GMVVLIP.
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Theorem 3.9. Let K ⊆ Rn be a nonempty invex set with respect to η : K×K → Rn

such that η is skew and satisfies Condition C with respect to each ϕi, i = 1, 2, . . . , ℓ,
where Φ(u, x, y) = (ϕ1(u1, x, y), ϕ2(u2, x, y), . . . , ϕℓ(uℓ, x, y)) for all (u, x, y) ∈
L(Rn,Rℓ) × K × K with u = (u1, u2, . . . , uℓ). For each i ∈ {1, 2, . . . , ℓ}, let
fi : K → R be pseudoinvex and quasiinvex with respect to ϕi, locally Lipschitz
on K. Suppose that for i = 1, 2, . . . , ℓ

(i) each fi is both prequasiinvex and semi-strictly prequasiinvex with respect to
η on K;

(ii) each fi satisfies the Lebourg mean value condition with respect to ϕi;
(iii) each ∂cfi is quasimonotone with respect to ϕi.

Then we have

(a) If x̄ ∈ K is a solution of the GGMVELP, then it is an efficient solution of
the VOP.

(b) If x̄ ∈ K is an efficient solution of the VOP, then it is a solution of the
GGMVELP.

Proof. (a) Let x̄ be a solution of the GGMVELP but not an efficient solution of the
VOP. Then there exists x0 ∈ K such that f(x0) ≤Rℓ

+\{0} f(x̄); that is,

(3.1) f(x̄)− f(x0) = (f1(x̄)− f1(x0), . . . , fℓ(x̄)− fℓ(x0)) ∈ Rℓ
+ \ {0}.

Since K is invex with respect to η, we have x(t) := x̄+tη(x0, x̄) ∈ K for all t ∈ [0, 1].
Note that each fi is both prequasiinvex and semi-strictly prequasiinvex with respect
to the same η on K for i = 1, 2, . . . , n. Then by using prequasiinvexity, semi-strict
prequasiinvexity and (3.1), we get

f(x̄)− f(x(t)) ∈ Rℓ
+ \ {0}, for all t ∈ (0, 1),

that is,

(3.2) f(x(0))− f(x(t)) ∈ Rℓ
+ \ {0}, for all t ∈ (0, 1).

Since each fi satisfies the Lebourg mean value condition with respect to ϕi for
i = 1, 2, . . . , ℓ, there exist ti ∈ (0, 1) and ξi ∈ ∂cfi(x(ti)) for all i ∈ {1, 2, . . . , ℓ} such
that

fi(x(0))− fi(x(t)) = −tϕi(ξi, x̄, x0), for all i ∈ {1, 2, . . . , ℓ}.
By using (3.2), we obtain

(3.3) ϕi(ξi, x̄, x0) ≤ 0, for all i ∈ {1, 2, . . . , ℓ},

and one of which becomes a strict inequality. Note that each ϕi is an equilibrium-like
function for i = 1, 2, . . . , ℓ. So, from Condition C (a), we have

ϕi(ξi, x̄, x(ti)) = tiϕi(ξi, x̄, x0), for all i ∈ {1, 2, . . . , ℓ}

and hence

ϕi(ξi, x̄, x(ti)) ≤ 0, for all i ∈ {1, 2, . . . , ℓ}
and one of which becomes a strict inequality. Therefore,

(3.4) (ϕ1(ξ1, x̄, x(t1)), . . . , ϕℓ(ξℓ, x̄, x(tℓ))) ∈ −Rℓ
+ \ {0}.
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Suppose that t1, t2, . . . , tℓ are all equal. Then it follows from (3.4) that x̄ ∈ K is
not a solution of the GGMVELP, a contradiction to our supposition. Consider the
case where t1, t2, . . . , tℓ are all not equal.

Case 1 (i). If t1 > t2, and in (3.4) the inequality is strict for k = 1, then

ϕ1(ξ1, x(t1), x(t2)) =
t2 − t1

t1
ϕ1(ξ1, x̄, x(t1)) > 0.

Indeed, by Condition C, we have

ϕ1(ξ1, x(t1), x(t2)) = ϕ1(ξ1, x̄+ t1η(x0, x̄), x̄+ t2η(x0, x̄))

= ϕ1(ξ1, x̄+ t2η(x0, x̄) + (t1 − t2)η(x0, x̄), x̄+ t2η(x0, x̄))

= ϕ1(ξ1, x̄+ t2η(x0, x̄) +
t1 − t2
1− t2

η(x0, x̄+ t2η(x0, x̄)), x̄

+t2η(x0, x̄))

=
t2 − t1
1− t2

ϕ1(ξ1, x̄+ t2η(x0, x̄), x0) = (t2 − t1)ϕ1(ξ1, x̄, x0),

and

ϕ1(ξ1, x̄, x(t1)) = −ϕ1(ξ1, x̄+ t1η(x0, x̄), x̄) = t1ϕ1(ξ1, x̄, x0).

Combining the above relationships, we obtain the assertion.
Note that ∂cf1 is quasimonotone with respect to ϕ1. Thus by virtue of pseudoin-

vexity of f1 with respect to ϕ1, we have for all ζ1 ∈ ∂cf1(x(t2)),

ϕ1(ζ1, x(t2), x(t1)) ≤ 0.

From Condition C, we deduce

(3.5) ϕ1(ζ1, x̄, x(t2)) =
t2

t1 − t2
ϕ1(ζ1, x(t2), x(t1)) ≤ 0.

Therefore, from (3.4) and (3.5), for all ζ1 ∈ ∂cf1(x(t2)) and ξ2 ∈ ∂cf2(x(t2)), we
obtain

(3.6) ϕ1(ζ1, x̄, x(t2)) ≤ 0 and ϕ2(ξ2, x̄, x(t2)) ≤ 0.

Case 1 (ii). If t1 < t2 and in (3.4) the inequality is strict for k = 1. From
Condition C, we have

ϕ2(ξ2, x(t2), x(t1)) =
t1 − t2

t2
ϕ2(ξ2, x̄, x(t2)) ≥ 0.

The pseudoinvexity of f2 with respect to ϕ2 implies that f2(x(t1)) ≥ f2(x(t2)).
Therefore, by the quasiinvexity of f2 w.r.t. ϕ2, we know that for any ξ′1 ∈ ∂cf2(x(t1)),

ϕ2(ξ
′
1, x(t1), x(t2)) ≤ 0.

Thus from (3.4) and the assumption that the strict inequality holds in (3.4) for
k = 1, we have for all ξ1 ∈ ∂cf1(x(t1)) satisfies ϕ1(ξ1, x̄, x(t1)) < 0. Therefore, for
all ξ1 ∈ ∂cf1(x(t1)) and ξ′1 ∈ ∂cf2(x(t1)), we have

ϕ1(ξ1, x̄, x(t1)) < 0 and ϕ2(ξ
′
1, x̄, x(t1)) ≤ 0.

The above inequalities contradict the fact that x̄ is a solution of the GGMVELP.
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Case 2 (i). If t1 < t2 and in (3.4) the inequality is strict for k = 2, then from
Condition C, we have

ϕ2(ξ2, x(t2), x(t1)) =
t2 − t1

t2
ϕ2(ξ2, x̄, x(t2)) > 0.

Note that ∂cf2 is quasimonotone with respect to ϕ2. Thus by virtue of the pseu-
doinvexity of f2 with respect to ϕ2, for all ξ

′
1 ∈ ∂cf2(x(t1)), we have

ϕ2(ξ
′
1, x(t1), x(t2)) ≤ 0.

From Condition C, we deduce that

(3.7) ϕ2(ξ
′
1, x(t1), x(t2)) =

t2 − t1
t1

ϕ2(ξ
′
1, x̄, x(t1)).

Therefore, from (3.4) and (3.7), for all ξ1 ∈ ∂cf1(x(t1)) and ξ′1 ∈ ∂cf2(x(t1)) we
obtain

(3.8) ϕ1(ξ1, x̄, x(t1)) ≤ 0 and ϕ2(ξ
′
1, x̄, x(t1)) ≤ 0.

Case 2 (ii). If t1 > t2 and in (3.4) the inequality is strict for k = 2, by the similar
method to that in Case 1 (i), we reach a contradiction.

Hence for t1 ̸= t2, let t0 = min{t1, t2}. Then from (3.6) and (3.8), for γi ∈
∂cfi(x(t0)), i = 1, 2 we have

ϕi(γi, x̄, x(t0)) ≤ 0, for i = 1, 2.

By continuing this process, we can find t∗ ∈ (0, 1) such that for τi ∈ ∂cfi(x(t
∗)), i =

1, 2, . . . , ℓ

ϕi(τi, x̄, x(t
∗)) ≤ 0.

This contradicts the fact that x̄ ∈ K is a solution of the GGMVELP.
(b) Let x̄ be an efficient solution of the VOP but not a solution of the GMVELP.

Then there exists x0 ∈ K such that

Φ(ζ, x̄, x0) = (ϕ1(ζ1, x̄, x0), . . . , ϕℓ(ζℓ, x̄, x0)) ∈ −Rℓ
+ \ {0}

for all ζi ∈ ∂cfi(x0), i = 1, 2, . . . , ℓ. Since each ϕi is an equilibrium-like function for
i = 1, 2, . . . , ℓ, we have

Φ(ζ, x0, x̄) = (ϕ1(ζ1, x0, x̄), . . . , ϕℓ(ζℓ, x0, x̄, )) ∈ Rℓ
+ \ {0}

for all ζi ∈ ∂cfi(x0), i = 1, 2, . . . , ℓ. From the pseudoinvexity of each fi with respect
to ϕi, it follows that

f(x̄)− f(x0) ∈ Rℓ
+ \ {0};

that is, f(x0) ≤Rℓ
+\{0} f(x̄), contradicting the fact that x̄ is an efficient solution of

the VOP. □
Remark 3.10. Theorem 3.9 improves and generalizes Theorem 6 in [4] at a great
extent. In Theorem 3.9, we establish the conclusion that every efficient solution of
the VOP is a solution of the GMVELP for pseudoinvex functions with some extra
conditions while it is proven in [4] for pseudoinvex functions with the continuity
condition of η in the second variable. Also in the proof of part (b) of Theorem 3.9,
we assume that K is an invex set with some other condition while it is only assumed
to be invex in [4, Theorem 6].
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It is worth to mention that we use the simple mean value condition for invex
functions to establish the above Theorem 3.9; however, in the proof of Theorem 6
of [4], the authors used simple mean value theorem for Clarke’s generalized sub-
differentials. Therefore, the arguments of Theorem 3.9 and Theorem 6 in [4] are
different. In addition, Theorem 3.9 also improves and extends [1, Theorem 3.1] in
the settings of GGMVELPs and GMVELPs.

Let K ⊆ Rn and η : K × K → Rn. Let f = (f1, f2, . . . , fℓ) : Rn → Rℓ be a
vector-valued function such that each fi is locally Lipschitz on K, that is, f has
the Clarke’s generalized subdifferential on K. Let Φ : L(Rn,Rℓ) × K × K → Rℓ

be an equilibrium-like function, i.e., Φ(u, x, y) + Φ(u, y, x) = 0 for all (u, x, y) ∈
L(Rn,Rℓ) × K × K. Now we consider the perturbed form of generalized weak
Stampacchia vector equilibrium-like problem (PGWSVELP): find x̄ ∈ K for which
there exists t0 ∈ (0, 1) such that

Φ(∂cf(x̄+ tη(x, x̄)), x̄, x) ̸⊆ −intRℓ
+, for all x ∈ K and t ∈ (0, t0].

It is equivalent to find x̄ ∈ K for which there exists t0 ∈ (0, 1) such that for all
x ∈ K and t ∈ (0, t0], there exists ξi ∈ ∂cfi(x̄+ tη(x, x̄)), i = 1, 2, . . . , ℓ, satisfying

Φ(ξ, x̄, x) = (ϕ1(ξ1, x̄, x), . . . , ϕℓ(ξℓ, x̄, x)) ̸∈ −intRℓ
+,

where ϕi : R
n×K×K → R for each i = 1, 2, . . . , ℓ. Inspired by Gang and Liu [18],

we introduce the following Condition C∗.

Condition C∗. Let Φ : L(Rn,Rℓ) ×K ×K → Rℓ. Let K ⊆ Rn be an invex set
with respect to η : K × K → Rn. We say that η satisfies the Condition C∗ with
respect to Φ if for all x, y ∈ K and t ∈ [0, 1],

(a) Φ(u, x+ tη(y, x), x) = −α(t)Φ(u, x, y), ∀u ∈ L(Rn,Rℓ);
(b) Φ(u, x+tη(y, x), y) = β(t)Φ(u, x, y), ∀u ∈ L(Rn,Rℓ), where α(t) > 0, β(t) >

0 for all t ∈ (0, 1).

The following result provides the relationship between solutions of the PGWSVELP
and ones of the GWMVELP.

Theorem 3.11. Let K be an invex set with respect to η : K × K → Rn such
that η is skew and satisfies Condition C∗ with respect to Φ. Let ∂cf is strictly
Rℓ

+-quasimonotone with respect to Φ, that is,

Φ(∂cf(x), x, y) ⊆ intRℓ
+ ⇒ Φ(∂cf(y), y, x) ⊆ −intRℓ

+,

for all x, y ∈ K. Then x̄ ∈ K is a solution of the PGWSVELP if and only if it is
a solution of the GWMVELP.

Proof. Let x̄ be a solution of the PGWSVELP. Then there exists t0 ∈ (0, 1) such
that

(3.9) Φ(∂cf(x̄+ tη(x, x̄)), x̄, x) ̸⊆ −intRℓ
+,

for all x ∈ K and t ∈ (0, t0]. By the Condition C∗, we have

(3.10) Φ(u, x̄+ tη(x, x̄), x) = β(t)Φ(u, x̄, x), ∀u ∈ L(Rn,Rℓ),
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where β(t) > 0 for all t ∈ (0, 1). It follows from (3.9) that

Φ(∂cf(x̄+ tη(x, x̄)), x̄+ tη(x, x̄), x) = β(t)Φ(∂cf(x̄+ tη(x, x̄)), x̄, x) ̸⊆ −intRℓ
+,

for all x ∈ K and t ∈ (0, t0]. By the strict Rℓ
+-quasimonotonicity of ∂cf with respect

to Φ, we have

Φ(∂cf(x), x, x̄+ tη(x, x̄)) ̸⊆ intRℓ
+.

Note that Φ : L(Rn,Rℓ) ×K ×K → Rℓ is an equilibrium-like function. Thus, by
(3.10) we obtain

β(t)Φ(∂cf(x), x̄, x) = Φ(∂cf(x), x̄+ tη(x, x̄), x)

= −Φ(∂cf(x), x, x̄+ tη(x, x̄))

̸⊆ −intRℓ
+,

which immediately yields

Φ(∂cf(x), x̄, x) ̸⊆ −intRℓ
+;

that is, for each x ∈ K, there exists ζ = (ζ1, ζ2, . . . , ζℓ) ∈ ∂cf(x) satisfying
Φ(ζ, x̄, x) ̸≤intRℓ

+
0. Hence x̄ ∈ K is a solution of the GWMVELP.

Conversely, let x̄ be a solution of the GWMVELP. Then, for each x ∈ K, there
exists ζ ∈ ∂cf(x) satisfying Φ(ζ, x̄, x) ̸≤intRℓ

+
0; that is, for all x ∈ K,

Φ(∂cf(x), x̄, x) ̸⊆ −intRℓ
+,

which immediately implies that

(3.11) Φ(∂cf(x̄+ tη(x, x̄)), x̄+ tη(x, x̄), x̄) ̸⊆ intRℓ
+,

for all x ∈ K and t ∈ (0, t0] because Φ is an equilibrium-like function.
By Condition∗ (a), we have

Φ(u, x̄+ tη(x, x̄), x̄) = −α(t)Φ(u, x̄, x), ∀u ∈ L(Rn,Rℓ),

where α(t) > 0 for all t ∈ (0, 1). It follows from (3.11) that for all x ∈ K and
t ∈ (0, t0]

−α(t)Φ(∂cf(x̄+ tη(x, x̄)), x̄, x) = Φ(∂cf(x̄+ tη(x, x̄)), x̄+ tη(x, x̄), x̄) ̸⊆ intRℓ
+.

Hence, for all x ∈ K and t ∈ (0, t0]

Φ(∂cf(x̄+ tη(x, x̄)), x̄, x) ̸⊆ −intRℓ
+.

Thus, x̄ is a solution of the PGWSVELP. □

Remark 3.12. Theorem 3.11 develops and improves Theorem 7 in [4] because we
generalize and extend the GWMVVLIP and PGWSVVLIP in [4, Theorem 7] to the
GWMVELP and PGWSVELP, respectively. Moreover, Theorem 3.11 generalizes
and extends Proposition 2 in [20] and Theorem 3.2 in [26] for nondifferentiable and
pseudoinvex functions.
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