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FIXED POINT THEOREMS FOR NEW MAPPINGS
IN COMPLETE METRIC SPACES

SAUD M. ALSULAMI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we introduce a broad class of mappings in a metric
space which contains contractive mappings, Kannan mappings and contractively
nonspreading mappings. Then we prove two fixed point theorems for the class of
such mappings. One is a fixed point theorem which a fixed point is not necessarily
unique. The other is a fixed point theorem which is a generalization of Bogin’s
fixed point theorem [2]. Using these results, we prove well-known and new fixed
point theorems in a metric space.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H.
Kocourek, Takahashi and Yao [13] introduced a broad class of mappings 7' : C' — C'
called generalized hybrid such that for some «, 8 € R,

a| Tz —Ty|* + (1 - a)llz = Tyl]* < BTz — y|* + (1 = B) |l -y

for all x,y € C. Such a mapping is also called («, [)-generalized hybrid. We
observe that the class of the mappings above covers several well-known mappings.
An (o, (B)-generalized hybrid mapping is nonexpansive [17] for « = 1 and § = 0,
nonspreading [15] for & = 2 and 8 = 1, and hybrid [18] for & = 2 and 8 = 1.
Motivated by such mappings, Kawasaki and Takahashi [11] introduced the following
nonlinear mapping in a Hilbert space. A mapping T from C into H is said to be
widely generalized hybrid if there exist «, 8,7, d,e,( € R such that

all Tz = Tyl* + Bla—Tyl* +4I|Tz — y||* + dllz — y|*
+max{ellz - Tz|? ¢lly — Ty|*} <0
for all z,y € C. Furthermore, Kawasaki and Takahashi [12] defined the following

class of nonlinear mappings in a Hilbert space. A mapping T from C into H is said
to be widely more generalized hybrid if there exist «, 3,7, 6,¢,(,n € R such that

alTe = Ty|* + Blle — Tyl* +4I|Tz — y|* + dl|z — y||*
+ella = Tal® + Clly = Tyl + nll(z - Tz) — (y = Ty)|* < 0
for all x,y € C; see also Takahashi, Wong and Yao [19]. Kawasaki and Takahashi [12]
proved fixed point theorems for such mappings in a Hilbert space. On the other
2010 Mathematics Subject Classification. 47TH09, 47H10.

Key words and phrases. Complete metric space, contractive mapping, fixed point, contractively
generalized hybrid mapping.



30 S. M. ALSULAMI AND W. TAKAHASHI

hand, we know important mappings in a metric space. Let X be a metric space with
metric d. A mapping T : X — X is said to be contractive if there exists r € [0,1)
such that

d(Tx,Ty) < rd(z,y)

for all x,y € X. Such a mapping is also called r-contractive. A mappingT : X — X
is said to be Kannan [10] if there exists v € [0, 3) such that

d(Tz,Ty) < a(d(z,Tz) + d(y, Ty))

for all z,y € X. A mapping T : X — X is said to be contractively nonspreading
[3,8,20] if there exists 3 € [0, 3) such that

d(Tz,Ty) < p(d(z, Ty) + d(y, Tz))
for all z,y € X.

In this paper, motivated by these mappings, we introduce a broad class of nonlin-
ear mappings in a metric space which contains contractive mappings, Kannan map-
pings and contractively nonspreading mappings. Then we prove two fixed point
theorems for the class of such mappings. One is a fixed point theorem which a
fixed point is not necessarily unique. The other is a fixed point theorem which is
a generalization of Bogin’s fixed point theorem [2]. Using these results, we prove
well-known and new fixed point theorems in a metric space.

2. FIXED POINT THEOREMS IN METRIC SPACES

In this section, we first prove a fixed point theorem in a metric space which a
fixed point is not necessarily unique.

Theorem 2.1. Let (X,d) be a complete metric space and let T be a mapping of X
into itself. Suppose that there exist o, 5,7,0,¢,( € R such that

(2.1) ad(Tx, Ty) + Bd(z,Ty) + vd(y, Tx)
+dd(z,y) + ed(z, Tx) + (d(y,Ty) <0

forallz,y € X, wherey < <0, a+8+v+d+e+(>0andv+5+e <0. Then

(i) T has a fized point in X;

(ii) for every z € X, the sequence {T"z} converges to a fixed point of T
In addition, if o + 8+~ + 9 > 0, then a fived point of T in X is unique.
Proof. Replacing x by T"x and y by T" "1z in (2.1), we have that
(2.2) ad(T" o, T 22) + Bd(T"x, T 2a) + vd(T" o, T 2)

+6d(T"x, T" M z) + ed(T"x, T" M) 4+ Cd(T" ez, T 22) <0

for all n € NU{0}. From d(T"z, T""?z) < d(T"z, T""'x) + d(T" 2, T" 2z) and
B <0, we have that

(2.3) Bd(T"z, T"z) > Bd(T"x, T a) + Bd(T™ a, T 1),
From (2.2) and (2.3) we have that
(2.4) (a+ B+ Od(T™ o, T 2x) 4+ (B4 6 + &)d(T"z, T z) < 0
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and hence from v < 5 and (2.4) that
(2.5) (a+ B+ O)d(T" o, T 2x) 4 (v + § + €)d(T™x, T"z) < 0.

From a+8+~v+3d+e+( > 0, we have that a4+ 5+ > —(y+ +¢). Furthermore,
from v+ d + £ < 0, we obtain that

(2.6) a+pB+(¢>—(y+d+¢)>0.
Then we have from (2.5) and (2.6) that
—(y+d+¢)

2.7 AT, T2y <« ZOFOIFE) yopmy .
.1 (e ) < 0D D g, )

—(y+d+¢)
2.8 —= < 1L
(28) T a+pB4¢
Puicing A= % in (2.8), we have from (2.7) that for any m,n € N with
m>n,

ATz, T"z) < d(T"x, T" o) + d(T" e, T 22) + -+ d(T™ Lo, T x)
< N'd(x, Tx) + N d(x, Tx) + -+ A" Ld(z, Tx)
< Nd(z, Tx) + NV d(z, Tx) + NV 2d(z, Tx) 4 - --
=d(z, TT)AN" (L + A+ X2 +---)

1—X

Thus {T"x} is a Cauchy sequence. Since X is complete, {T"x} converges. Let
T"z — u. We also have from (2.1) that

(2.9) ad(T™ o, Tu) + Bd(T"z, Tu) + vd(T™ 2, u)
+ 6d(T"x, u) + ed(T"x, T" ' x) 4 Cd(u, Tu) < 0.
Since T"x — u, we have from (2.9) that
(2.10) ad(u, Tu) + Bd(u, Tu) + vd(u, u)
+ dd(u,u) + ed(u,u) + (d(u, Tu) <0
and hence from (2.10) that
(a+ B+ ¢)d(u, Tu) <0.
From o+ 8+ ¢ > 0, we have that d(u,Tu) < 0 and hence Tu = u.
In addition, suppose that a + 3+ v+ & > 0. Let p; and p2 be fixed points of T'.
Then we have that
ad(T'p1, Tp2) + Bd(p1, Tp2) + vd(T'p1, p2) + dd(p1, p2)
+ed(p1,Tp1) + Cd(pa2, Tp2) <0

and hence (a+ B+v+6)d(p1,p2) < 0. We have from a++~v+3 > 0 that p; = po.
Therefore a fixed point of 7" is unique. This completes the proof. O

=d(z,Tx)

Using Theorem 2.1, we have the following fixed point theorem for contractively
generalized hybrid mappings in a complete metric space.
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Theorem 2.2. Let (X,d) be a complete metric space and let T : X — X be
an (a,b,r )-contractively generalized hybrid mapping, i.e., there exist a,b € R and
r € [0,1) such that

ad(Tz, Ty) + (1 — a)d(z, Ty) < r{bd(Tz,y) + (1 — b)d(z,y)}
for all x,y € X. Suppose that 1 < a <14 rb. Then the following hold:

(i) T has a unique fized point u in X ;
(ii) for every z € X, the sequence {T"z} converges to u.

Proof. Since T': X — X is an (a,b,r)-contractively generalized hybrid mapping, we
have that

ad(Tx,Ty) + (1 — a)d(z, Ty) — rbd(Tz,y) —r(1 — b)d(z,y) <0
for all x,y € X. Since 1 <a <1+ rband 0 <r <1, we have that
f=1-a<0;
y=—-rb<1—a=g0,
a+pf+v+d+e+(=a+1—a)—rb—r(l-0)+0+0=1—1r>0;
y+d+e=—rb—r(l—>b)+0=—r <0;
a+p+y+d=1—r>0
in Theorem 2.1. Therefore, we have the desired result from Theorem 2.1. O

Theorem 2.3. Let (X,d) be a complete metric space and let T : X — X be a
contractive mapping, i.e., there exists a real number r with 0 < r < 1 such that
d(Tz,Ty) < rd(z,y)
for all x,y € X. Then the following hold:
(i) T has a unique fized point u in X ;
(ii) for every z € X, the sequence {T"z} converges to u in X.
Proof. Puttinga =1, 3=+v=0,0 = —r and € = ( = 0 in Theorem 2.1, we have
that
d(Tz,Ty) < rd(z,y)
for all x,y € X. Furthermore, we have that v = g <0,
a+pf+y+d+e+(=a+8+7+d=1—-r>0
and v+ 0 + & = —r < 0. From Theorem 2.1, we have the desired result. O
Theorem 2.4. Let (X,d) be a complete metric space and let T : X — X be

contractively nonspreading, i.e., there exists a real number v with 0 < r < % such
that

d(Tz,Ty) < r{d(Tz,y) + d(Ty,z)}
for all x,y € X. Then the following hold:
(i) T has a unique fized point u in X;
(ii) for every z € X, the sequence {T"z} converges to u in X.
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Proof. Puttinga =1, = —r,v= —r and § =¢ = ( =0 in Theorem 2.1, we have
that
d(Txz, Ty) < r{d(Tx,y) + d(Ty,x)}
for all x,y € X. Furthermore, we have that v =8 = —r <0,
atBt+y+tite+r(=a+B+y+d=1-2r>0
and v+ 0 + € = —r < 0. From Theorem 2.1, we have the desired result. O

Theorem 2.5. Let (X,d) be a complete metric space and let T : X — X be
contractively hybrid, i.e., there exists a real number r with 0 < r < % and

d(Tz,Ty) < r{d(Tz,y) + d(Ty,z) + d(z,y)}
for all x,y € X. Then the following hold:
(i) T has a unique fized point u in X;
(ii) for every z € X, the sequence {T"z} converges to u in X.
Proof. Puttinga =1, 3 =v=9 = —r and € = ( = 0 in Theorem 2.1, we have that
d(Tz,Ty) < r{d(Tz,y) +d(Ty,z) + d(z,y)}
for all x,y € X. Furthermore, we have that v =8 = —r <0,
at+f+y+d+et+C=a+B+7+6=1-3r>0
and v+ 0 + & = —2r < 0. From Theorem 2.1, we have the desired result. O

Next, we prove a fixed point theorem in a metric space which is a generalization
of Bogin’s fixed point theorem [2].

Theorem 2.6. Let (X, d) be a complete metric space and let T be a mapping of X
into itself. Suppose that there exist o, 8,7,0,¢,( € R such that

(2.11) ad(Tx, Ty) + Bd(z,Ty) + vd(y, Tx)
+d0d(x,y) +ed(x,Tx) + (d(y, Ty) <0
for all x,y € X, where
y<B<0,6<0, a+B8+7+5>0, a+B8+v+d+ec+(>0andec=r(
for some r € R with 1 < r. Then the following hold:

(i) T has a unique fized point u in X ;
(ii) for every z € X, the sequence {T"z} converges to a fized point w of T.

Proof. Replacing = by 7"z and y by 7"z in (2.11), we have that
(2.12) ad(T" o, T 22) + Bd(T"x, T 2x) + vd(T" o, T a)
+6d(T"x, T" M) 4+ ed(T"x, T ) + Cd(T™ e, T 22) <0

for all n € NU {0}. From d(T"z, T""2z) < d(T"z, T""'x) + d(T" 2, T" 2z) and
8 < 0, we have that

(2.13) Bd(T"x, T"2x) > Bd(T™x, T" 'a) + Bd(T™a, T 22).
From (2.12) and (2.13) we have that
(2.14) (a4 B+ Od(T" o, T 22) + (B4 6 + e)d(T"z, T ) < 0.
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We have from v < § and (2.14) that

(2.15) (a+ B+ O)d(T" e, T 2x) + (y + 6 + )d(T"z, T" ) < 0.
Suppose that ¢ > 0. Then we have from (2.15) and € = r( that
(2.16) (a4 B)d(T™ o, T 22) + (v + 6)d(T"x, T z) < 0.

From a4+ 8+ v+ > 0, we have that o + 8 > —(y + §). Furthermore, from v < 0
and § < 0, we have that a4+ 3 > —(y+ ) > 0. Then we have from (2.16) that

—(y+9)

21 d Tn+1 Tn+2 < Ld " T7L+1 .
(2.17) (T 2, T ) < P (T"2, T" );

—(y+9)
2.18 0< —=< 1.
(2.18) P
Putting A = 75:%5) in (2.18), we have from (2.20) that for any m,n € N with
m>n,

d(T"z, T™x) < d(T"z, T" ) + d(T" e, T 22) + - + d(T™ L2, T™2)
< N'd(x, Tx) + N d(x, Tx) + -+ A" Ld(z, Tx)
< N'd(z, Tx) + XN d(x, Tx) + N 2d(x, Tx) + - - -
=d(z, To)N" (1 + A+ X2 +--)
AP
=d(z, Tl’)ﬁ
Thus {T"x} is a Cauchy sequence. Since X is complete, {T"z} converges. Let
T™z — u. We also have from (2.11) that

ad(T" Mz, Tu) + Bd(T"x, Tu) 4+ vd(u, T" )
+ 6d(T"x, u) + ed(T"x, T" M) 4+ Cd(u, Tu) < 0.
Since T™x — u, we have that
ad(u, Tu) + Bd(u, Tu) 4+ vd(u, u)
+ dd(u,u) + ed(u,u) + (d(u, Tu) <0
and hence
(a+ B+ ¢)d(u,Tu) <0.
From a + § + ¢ > 0, we have that d(u,Tu) < 0 and hence Tu = u. Let p; and ps
be fixed points of T. Then we have that
ad(Tp1, Tp2) + Bd(p1, Tp2) +vd(Tp1,p2) + 6d(p1,p2)
+ed(p1, Tp1) + Cd(p2, Tp2) <0
and hence (a+ B+v+06)d(p1,p2) < 0. We have from a++~v+39 > 0 that p; = pe.
Therefore, a fixed point of T is unique.

Suppose that ¢ < 0. Then from € = r{ and 1 < r we have ( > r{ = . From
(2.15), we know that

(a+ B+ O)d(T™ o, T 2x) 4 (v + 6 + e)d(T™x, T" L z) < 0.
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Sincea+f+v+d+e+¢>0and v+ + & <0, we obtain that
(2.19) a+B+(¢>—(y+0d+¢)>0.
Then we have from (2.19) that

—(v+d+¢)
2.20 d(T" e, T 22) < Wid Tre, T )
(2.20) (4,72 < SO D g, 1ty
—(v+d+¢)
2.21 0< ———=<1
(221) a+pB+¢
Putting A = % in (2.21), we have from (2.20) that
(2.22) A(T™ e, T 2g) < Ad(T"z, T"'a) < d(T"z, T" )

and hence {d(T"z, T""'x)} is a decreasing sequence. We have from (2.11) that
ad(T"Ha, T"3e) 4+ Bd(T"x, T FBz) + yd(T" e, T 22)
4+ 6d(T"x, T"2x) + ed(T"x, T" M x) 4+ Cd(T" 22, T"32) < 0.
Since 6 < 0 and 8 < 0, we have that
ad(T" Mo, T"32) 4+ Bd(T"z, T" M 2) + Bd(T™ Lz, T 31)
+ yd(T" o, T 22) 4+ 6d(T"x, T M x) + 5d(T™ e, T 22)
+ed(T"z, T x) + Cd(T™ 2z, T 2) < 0.
Using (2.22), we have that
(a+ B)d(T" o, T B2) + (B+~ + 20 + e+ O)d(T"x, T z) <0
and hence from v < g and € < (
(o + B)d(T o, T 32) + (2 + 26 + 2¢)d(Tx, T" M z) < 0.
Sincea+f>a+B+(>—(y+d+¢e) >0, we have that

-2 )
d(TnJrlx7 Tn+356) < Md(T"w, TnJrll,);
a+p
-2
0< M < 2.
a+ 3

We also have from (2.11) that
ad(T" 22, T" ) + Bd(T™ o, T 3a) + yd(T" 2, T 2)
+0d(T™ Mo, T 22) 4+ ed(T™ e, T 22) + Cd(T™ 22, T F32) < 0
and hence
ad(T™" 2z, T"2) + Bd(T™ o, T" P 2)
+ 0d(T™ e, T 22) 4 ed(T™ o, T 22) + Cd(T™ 22, T F32) < 0.

—2(y+dé+e)
a+p8

ad(T™ 2z, T"32) 4+ Bmd(T"z, T z)
+6d(T™x, T" M x) 4 (e + O)d(T"z, T"2) < 0.

Putting m = , we have that 0 < m < 2 and

35
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On the other hand, since

a>—(B+y+d+e+()>—-28+0+e+¢) >—-(Bm+d+e+¢) >0,
we have that
—(Bm+5+€+§)d

Q@
(Bm+d+e+Q)
Q

Putting £ = M, we have that 0 < k < 1 and

A(T" 22, T"3e) < kd(T"z, T" ).
Therefore, for any even integer n, we have that
(T, T '2) < k2d(x, Tx) < k%d(m,Tm).
For any odd integer n, we have that
d(T"z, T"z) < k"2 d(Tz, T?z) < k"7 d(z, Tx).

Thus {T™z} is a Cauchy sequence. Since X is complete, {T"z} converges. Let
T™z — u. We have from (2.11) that

ad(T™ o, Tu) + Bd(T"x, Tu) + ~d(T™ 2, u)
+ 6d(T"x, u) + ed(T"x, T" M x) 4 Cd(u, Tu) < 0.
Since T™x — u, we have that
ad(u, Tu) + Bd(u, Tu) 4+ vd(u, u)
+ dd(u,u) + ed(u,u) + (d(u, Tu) <0

d(Tn+2.%', Tn+3x> < (Tnl', Tn-i-lx);

0< — <1.

and hence

(v + B+ ¢)d(u, Tu) <0.
From a + g+ ¢ > 0, we have that d(u,Tu) < 0 and hence Tu = u. Let p; and p2
be fixed points of T. Then we have that

ad(Tpy, Tp2) + Bd(p1, Tp2) + vd(Tp1, p2) + 0d(p1, p2)
+ed(p1,Tp1) + ¢d(pa2, Tp2) <0

and hence (a+ 8+v+0)d(p1,p2) < 0. We have from a+ 5 +~v+3 > 0 that p; = pe.
Therefore a fixed point of 7' is unique. This completes the proof. O

Using Theorem 2.6, we obtain the following fixed point theorem which was proved
by Bogin [2].

Theorem 2.7 ( [2]). Let (X,d) be a complete metric space and let T' be a mapping
of X into itself. Suppose that there exist a,b,c € R such that
(2.23)  d(Tz,Ty) < ad(z,y) + b(d(z, Tz) + d(y, Ty)) + c(d(z, Ty) + d(y, Tz))
for all x,y € X, where

a>0,b>0, ¢c>0and a+2b+2c=1.
Then T has a unique fixed point u in X.
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Proof. We have from (2.23) that

d(Tz,Ty) — c(d(z, Ty) + d(y,Tz)) — ad(z,y) — b(d(z, Tz) + d(y,Ty)) <0

for all z,y € X. Puttinga =1, 8 =7 = —¢, § = —a and € = ( = —b in Theorem

2.6,

we have that 8 =7 = —c <0, and § = —a < 0. Furthermore, we have that

a+pB+7+0=1-2c—a=2b>0, a++7+d+e+(=1-2c—a—-2b=0

and € = (. Therefore, from Theorem 2.6, we have the desired result. O

(1]

(9]

[10]
(11]

[12]
(13]
(14]
(15]
(16]
(17]
18]
(19]

[20]

REFERENCES

S. Banach, Sur les opérations dans les ensembles abstraits et leur application auz équations
intégrales, Fund. Math. 3 (1922), 133-181.

J. E. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimi, Canad. Math.
Bull. 19 (1976), 7-12.

S. K. Chatterjea, Fized-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.

K. Goebel and W. A. Kirk, Topics in Metric Fized Point Theory, Cambridge University Press,
Cambridge, 1990.

K. Hasegawa, T. Komiya, and W. Takahashi, Fized point theorems for general contractive
mappings in metric spaces and estimating expressions, Sci. Math. Jpn. 74 (2011), 15-27.

T. Ibaraki and W. Takahashi, Fized point theorems for nonlinear mappings of nonexpansive
type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21-32.

S. Iemoto and W. Takahashi, Approzimating common fixed points of nonexpansive mappings
and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082—2089.

S. Iemoto, W. Takahashi and H. Yingtaweesittikul, Nonlinear operators, fixed points and com-
pleteness of metric spaces, in Fixed Point Theory and its Applications (L. J. Lin, A. Petrusel
and H. K. Xu Eds.), Yokohama Publishers, Yokohama, 2010, pp. 93-101.

S. Itoh and W. Takahashi, The common fized point theory of singlevalued mappings and mul-
tivalued mappings, Pacific J. Math. 79 (1978), 493-508.

R. Kannan, Some results on fized points. II, Amer. Math. Monthly 76 (1969), 405-408.

T. Kawasaki and W. Takahashi, Fized point and nonlinear ergodic theorems for new nonlinear
mappings in Hilbert spaces, J. Nonlinear Convex Anal. 13 (2012), 529-540.

T. Kawasaki and W. Takahashi, Fzistence and mean approzimation of fixed points of general-
ized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013), 71-87.

P. Kocourek, W. Takahashi and J.-C. Yao, Fized point theorems and weak convergence theorems
for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
F. Kohsaka and W. Takahashi, Fxistence and approximation of fized points of firmly
nonexpansive-type mappings in Banach spaces, STAM J. Optim. 19 (2008), 824-835.

F. Kohsaka and W. Takahashi, Fized point theorems for a class of nonlinear mappings related
to mazimal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008), 166-177.
W. Takahashi, Nonlinear Functional Analysis. Fized Points Theory and its Applications, Yoko-
hama Publishers, Yokohama, 2000.

W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yoko-
hama, 2009.

W. Takahashi, Fized point theorems for new nonlinear mappings in a Hilbert space, J. Nonlin-
ear Convex Anal. 11 (2010), 79-88.

W. Takahashi, N.-C. Wong and J.-C. Yao, Fixed point theorems for new generalized hybrid
mappings in Hilbert spaces and applications, Taiwanese J. Math. 17 (2013), 1597-1611.

T. Zamfirescu, Fized point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292-298.




38 S. M. ALSULAMI AND W. TAKAHASHI

Manuscript received 29 August 2015
revised 30 September 2015

SAUD M. ALSULAMI
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi
Arabia

E-mail address: alsulami@kau.edu.sa

WATARU TAKAHASHI
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi
Arabia; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp; wataru@a0O.itscom.net



