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Theorem 1 can be qualified as unconventional in the sense that, in most of the
known minimax theorems, lower semicontinuity and inf-compactness are related to
the variable with respect one takes the inf, while it is quasi-concavity that one
generally assumes with respect to the other variable (see, for instance, [4]). It is

natural to ask whether the two assumptions made on the convex setX are necessary.
We start just presenting two examples related to such a question.

The first example concerns the infinite-dimensionality of X.

Example 1. Let E be a finite-dimensional normed space and let f : E× [0, 1] → R
be the function defined by

f(x, λ) = |∥x∥ − λ(∥x∥2 + 1)|

for all (x, λ) ∈ E × [0, 1].
Of course, f is convex in [0, 1], inf-compact in E and, just because dim(E) <∞,

continuous in E × [0, 1]. Further, notice that, for each x ∈ E, taking λ = ∥x∥
∥x∥2+1

,

we have λ ∈ [0, 1] and f(x, λ) = 0. This implies that

sup
x∈E

inf
λ∈[0,1]

f(x, λ) = 0 .

On the other hand, we clearly have

inf
λ∈[0,1]

sup
x∈E

f(x, λ) = +∞ .

So, the conclusion of Theorem 1 can fail if X if finite-dimensional.

The second example deals with the non-emptyness of the interior of X in its
closed affine hull.

Example 2. Let E be an infinite-dimensional reflexive real Banach space, let X
be the open unit ball in E and let φ ∈ E∗, with ∥φ∥E∗ = 1. Consider the function
f : X × [0, 1] → R defined by

f(x, λ) =

∣∣∣∣∣ 1

1− φ(x)
− λ

((
1

1− φ(x)

)2

+ 1

)∣∣∣∣∣
for all (x, λ) ∈ X × [0, 1].

Consider E equipped with the weak topology. Clearly, the affine hull of X is the
whole E and, since dim(E) = ∞, the interior of X in the weak topology is empty.
Since, by reflexivity, X is relatively weakly compact, the function f is relatively
weakly inf-compact in E. Since φ ∈ E∗, f is weakly continuous in X × [0, 1],
besides being convex in [0, 1]. As in Example 1, it is seen that

sup
x∈X

inf
λ∈[0,1]

f(x, λ) = 0

and

inf
λ∈[0,1]

sup
x∈X

f(x, λ) = +∞ .

So, the conclusion of Theorem 1 can fail if the interior of X in its closed affine hull
is empty.
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Our proof of Theorem 1 is fully based on the joint use of three previous results
of ours. We now recall them.

Theorem A ([2], Proposition 3). Let E be a real Hausdorff topological vector space,
let X ⊆ E be an infinite-dimensional convex set whose interior in its closed affine
hull is non-empty and let K ⊆ E be a relatively compact (resp. relatively sequentially
compact) set.

Then, the set X \K is connected.

Remark 2. Notice that, in [2], such a result was proved for the relatively compact
case only. The same proof shows the validity of the result also in the relatively
sequentially compact case, in view of the fact that any Hausdorff topological vector
space possessing a sequentially compact neighbourhood of 0 is finite-dimensional.

Theorem B ([3], Proposition 5.3). Let X,Y be two topological spaces, with X
connected, and let F : X → 2Y be a lower semicontinuous multifunction with non-
empty values. Assume the set

{x ∈ X : F (x) is connected}
is dense in X.

Then, the set
{(x, y) ∈ X × Y : y ∈ F (x)}

is connected.

For a generic set S ⊆ X × I, for each (x, λ) ∈ X × I, we set

Sx = {µ ∈ I : (x, µ) ∈ S}
and

Sλ = {u ∈ X : (u, λ) ∈ S} .
Theorem C ([1], Theorem 2.3). Let X be a topological space, I ⊆ R a compact

interval and S, T ⊆ X × I. Assume that S is connected and Sλ ̸= ∅ for all λ ∈ I,
while T is closed and Tx is non-empty and connected for all x ∈ X.

Then, one has S ∩ T ̸= ∅.

Proof of Theorem 1. Arguing by contradiction, assume that

sup
x∈X

inf
λ∈I

f(x, λ) < inf
λ∈I

sup
x∈X

f(x, λ) .

Fix ρ satisfying

(1) sup
x∈X

inf
λ∈I

f(x, λ) < ρ < inf
λ∈I

sup
x∈X

f(x, λ)

and put
S = {(x, λ) ∈ X × I : f(x, λ) > ρ}

and
T = {(x, λ) ∈ X × I : f(x, λ) ≤ ρ} .

Since f is lower semicontinuous, the set T is closed. Moreover, for each x ∈ X, the
set Tx is non-empty by (1) and connected by the quasi-convexity of f(x, ·). By (1)
again, Sλ ̸= ∅ for all λ ∈ I. Fix λ ∈ D. Since

Sλ = X \ {x ∈ X : f(x, λ) ≤ ρ}
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and {x ∈ X : f(x, λ) ≤ ρ} is relatively compact (resp. relatively sequentially
compact) in E, in view of Theorem A, the set Sλ turns out to be connected. On
the other hand, since Sx is open for all x ∈ X, the multifunction λ → Sλ is lower
semicontinuous in I. At this point, we can apply Theorem B to realize that the set

{(λ, x) ∈ I ×X : (x, λ) ∈ S}
is connected. But such a set is clearly homeomorphic to S, and so S is connected.
As a consequence, each assumption of Theorem C is satisfied, and hence we would
have S ∩T ̸= ∅ which is clearly false. Such a contradiction completes the proof. □

We conclude with the following application of Theorem 1. We first introduce a
notation. Namely, if Y is a topological space and τ is the topology of Y , we denote
by τs the topology on Y whose members are the sequentially open subsets of Y . Let
us recall that a set A ⊆ Y is said to be sequentially open if, for every sequence {yn}
in Y converging to a point of A, there is ν ∈ N such that yn ∈ A for all n ≥ ν. A
functional φ on a real normed space is said to be coercive if lim∥x∥→+∞ φ(x) = +∞.

Theorem 3. Let E be an infinite-dimensional reflexive real Banach space, T : E →
E a non-zero compact linear operator, φ : E → R a continuous, convex and coercive
functional, I ⊂ R a compact interval, with 0 ∈ I, ψ : I → R a continuous convex
function.

Then, for each r > φ(0), one has

sup
x∈X

inf
λ∈I

(φ(T (x)− λx) + ψ(λ)) = r + ψ(0) ,

where
X = {x ∈ E : φ(T (x)) ≤ r} .

Proof. Since T (E) is a non-zero linear subspace, the set φ(T (E)) is unbounded
above as φ is coercive. As a consequence, since T (E) is connected, we have

φ(T (E)) =

(
inf
T (E)

φ,+∞
[
.

From this, we clearly infer that

(2) sup
x∈X

φ(T (x)) = r .

Next, consider the function f : X × I → R defined by

f(x, λ) = φ(T (x)− λx) + ψ(λ)

for all (x, λ) ∈ X × I. Now, denote by τ the weak topology of E. Notice that T ,
being linear and compact, turns out to be sequentially continuous from E with the
topology τ to E with the strong topology. It is easy to check that this is equivalent
to the continuity of T from E with the topology τs to E with the strong topology.
Of course, (E, τs) is a Hausdorff topological vector space. Now, we are going to
apply Theorem 1 to the function f considering E with the topology τs. First,
notice that the set X is convex and its interior in τs is non-empty. Actually, X
contains the non-empty set T−1(φ−1(]−∞, r[)) which is open in τs, by the remarks
above. Next, observe that, for each λ ∈ R, the function x → T (x) − λx, being
continuous and linear, is continuous from the weak to the weak topology, and so, a
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fortiori, from the τs to the weak topology. Of course, this implies that the function
(x, λ) → T (x)−λx is continuous from the product of τs and the topology of R to the
weak topology. But then, since φ is weakly lower semicontinuous, the function f is
lower semicontinuous in X×I with respect to the considered topology. Of course, f
is convex in I. Finally, by a classical result, the spectrum of T is countable, and so
the set, say D, of all λ ∈ I such that x→ T (x)− λx is a homeomorphism between
E (with the strong topology) and itself is dense in I. Fix λ ∈ D. Of course, since
φ is coercive, for each ρ ∈ R, the set

{x ∈ E : φ(T (x)− λx) ≤ ρ}
is bounded. Hence, due to the reflexivity of E, the sub-level sets of f(·, λ) are
weakly compact and so, by the Eberlein-Smulyan theorem, sequentially weakly com-
pact which is equivalent to sequentially τs-compact. Therefore, each assumption of
Theorem 1 is satisfied and hence we have

(3) sup
x∈X

inf
λ∈I

(φ(T (x)− λx) + ψ(λ)) = inf
λ∈I

sup
x∈X

(φ(T (x)− λx) + ψ(λ)) .

Now, observe that if λ ∈ I \ {0}, we have

(4) sup
x∈X

φ(T (x)− λx) = +∞ .

Indeed, since the τs-interior of X is non-empty and E is reflexive and infinite-
dimensional, X turns out to be unbounded. But T (X) is bounded (since φ is
coercive) and so, since λ ̸= 0,

sup
x∈X

∥T (x)− λx∥ = +∞

which yields (4) by the coercivity of φ again. At this point, th conclusion follows
directly from (2), (3) and (4). □
Remark 4. Notice that both infinite-dimensionality of E and compactness of T
cannot be dropped in Theorem 3. The this connection, it is enough to take T (x) = x,
I = [0, 1], φ(x) = ∥x∥, and ψ = 0.

Remark 5. At present, we do not know any example showing that the reflexivity
of E cannot be dropped. However, we conjecture that such an example can be
constructed in infinite-dimensional Banach spaces with the Schur property.
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