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hand, we know important mappings in a metric space. Let X be a metric space with
metric d. A mapping T : X → X is said to be contractive if there exists r ∈ [0, 1)
such that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Such a mapping is also called r-contractive. A mapping T : X → X
is said to be Kannan [10] if there exists α ∈ [0, 12) such that

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty))

for all x, y ∈ X. A mapping T : X → X is said to be contractively nonspreading
[3, 8, 20] if there exists β ∈ [0, 12) such that

d(Tx, Ty) ≤ β(d(x, Ty) + d(y, Tx))

for all x, y ∈ X.
In this paper, motivated by these mappings, we introduce a broad class of nonlin-

ear mappings in a metric space which contains contractive mappings, Kannan map-
pings and contractively nonspreading mappings. Then we prove two fixed point
theorems for the class of such mappings. One is a fixed point theorem which a
fixed point is not necessarily unique. The other is a fixed point theorem which is
a generalization of Bogin’s fixed point theorem [2]. Using these results, we prove
well-known and new fixed point theorems in a metric space.

2. fixed point theorems in metric spaces

In this section, we first prove a fixed point theorem in a metric space which a
fixed point is not necessarily unique.

Theorem 2.1. Let (X, d) be a complete metric space and let T be a mapping of X
into itself. Suppose that there exist α, β, γ, δ, ε, ζ ∈ R such that

αd(Tx, Ty) + βd(x,Ty) + γd(y, Tx)(2.1)

+ δd(x, y) + εd(x, Tx) + ζd(y, Ty) ≤ 0

for all x, y ∈ X, where γ ≤ β ≤ 0, α+β+γ+ δ+ ε+ ζ > 0 and γ+ δ+ ε ≤ 0. Then

(i) T has a fixed point in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to a fixed point of T .

In addition, if α+ β + γ + δ > 0, then a fixed point of T in X is unique.

Proof. Replacing x by Tnx and y by Tn+1x in (2.1), we have that

αd(Tn+1x, Tn+2x) + βd(Tnx, Tn+2x) + γd(Tn+1x, Tn+1x)(2.2)

+ δd(Tnx, Tn+1x) + εd(Tnx, Tn+1x) + ζd(Tn+1x, Tn+2x) ≤ 0

for all n ∈ N ∪ {0}. From d(Tnx, Tn+2x) ≤ d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x) and
β ≤ 0, we have that

(2.3) βd(Tnx, Tn+2x) ≥ βd(Tnx, Tn+1x) + βd(Tn+1x, Tn+2x).

From (2.2) and (2.3) we have that

(2.4) (α+ β + ζ)d(Tn+1x, Tn+2x) + (β + δ + ε)d(Tnx, Tn+1x) ≤ 0
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and hence from γ ≤ β and (2.4) that

(2.5) (α+ β + ζ)d(Tn+1x, Tn+2x) + (γ + δ + ε)d(Tnx, Tn+1x) ≤ 0.

From α+β+γ+ δ+ε+ ζ > 0, we have that α+β+ ζ > −(γ+ δ+ε). Furthermore,
from γ + δ + ε ≤ 0, we obtain that

(2.6) α+ β + ζ > −(γ + δ + ε) ≥ 0.

Then we have from (2.5) and (2.6) that

(2.7) d(Tn+1x, Tn+2x) ≤ −(γ + δ + ε)

α+ β + ζ
d(Tnx, Tn+1x);

(2.8) 0 ≤ −(γ + δ + ε)

α+ β + ζ
< 1.

Putting λ = −(γ+δ+ε)
α+β+ζ in (2.8), we have from (2.7) that for any m,n ∈ N with

m ≥ n,

d(Tnx, Tmx) ≤ d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x) + · · ·+ d(Tm−1x, Tmx)

≤ λnd(x, Tx) + λn+1d(x, Tx) + · · ·+ λm−1d(x, Tx)

≤ λnd(x, Tx) + λn+1d(x, Tx) + λn+2d(x, Tx) + · · ·
= d(x, Tx)λn(1 + λ+ λ2 + · · · )

= d(x, Tx)
λn

1− λ
.

Thus {Tnx} is a Cauchy sequence. Since X is complete, {Tnx} converges. Let
Tnx → u. We also have from (2.1) that

αd(Tn+1x, Tu) + βd(Tnx, Tu) + γd(Tn+1x, u)(2.9)

+ δd(Tnx, u) + εd(Tnx, Tn+1x) + ζd(u, Tu) ≤ 0.

Since Tnx → u, we have from (2.9) that

αd(u, Tu) + βd(u, Tu) + γd(u, u)(2.10)

+ δd(u, u) + εd(u, u) + ζd(u, Tu) ≤ 0

and hence from (2.10) that

(α+ β + ζ)d(u, Tu) ≤ 0.

From α+ β + ζ > 0, we have that d(u, Tu) ≤ 0 and hence Tu = u.
In addition, suppose that α+ β + γ + δ > 0. Let p1 and p2 be fixed points of T .

Then we have that

αd(Tp1, Tp2) + βd(p1, Tp2) + γd(Tp1, p2) + δd(p1, p2)

+ εd(p1, Tp1) + ζd(p2, Tp2) ≤ 0

and hence (α+β+γ+δ)d(p1, p2) ≤ 0. We have from α+β+γ+δ > 0 that p1 = p2.
Therefore a fixed point of T is unique. This completes the proof. □

Using Theorem 2.1, we have the following fixed point theorem for contractively
generalized hybrid mappings in a complete metric space.
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Theorem 2.2. Let (X, d) be a complete metric space and let T : X → X be
an (a,b,r)-contractively generalized hybrid mapping, i.e., there exist a, b ∈ R and
r ∈ [0, 1) such that

ad(Tx, Ty) + (1− a)d(x, Ty) ≤ r{bd(Tx, y) + (1− b)d(x, y)}

for all x, y ∈ X. Suppose that 1 ≤ a ≤ 1 + rb. Then the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. Since T : X → X is an (a,b,r)-contractively generalized hybrid mapping, we
have that

ad(Tx, Ty) + (1− a)d(x, Ty)− rbd(Tx, y)− r(1− b)d(x, y) ≤ 0

for all x, y ∈ X. Since 1 ≤ a ≤ 1 + rb and 0 ≤ r < 1, we have that

β = 1− a ≤ 0;

γ = −rb ≤ 1− a = β;

α+ β + γ + δ + ε+ ζ = a+ (1− a)− rb− r(1− b) + 0 + 0 = 1− r > 0;

γ + δ + ε = −rb− r(1− b) + 0 = −r ≤ 0;

α+ β + γ + δ = 1− r > 0

in Theorem 2.1. Therefore, we have the desired result from Theorem 2.1. □

Theorem 2.3. Let (X, d) be a complete metric space and let T : X → X be a
contractive mapping, i.e., there exists a real number r with 0 ≤ r < 1 such that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Putting α = 1, β = γ = 0, δ = −r and ε = ζ = 0 in Theorem 2.1, we have
that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Furthermore, we have that γ = β ≤ 0,

α+ β + γ + δ + ε+ ζ = α+ β + γ + δ = 1− r > 0

and γ + δ + ε = −r ≤ 0. From Theorem 2.1, we have the desired result. □

Theorem 2.4. Let (X, d) be a complete metric space and let T : X → X be
contractively nonspreading, i.e., there exists a real number γ with 0 ≤ r < 1

2 such
that

d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x)}
for all x, y ∈ X. Then the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.
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Proof. Putting α = 1, β = −r, γ = −r and δ = ε = ζ = 0 in Theorem 2.1, we have
that

d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x)}
for all x, y ∈ X. Furthermore, we have that γ = β = −r ≤ 0,

α+ β + γ + δ + ε+ ζ = α+ β + γ + δ = 1− 2r > 0

and γ + δ + ε = −r ≤ 0. From Theorem 2.1, we have the desired result. □
Theorem 2.5. Let (X, d) be a complete metric space and let T : X → X be
contractively hybrid, i.e., there exists a real number r with 0 ≤ r < 1

3 and

d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x) + d(x, y)}
for all x, y ∈ X. Then the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Putting α = 1, β = γ = δ = −r and ε = ζ = 0 in Theorem 2.1, we have that

d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x) + d(x, y)}
for all x, y ∈ X. Furthermore, we have that γ = β = −r ≤ 0,

α+ β + γ + δ + ε+ ζ = α+ β + γ + δ = 1− 3r > 0

and γ + δ + ε = −2r ≤ 0. From Theorem 2.1, we have the desired result. □
Next, we prove a fixed point theorem in a metric space which is a generalization

of Bogin’s fixed point theorem [2].

Theorem 2.6. Let (X, d) be a complete metric space and let T be a mapping of X
into itself. Suppose that there exist α, β, γ, δ, ε, ζ ∈ R such that

αd(Tx, Ty) + βd(x,Ty) + γd(y, Tx)(2.11)

+ δd(x, y) + εd(x, Tx) + ζd(y, Ty) ≤ 0

for all x, y ∈ X, where

γ ≤ β < 0, δ ≤ 0, α+ β + γ + δ > 0, α+ β + γ + δ + ε+ ζ ≥ 0 and ε = rζ

for some r ∈ R with 1 ≤ r. Then the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to a fixed point u of T .

Proof. Replacing x by Tnx and y by Tn+1x in (2.11), we have that

αd(Tn+1x, Tn+2x) + βd(Tnx, Tn+2x) + γd(Tn+1x, Tn+1x)(2.12)

+ δd(Tnx, Tn+1x) + εd(Tnx, Tn+1x) + ζd(Tn+1x, Tn+2x) ≤ 0

for all n ∈ N ∪ {0}. From d(Tnx, Tn+2x) ≤ d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x) and
β < 0, we have that

(2.13) βd(Tnx, Tn+2x) ≥ βd(Tnx, Tn+1x) + βd(Tn+1x, Tn+2x).

From (2.12) and (2.13) we have that

(2.14) (α+ β + ζ)d(Tn+1x, Tn+2x) + (β + δ + ε)d(Tnx, Tn+1x) ≤ 0.
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We have from γ ≤ β and (2.14) that

(2.15) (α+ β + ζ)d(Tn+1x, Tn+2x) + (γ + δ + ε)d(Tnx, Tn+1x) ≤ 0.

Suppose that ζ ≥ 0. Then we have from (2.15) and ε = rζ that

(2.16) (α+ β)d(Tn+1x, Tn+2x) + (γ + δ)d(Tnx, Tn+1x) ≤ 0.

From α+ β + γ + δ > 0, we have that α+ β > −(γ + δ). Furthermore, from γ < 0
and δ ≤ 0, we have that α+ β > −(γ + δ) > 0. Then we have from (2.16) that

(2.17) d(Tn+1x, Tn+2x) ≤ −(γ + δ)

α+ β
d(Tnx, Tn+1x);

(2.18) 0 <
−(γ + δ)

α+ β
< 1.

Putting λ = −(γ+δ)
α+β in (2.18), we have from (2.20) that for any m,n ∈ N with

m ≥ n,

d(Tnx, Tmx) ≤ d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x) + · · ·+ d(Tm−1x, Tmx)

≤ λnd(x, Tx) + λn+1d(x, Tx) + · · ·+ λm−1d(x, Tx)

≤ λnd(x, Tx) + λn+1d(x, Tx) + λn+2d(x, Tx) + · · ·
= d(x, Tx)λn(1 + λ+ λ2 + · · · )

= d(x, Tx)
λn

1− λ
.

Thus {Tnx} is a Cauchy sequence. Since X is complete, {Tnx} converges. Let
Tnx → u. We also have from (2.11) that

αd(Tn+1x, Tu) + βd(Tnx, Tu) + γd(u, Tn+1x)

+ δd(Tnx, u) + εd(Tnx, Tn+1x) + ζd(u, Tu) ≤ 0.

Since Tnx → u, we have that

αd(u, Tu) + βd(u, Tu) + γd(u, u)

+ δd(u, u) + εd(u, u) + ζd(u, Tu) ≤ 0

and hence

(α+ β + ζ)d(u, Tu) ≤ 0.

From α + β + ζ > 0, we have that d(u, Tu) ≤ 0 and hence Tu = u. Let p1 and p2
be fixed points of T . Then we have that

αd(Tp1, Tp2) + βd(p1, Tp2) + γd(Tp1, p2) + δd(p1, p2)

+ εd(p1, Tp1) + ζd(p2, Tp2) ≤ 0

and hence (α+β+γ+δ)d(p1, p2) ≤ 0. We have from α+β+γ+δ > 0 that p1 = p2.
Therefore, a fixed point of T is unique.

Suppose that ζ < 0. Then from ε = rζ and 1 ≤ r we have ζ ≥ rζ = ε. From
(2.15), we know that

(α+ β + ζ)d(Tn+1x, Tn+2x) + (γ + δ + ε)d(Tnx, Tn+1x) ≤ 0.
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Since α+ β + γ + δ + ε+ ζ ≥ 0 and γ + δ + ε < 0, we obtain that

(2.19) α+ β + ζ ≥ −(γ + δ + ε) > 0.

Then we have from (2.19) that

(2.20) d(Tn+1x, Tn+2x) ≤ −(γ + δ + ε)

α+ β + ζ
d(Tnx, Tn+1x);

(2.21) 0 <
−(γ + δ + ε)

α+ β + ζ
≤ 1.

Putting λ = −(γ+δ+ε)
α+β+ζ in (2.21), we have from (2.20) that

(2.22) d(Tn+1x, Tn+2x) ≤ λd(Tnx, Tn+1x) ≤ d(Tnx, Tn+1x)

and hence {d(Tnx, Tn+1x)} is a decreasing sequence. We have from (2.11) that

αd(Tn+1x, Tn+3x) + βd(Tnx, Tn+3x) + γd(Tn+1x, Tn+2x)

+ δd(Tnx, Tn+2x) + εd(Tnx, Tn+1x) + ζd(Tn+2x, Tn+3x) ≤ 0.

Since δ ≤ 0 and β < 0, we have that

αd(Tn+1x, Tn+3x) + βd(Tnx, Tn+1x) + βd(Tn+1x, Tn+3x)

+ γd(Tn+1x, Tn+2x) + δd(Tnx, Tn+1x) + δd(Tn+1x, Tn+2x)

+ εd(Tnx, Tn+1x) + ζd(Tn+2x, Tn+3x) ≤ 0.

Using (2.22), we have that

(α+ β)d(Tn+1x, Tn+3x) + (β + γ + 2δ + ε+ ζ)d(Tnx, Tn+1x) ≤ 0

and hence from γ ≤ β and ε ≤ ζ

(α+ β)d(Tn+1x, Tn+3x) + (2γ + 2δ + 2ε)d(Tnx, Tn+1x) ≤ 0.

Since α+ β > α+ β + ζ ≥ −(γ + δ + ε) > 0, we have that

d(Tn+1x, Tn+3x) ≤ −2(γ + δ + ε)

α+ β
d(Tnx, Tn+1x);

0 <
−2(γ + δ + ε)

α+ β
< 2.

We also have from (2.11) that

αd(Tn+2x, Tn+3x) + βd(Tn+1x, Tn+3x) + γd(Tn+2x, Tn+2x)

+ δd(Tn+1x, Tn+2x) + εd(Tn+1x, Tn+2x) + ζd(Tn+2x, Tn+3x) ≤ 0

and hence

αd(Tn+2x, Tn+3x) + βd(Tn+1x, Tn+3x)

+ δd(Tn+1x, Tn+2x) + εd(Tn+1x, Tn+2x) + ζd(Tn+2x, Tn+3x) ≤ 0.

Putting m = −2(γ+δ+ε)
α+β , we have that 0 < m < 2 and

αd(Tn+2x, Tn+3x) + βmd(Tnx, Tn+1x)

+ δd(Tnx, Tn+1x) + (ε+ ζ)d(Tnx, Tn+1x) ≤ 0.
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On the other hand, since

α ≥ −(β + γ + δ + ε+ ζ) ≥ −(2β + δ + ε+ ζ) > −(βm+ δ + ε+ ζ) > 0,

we have that

d(Tn+2x, Tn+3x) ≤ −(βm+ δ + ε+ ζ)

α
d(Tnx, Tn+1x);

0 <
−(βm+ δ + ε+ ζ)

α
< 1.

Putting k = −(βm+δ+ε+ζ)
α , we have that 0 < k < 1 and

d(Tn+2x, Tn+3x) ≤ kd(Tnx, Tn+1x).

Therefore, for any even integer n, we have that

d(Tnx, Tn+1x) ≤ k
n
2 d(x, Tx) ≤ k

n−1
2 d(x, Tx).

For any odd integer n, we have that

d(Tnx, Tn+1x) ≤ k
n−1
2 d(Tx, T 2x) ≤ k

n−1
2 d(x, Tx).

Thus {Tnx} is a Cauchy sequence. Since X is complete, {Tnx} converges. Let
Tnx → u. We have from (2.11) that

αd(Tn+1x, Tu) + βd(Tnx, Tu) + γd(Tn+1x, u)

+ δd(Tnx, u) + εd(Tnx, Tn+1x) + ζd(u, Tu) ≤ 0.

Since Tnx → u, we have that

αd(u, Tu) + βd(u, Tu) + γd(u, u)

+ δd(u, u) + εd(u, u) + ζd(u, Tu) ≤ 0

and hence
(α+ β + ζ)d(u, Tu) ≤ 0.

From α + β + ζ > 0, we have that d(u, Tu) ≤ 0 and hence Tu = u. Let p1 and p2
be fixed points of T . Then we have that

αd(Tp1, Tp2) + βd(p1, Tp2) + γd(Tp1, p2) + δd(p1, p2)

+ εd(p1, Tp1) + ζd(p2, Tp2) ≤ 0

and hence (α+β+γ+δ)d(p1, p2) ≤ 0. We have from α+β+γ+δ > 0 that p1 = p2.
Therefore a fixed point of T is unique. This completes the proof. □

Using Theorem 2.6, we obtain the following fixed point theorem which was proved
by Bogin [2].

Theorem 2.7 ( [2]). Let (X, d) be a complete metric space and let T be a mapping
of X into itself. Suppose that there exist a, b, c ∈ R such that

(2.23) d(Tx, Ty) ≤ ad(x, y) + b
(
d(x, Tx) + d(y, Ty)

)
+ c(d(x, Ty) + d(y, Tx)

)
for all x, y ∈ X, where

a ≥ 0, b > 0, c > 0 and a+ 2b+ 2c = 1.

Then T has a unique fixed point u in X.
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Proof. We have from (2.23) that

d(Tx, Ty)− c
(
d(x, Ty) + d(y, Tx)

)
− ad(x, y)− b

(
d(x, Tx) + d(y, Ty)

)
≤ 0

for all x, y ∈ X. Putting α = 1, β = γ = −c, δ = −a and ε = ζ = −b in Theorem
2.6, we have that β = γ = −c < 0, and δ = −a ≤ 0. Furthermore, we have that

α+ β + γ + δ = 1− 2c− a = 2b > 0, α+ β + γ + δ + ε+ ζ = 1− 2c− a− 2b = 0

and ε = ζ. Therefore, from Theorem 2.6, we have the desired result. □
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