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18 J. INTRAKUL AND P. CHAOHA

Then, S−1 = S, and for t ∈ (−1, 1], St is always a retract of B. Define κ : [−1, 1] → R
by

κ(t) = inf{k : there exists a k-lipschitzian retraction from B onto St}.

Following from [4], we have

- κ(1) = 0;
- if dimH <∞, κ(−1) = ∞, and for −1 < t < 1, κ(t) ≥ arccos t√

1−t2
;

- if dimH = ∞, κ(−1) = k0(H), and for −1 < t < 1,

κ(t) ≤ min
{ 2

1 + t
, (1 + k0(H))k0(H)

}
.

Moreover, the following question is still open (see [4]) :

What is the precise formula for κ(t) in both cases dimH <∞ and dimH = ∞?

Notice that, for an infinite-dimensional Hilbert space H, the last inequality above
amounts to saying that (1 + k0(H))k0(H) is an upper bound of κ(t) as t → −1+.
Together with Observation 3.11 [4], we obtain the inequality

1 ≤ κ(t)

k0(H)
≤ 1 + k0(H),

as t→ −1+, which is equivalent to

1

2
(
√

1 + 4κ(t)− 1) ≤ k0(H) ≤ κ(t).

This certainly gives an approximation of k0(H) in terms of κ(t) when t is closed
enough to -1. Therefore, a natural way to improve such an approximation is to

consider the upper bound of κ(t)
k0(H) which is currently known to be 1 + k0(H) ∈

(5.5, 29.99].
In this work, we will answer the open problem mentioned above for a finite-

dimensional Hilbert space by giving a concrete construction of an (arccos t√
1−t2

)-lipschitzian

retraction, and give a sharper upper bound of κ(t) for an infinite-dimensional Hilbert
space that leads to a better approximation of k0(H) in term of κ(t) when t is closed
enough to -1.

Throughout this work, all retractions are assumed to be lipschitzian. Denote by
PA the nearest point projection onto A, which is nonexpansive if A is convex, and
by ν(x) the unit vector x

∥x∥ for every x ∈ H − {0} and ν(0) = 0.

2. Roof maps

We first introduce the notion of roof maps which is essential for our construction
in the next section. Let H be the Euclidean plane R2 throughout this section, and
e = (0, 1). Denote by △PQR the isosceles triangle in R2 whose base is the segment
QR and legs are segments PQ and PR (see Figure 1(A)), and by ▲PQR the closed
region bounded by △PQR (see Figure 1(B)).

Definition. A selfmap r : ▲PQR→ PQ ∪ PR is called a roof map if

r = (PQR|PQ∪PR)
−1 ◦ PQR



RETRACTION FROM A UNIT BALL ONTO ITS SPHERICAL CUP 19

(see Figure 1(C)). Notice that r(▲PQR) = PQ ∪ PR; i.e., r is surjective onto legs
of ▲PQR.

Figure 1. △PQR, ▲PQR and the roof map.

Properties 2.1. Let r be the roof map defined on ▲PQR. Then

(i) r|QR is both injective and expansive; i.e., for each x, y ∈ QR, ∥r(x)−r(y)∥ ≥
∥x− y∥;

(ii) for each x ∈ ▲PQR, r(x) = r ◦ PQR(x).

For a fixed −1 < t < 1, we recall that Bt = [−
√
1− t2,

√
1− t2] × {t}, Dt =

{(x, s) : ∥(x, s)∥ ≤ 1, s ≥ t} and St = {(x, s) : ∥(x, s)∥ = 1, s ≥ t} (see Figure 2(A)).

For each ϕ ∈ R and P,Q ∈ St, let ρϕ denote (−
√
1− t2 cosϕ+t sinϕ,

√
1− t2 sinϕ+

t cosϕ) (see Figure 2(B)), and ∢(P,Q) denote the central angle of the arc

)
PQ, i.e.,

∢(P,Q) = arccos ⟨P,Q⟩ ∈ [0, π]. Then |ϕ−θ| = ∢(ρϕ, ρθ) for all ϕ, θ ∈ [0, 2 arccos t],
and the homeomorphism φ : [0, 1] → St defined by φ(a) = φa = ρ2a arccos t clearly
satisfies:

∢(φa, φb)

∢(φc, φd)
=

∢(ρ2a arccos t, ρ2b arccos t)
∢(ρ2c arccos t, ρ2d arccos t)

=
2|a− b| arccos t
2|c− d| arccos t

=
|a− b|
|c− d|

,

for all a, b, c, d ∈ [0, 1]. Note that, by substituting c = 1 and d = 0,

∢(φa, φb) = |a− b|∢(φ1, φ0) = 2|a− b| arccos t.
The above relation of φ shows that each a, b, c ∈ [0, 1] with |a− b| = |a− c| induce
▲φaφbφc on Dt, and hence, by setting p = 1

2(a+ b) and q = 1
2(a+ c),

▲φaφbφc ∩ ▲φpφaφb = φaφb and ▲φaφbφc ∩ ▲φqφaφc = φaφc.

Let D = {m
2n ∈ [0, 1] : m,n ∈ N ∪ {0}}. Then D = [0, 1] and φ(D) = St. For

convenience, write ▲m
n for ▲φ 2m−1

2n
φ m−1

2n−1
φ m

2n−1
for all m,n ∈ N with m ≤ n (see

Figure 3). Thus ∪
{▲m

n : n,m ∈ N,m ≤ n} = Dt.

For each m,n ∈ N with m ≤ n, let rmn be the roof map defined on ▲m
n , and write

▲n =
∪

m≤n▲m
n for any n ∈ N. Then rn := (

∪
m≤n r

m
n : ▲n → ▲n) maps each ▲m

n ,
m ≤ n, onto its legs. By letting P1 be the projection Pspan{(1,0)}, it is straightforward
to verify the following properties for every (x, s) ∈ ▲n :
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(1) P1 ◦ rn(x, s) = −P1 ◦ rn(−x, s);
(2) ∥P1(x, s)− (0, t)∥ =

√
|x|2 + t2 ≤

√
|P1 ◦ rn(x, s)|2 + t2

= ∥P1 ◦ rn(x, s)− (0, t)∥;
(3) ν(P1(x, s)) = ν(x, 0) = ν(P1 ◦ rn(x, s)).

For each n ∈ N, define fn : Dt → Dt by

fn :=
∪
k≤n

(rn ◦ rn−1 ◦ · · · ◦ rk) ∪ idDt−
∪

m≤n ▲m

(see Figure 4). That is, fn maps
∪

m≤n▲m continuously onto all legs of ▲n, but

fixes Dt −
∪

m≤n▲m. Observe that
∪

m≤n▲m is convex. By defining a ( 1
2
√
1−t2

)-

lipschitzian homeomorphism

ψ : [−
√

1− t2,
√

1− t2]× {t} → [0, 1], (x, t) 7→ x+
√
1− t2

2
√
1− t2

,

each fn satisfies fn ◦ ψ−1(m
2n ) = φ(m

2n ) for all m = 0, . . . , 2n.

Figure 2. Bt, Dt, St in R2 and ρϕ.

Figure 3. φn’s and ▲m
n ’s.

Figure 4. Maps f1, f2 and f3 where the gray areas are fixed.
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Denote by hn and ln the (common) height and the (common) legs’ length of
▲1
n, . . . ,▲n

n, respectively. For each n ∈ N, since all ▲m
n ’s are defined on the unit ball,

hn < ln = |φ0φ 1
2n
| ≤ ∢(φ0, φ 1

2n
) = 2

∣∣∣∣0− 1

2n

∣∣∣∣ arccos t = arccos t

2n−1
.

Lemma 2.2. The sequence (fn) converges uniformly.

Proof. For each n ∈ N, observe that fn(x) ̸= fn+1(x) only if x ∈ ▲n. Then

∥fn − fn+1∥∞ = sup
x∈▲n

∥fn(x)− fn+1(x)∥ = hn <
arccos t

2n−1
,

and the result follows immediately from the fact that

∥fn − fm∥∞ ≤
n−1∑
i=m

∥fi+1 − fi∥∞ ≤
∞∑

i=k+1

arccos t

2i−1
=

arccos t

2k−1
,

for each n ≥ m > k. □
Throughout this work, we let f = limn→∞ fn. Then f is continuous by the

previous lemma, and clearly, f(Dt) =
∩

n∈N fn(Dt) = St. The followings are some
properties of f :

Properties 2.3.

(i) P1 ◦ f(x, s) = −P1 ◦ f(−x, s) for all (x, s) ∈ Dt;
(ii) ∥P1(x, s)− (0, t)∥ ≤ ∥P1 ◦ f(x, s)− (0, t)∥ for all (x, s) ∈ Dt;
(iii) ν(P1(x, s)) = ν(x, 0) = ν(P1 ◦ f(x, s)) for all (x, s) ∈ Dt;
(iv) f |Bt = φ ◦ ψ, which is a homeomorphism;
(v) each x ∈ Dt has its unique associated base point x0 ∈ Bt in sense that

f(x) = f(x0);
(vi) ∥x0 − y0∥ ≤ ∥x− y∥ for all x, y ∈ Dt.

Proof. The properties of rn’s imply (i)-(iii) while the properties of fn’s imply (iv).
(v) follows from (iv), and (vi) follows from (ii) and (v). □

3. Main results

We will give a new upper bound of κ(t) that simultaneously yields the precise
formula of κ(t) for a finite-dimensional Hilbert space, and a sharper upper bound
of κ(t) for an infinite-dimensional Hilbert space.

As usual, let (H, ⟨·, ·⟩) be a (real) Hilbert space, H = E⊕span{e} = E⊕R, where
E is the orthogonal complement of e. Each element inH can be uniquely represented
as x ⊕ y, for some x ∈ E and y = ⟨x, e⟩ ∈ R, and hence ∥x ⊕ y∥2 = ∥x∥2 + |y|2.
Recall that every n-dimensional Hilbert space is isometrically isomorphic to the n-
dimensional Euclidean space Rn. Also, it is straightforward to verify the following
proposition :

Proposition 3.1. For each ϕ ∈ (0, π) and s > 0, the map (0, 1) → R defined by

r 7→
√

2−2 cos(rϕ)

rs is decreasing with supr∈(0,1)

√
2−2 cos(rϕ)

rs = ϕ
s .

Lemma 3.2. Let △APP ′, △BQQ′, △CRR′ and △CSS′ be pairwise similar isosce-
les triangles on parallel planes in Rn, where n ≥ 3, with relations:
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(i) [A,B,C] are collinear and perpendicular to each triangles;
(ii) {Q,R, S} ⊆ span{B −A,P −A} and {Q′, R′, S′} ⊆ span{B −A,P ′ −A};
(iii) ∥R−R′∥ ≤ ∥S − S′∥;
(iv) ∥P − P ′∥ ≤ ∥Q−Q′∥ (so that ∥A− P∥ ≤ ∥B −Q∥).

Set ϕ = the base-angle of each triangles (i.e. ϕ = P̂ = P̂ ′ = Q̂ = Q̂′ = Ŝ =

Ŝ′ = ∠CRR′ = ∠CR′R),

p = ∥P − P ′∥, q = ∥Q−Q′∥, l = ∥P −Q∥ = ∥P ′ −Q′∥,
h = ∥A−B∥, k = ∥B −Q∥ − ∥A− P∥, n = ∥P −Q′∥ = ∥P ′ −Q∥,
r = ∥R−R′∥, s = ∥R− S∥ = ∥R′ − S′∥, t = ∥R− S′∥ = ∥R′ − S∥

(see Figure 5). If either p
r ,

l
s ≤ α or q

r ,
l
s ≤ α for some α > 0, so is n

t .

Figure 5. Relations of isosceles triangle in Lemma 3.2.

Proof. Note that cosϕ ≥ 0 because ϕ is the base-angle of the isosceles triangle.
Consider the following cases.
Case I: p

r ,
l
s ≤ α for some α > 0. Then

n2

t2
=

h2 + (k2 + p2 − 2kp cos(π − ϕ))

s2 + r2 − 2sr cos(π − ϕ)

=
(h2 + k2) + p2 + 2kp cosϕ

s2 + r2 + 2sr cosϕ

≤ l2 + p2 + 2lp cosϕ

s2 + r2 + 2sr cosϕ
.

Case II: q
r ,

l
s ≤ α for some α > 0. Then

n2

t2
=
h2 + (k2 + q2 − 2kq cosϕ)

s2 + r2 − 2sr cos(π − ϕ)
≤ (h2 + k2) + q2 + 2kq| cosϕ|

s2 + r2 + 2sr cosϕ
≤ l2 + q2 + 2lq cosϕ

s2 + r2 + 2sr cosϕ
.

Recall that for each a, b, c, d, k > 0, a+b
c+d ≤ k if a

c ,
b
d ≤ k. Therefore, since l2

s2
≤ α2,

p2

r2
≤ α2 (or q2

r2
≤ α2) and 2lp cosϕ

2sr cosϕ ≤ α2 (or 2lq cosϕ
2sr cosϕ ≤ α2), it follows that n

t ≤ α. □

Theorem 3.3. For each −1 < t < 1,

κ(t) ≤ arccos t√
1− t2

.
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Proof. Let −1 < t < 1, and write kt = arccos t√
1−t2

. If a kt-lipschitzian retraction

F : Dt → St exists, F ◦ PDt : B → St is also a kt-lipschitzian retraction because
PDt : B → Dt is nonexpansive, and so, the proof is complete. Thus it suffices to
show the existence of such a map F . Consider the following cases.
Case I: dimH = 2.

The map f defined in the previous section plays the role of F in this case. To see
this, it suffices, by Properties 2.3(iii)-(v), to prove that f |Bt = φ◦ψ is kt-lipschitzian.
Let x ̸= y ∈ Bt. Then x = ψ−1(a) and y = ψ−1(b) for some a, b ∈ [0, 1]. Since ψ is
( 1
2
√
1−t2

)-lipschitzian, |a− b| = |ψ(x)− ψ(y)| ≤ 1
2
√
1−t2

∥x− y∥, which implies that

∥f(x)− f(y)∥
∥x− y∥

=
∥φa − φb∥
∥x− y∥

≤
√

2− 2 cos∢(φa, φb)

2|a− b|
√
1− t2

=

√
2− 2 cos(2|a− b| arccos t)

2|a− b|
√
1− t2

.

Note that arccos t ∈ (0, π) and 2
√
1− t2 > 0. By Proposition 3.1, we obtain

∥f(x)− f(y)∥
∥x− y∥

≤ lim
2|r−s|→0+

√
2− 2 cos(2|r − s| arccos t)

2|r − s|
√
1− t2

=
arccos t√
1− t2

= kt.

Case II: dimH > 2.
Observe that (span{e, x} ∩Dt) ∩ (span{e, y} ∩Dt) = span{e} ∩Dt for any x ̸=

y ∈ Bt ∩ St. Let F =
∪

p∈Bt∩St fp : Dt → St, where fp is the map f defined on

span{e, p} ∩ Dt. Then F is a kt-lipschitzian retraction. To see this, without loss
of generality, let A = x ⊕ r, C = y ⊕ s ∈ H − span{e}. If A ∈ span{e, C}, the
proof follows from Case I. Assume A /∈ span{e, C}. Write FA = xf ⊕ rf and

FC = yf ⊕ sf . Set P =
∥yf∥
∥xf∥xf ⊕ sf = zf ⊕ sf and Q =

∥xf∥
∥yf∥yf ⊕ rf = wf ⊕ rf .

By Properties 2.3(v), there are A0 = xt ⊕ t, P0 = zt ⊕ t ∈ span{e, x ⊕ 0} ∩ Bt and
C0 = yt ⊕ t,Q0 = wt ⊕ t ∈ span{e, y ⊕ 0} ∩ Bt such that FA = FA0, FC = FC0,
P = FP = FP0 and Q = FQ = FQ0. Since the isometric isomorphism among
span{e, A}, span{e, C} and R2 yields ∥zt∥ = ∥yt∥, ∥zf∥ = ∥yf∥, ∥wt∥ = ∥xt∥ and
∥wf∥ = ∥xf∥, this shows that △(FA, 0⊕ rf , Q), △(FC, 0⊕ sf , P ), △(A0, 0⊕ t,Q0)
and △(C0, 0⊕ t, P0) form isosceles triangles as required by Lemma 3.2. Recall from
Properties 2.3(iii) that ν(zf ) = ν(zt) and ν(yf ) = ν(yt). Then ∢(yt, zt) = ∢(yf , zf ),
and so,

∥FC0 − FP0∥2 = ∥yf − zf∥2 = (2− 2 cos∢(yf , zf ))∥yf∥2

≤ (2− 2 cos∢(yt, zt))∥FC − e∥2

= (2− 2 cos∢(yt, zt))∥fCC0 − fC(0⊕ t)∥2

≤ k2t (2− 2 cos∢(yt, zt))∥C0 − (0⊕ t)∥2

≤ k2t (2− 2 cos∢(yt, zt))∥yt∥2

= k2t ∥(yt ⊕ t)− (zt ⊕ t)∥2 = k2t ∥C0 − P0∥2.
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Since fA is kt-lipschitzian, ∥FP0 − FA0∥ ≤ kt∥P0 − A0∥. Apply Lemma 3.2 and
Properties 2.3(vi), hence

∥FA− FC∥ = ∥FA0 − FC0∥ ≤ kt∥A0 − C0∥ ≤ kt∥A− C∥. □

Corollary 3.4. For every finite-dimensional Hilbert space and −1 < t < 1,

κ(t) =
arccos t√
1− t2

.

Proof. Follows directly from Theorem 3.3 and the fact that κ(t) ≥ arccos t√
1−t2

[4, Ob-

servation 3.5]. □

We are now assume that H is infinite-dimensional. For convenience, we write
k0 = k0(H). Notice that, in this case, H is isometrically isomorphic to E because
E has co-dimension one.

For 0 < ϕ < π
2 and s ∈ R, define the cone Cϕ, its boundary Vϕ, and the parallel

cone section Bs(Cϕ) of the cone Cϕ respectively by

- Cϕ = {x⊕ r ∈ E ⊕ R : ∥x∥ ≤ r cotϕ};
- Vϕ = {x⊕ r ∈ E ⊕ R : ∥x∥ = r cotϕ};
- Bs(Cϕ) = Cϕ ∩ Es = Cϕ ∩ (E + se).

We also let

- −Cϕ = {x⊕ r ∈ E ⊕ R : ∥x∥ ≤ −r cotϕ};
- Cϕ,s = Cϕ + se.

Notice that r ≥ 0 for both Cϕ and Vϕ, while r ≤ 0 for −Cϕ, and r ≥ s for Cϕ,s.

Lemma 3.5. Let 0 < ϕ < π
2 . Each A = x ⊕ r, B = y ⊕ s and P = r

sy ⊕ r in Cϕ

with r ≥ s > 0 satisfy

2 ⟨P −A,P −B⟩ ≤ (∥P −A∥2 + ∥P −B∥2) cosϕ

Proof. Let A,B,C ∈ Cϕ be as above. Set Q = ∥ r
sy−x∥

y
∥y∥⊕0. Then ∥Q∥ = ∥P−A∥

and

⟨P −A,P −B⟩ =
⟨(r

s
y − x

)
⊕ 0,

(r
s
− 1
)
y ⊕ (r − s)

⟩
=
⟨(r

s
y − x

)
⊕ 0,

(r
s
− 1
)
y ⊕ 0

⟩
≤
∥∥∥r
s
y − x

∥∥∥(r
s
− 1
)
∥y∥

=

⟨∥∥∥r
s
y − x

∥∥∥ y

∥y∥
⊕ 0,

(r
s
− 1
)
y ⊕ 0

⟩
=

⟨∥∥∥r
s
y − x

∥∥∥ y

∥y∥
⊕ 0,

(r
s
− 1
)
y ⊕ (r − s)

⟩
= ⟨Q,P −B⟩ .

Recall the following equivalence:

∥y∥ ≤ s cotϕ ⇐⇒ ∥y∥2(1− (cosϕ)2) ≤ (s cosϕ)2 ⇐⇒ ∥y∥√
∥y∥2 + s2

≤ cosϕ.
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Since ∥P−A∥∥P−B∥ = ∥Q∥∥P−B∥ = ∥ r
sy−x∥(

r
s−1)

√
∥y∥2 + s2 and ∥y∥ ≤ s cotϕ,

⟨P −A,P −B⟩
∥P −A∥∥P −B∥

≤ ⟨Q,P −B⟩
∥P −A∥∥P −B∥

=
∥y∥√

∥y∥2 + s2
≤ cosϕ,

which implies that

2 ⟨P −A,P −B⟩ ≤ 2∥P −A∥∥P −B∥ cosϕ ≤
(
∥P −A∥2 + ∥P −B∥2

)
cosϕ. □

Lemma 3.6. Let g : BE → SE be k-lipschitzian and 0 < ϕ < π
2 . The map

G : Cϕ → Dϕ defined by G(0 ⊕ 0) = 0 ⊕ 0, and G(x ⊕ r) = (r cotϕ)g( x
r cotϕ) ⊕ r if

r > 0, is max{k,cscϕ}√
1−cosϕ

-lipschitzian.

Proof. Firstly, let us observe that the maps 0 7→ 0, and x 7→ (r cotϕ)g( x
r cotϕ) for

r > 0, on {x : ∥x∥ ≤ r cotϕ} ⊆ E is k-lipschitzian. Without loss of generality, let
A = x ⊕ r,B = y ⊕ s ∈ Cϕ where r ≥ s. The case r = s is clear. The case s = 0
yields y = 0, which implies that

∥GA−GB∥2 = ∥GA∥2 = (r cotϕ)2 + r2 = (r cscϕ)2

≤ (cscϕ)2(∥x∥2 + r2) = (cscϕ)2∥A−B∥2.
For case r > s > 0, let P = r

sy ⊕ r ∈ Cϕ. Apply Lemma 3.5 to obtain

∥A−B∥2 = ∥P −A∥2 + ∥P −B∥2 − 2 ⟨P −A,P −B⟩
≥ (1− cosϕ)(∥P −A∥2 + ∥P −B∥2).

Recall that ⟨g(z)⊕ 0, g(w)⊕ 0⟩ ≤ 1 = ∥g(z)∥2 for all z, w ∈ B, GA =
(r cotϕ)g( x

r cotϕ) ⊕ r, GB = (s cotϕ)g( y
s cotϕ) ⊕ s and GP = (r cotϕ)g( y

s cotϕ) ⊕ r.

Then

⟨GP −GA,GP −GB⟩ =
⟨
(r cotϕ)

(
g

(
y

s cotϕ

)
− g

(
y

r cotϕ

))
⊕ 0,

((r − s) cotϕ)g

(
y

s cotϕ

)
⊕ (r − s)

⟩
= r(r − s)(cotϕ)2

(∥∥∥∥g( y

s cotϕ

)∥∥∥∥2 −⟨g( y

r cotϕ

)
⊕ 0, g

(
y

s cotϕ

)
⊕ 0

⟩)
≥ 0,

and hence, again by Lemma 3.5,

∥GA−GB∥2 = ∥GP −GA∥2 + ∥GP −GB∥2 − 2 ⟨GP −GA,GP −GB⟩
≤ ∥GP −GA∥2 + ∥GP −GB∥2

≤ k2∥P −A∥2 +
∥∥∥∥(r − s)(cotϕ)g

(
y

s cotϕ

)
⊕ (r − s)

∥∥∥∥2
= k2∥P −A∥2 + (1 + cot2 ϕ)(r − s)2

≤ k2∥P −A∥2 + (csc2 ϕ)∥P −B∥2

≤ max{k2, csc2 ϕ}(∥P −A∥2 + ∥P −B∥2)

≤ max{k2, csc2 ϕ}
1− cosϕ

∥A−B∥2.
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□

Figure 6. Points A,B, P,GA,GB and GP in Lemma 3.6.

Lemma 3.7. Let g : E → E be k-lipschitzian where k ≥ 1. The map G : H → H
defined by G(x⊕ r) = gx⊕ r is k-lipschitzian.

Proof. Let A = x⊕ r,B = y ⊕ s ∈ H. Then

∥GA−GB∥2 = ∥gx− gy∥2 + |r− s|2 ≤ k2
(
∥x− y∥2 + |r − s|2

)
= k2∥A−B∥2. □

Theorem 3.8. For every infinite-dimensional Hilbert space and −1 ≤ t ≤ 1,

κ(t) ≤ 3
√
3

2
k0.

Proof. Recall that κ(−1) = k0 and κ(t) ≤ arccos t√
1−t2

< 11.2 < 3
√
3

2 k0 if −1+
√
3

2
√
2
< t ≤ 1.

It suffices to assume that −1 < t ≤ −1+
√
3

2
√
2
. Let ε > 0. By the definition of k0,

there exists a (k0 + ε)-lipschitzian retraction gε : B → S. Fix 0 < ϕ < π
2 . Construct

two cones C1 = −Cϕ+e and C2 = Cϕ,(t−
√
1−t2 tanϕ). Let Fs be the common parallel

cone section of C1 and C2, i.e., Fs = Bs(C1) ∩ Bs(C2) = Bs(C1) = Bs(C2).
Case I: Fs ⊆ Dt.

Let P = {x⊕ r ∈ C1 : r ≥ s} ⊆ Dt and Q = {x⊕ r ∈ C2∩Dt : r ≤ s} (see Figure
7(A)). Then A = P ∪Q is convex.
Case II: Fs ⊈ Dt.

Let a = max{r : Br(C2) ⊆ Dt}. Set P = {x⊕ r ∈ C1 : r ≥ 1− (
√
1− a2) tanϕ},

Q = {x ⊕ r ∈ C2 ∩Dt : r ≤ a} and construct a cylinder R = {x ⊕ r ∈ Dt : ∥x∥ ≤√
1− a2, a ≤ r ≤ 1 − (

√
1− a2) tanϕ} (see Figure 7(B)). Then A = P ∪ Q ∪ R is

convex with P ∩Q = ∅, P ∩R = B1−
√
1−a2 tanϕ(C1) and Q ∩R = Ba(C2).

Recall that BE = B ∩ E and SE = S ∩ E. Since E and H are isometrically
isomorphic, there is a (k0 + ε)-lipschitzian retraction gε : BE → SE . By applying
Lemma 3.6 and Lemma 3.7 with the map gε to P , Q and R in both cases, there

exists a max{k0+ε,cscϕ}√
1−cosϕ

-lipschitzian retraction G : A→ ∂A−B◦
t (because k0+ ε > 1,

√
1− cosϕ

−1
> 1 and A is convex).
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The straightforward calculation shows that for each −1 < t ≤ −1+
√
3

2
√
2
,

inf{∥x⊕ r∥ : x⊕ r ∈ ∂A− B◦
t } = inf{∥x⊕ r∥ : x⊕ r ∈ P}

= inf{∥x⊕ r∥ : ∥x∥ = (1− r) cotϕ}

= inf{
√

((1− r) cotϕ)2 + r2 : −1 < r < 1} = cosϕ.

Denote by ρ the radial projection onto S. Then ρ ◦ G ◦ PDt : B → St is a
max{k0+ε,cscϕ}
(
√
1−cosϕ) cosϕ

-lipschitzian retraction. Finally, by minimizing such a Lipschitz con-

stant, a 3
√
3

2 (k0 + ε)-lipschitzian retraction is obtained at ϕ = arccos 2
3 . □

Figure 7. The set A (white area) in Theorem 3.8.

By Theorem 3.3, Theorem 3.8 and Observation 3.9 [4], we obtain :

Corollary 3.9. For every infinite-dimensional Hilbert space and −1 ≤ t ≤ 1,

κ(t) ≤ min

{
2

1 + t
,
arccos t√
1− t2

,
3
√
3

2
k0

}
.

Moreover, by combining Theorem 3.8 and Observation 3.11 [4], we have the
following better approximation results :

Corollary 3.10. For every infinite-dimensional Hilbert space, there exists −1 <
a < 1 such that

2

3
√
3
κ(t) ≤ k0 ≤ κ(t),

or equivalently,

1 ≤ κ(t)

k0
≤ 3

√
3

2
≈ 2.59808

for all −1 < t < a.
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