Yokohama Publishers

Volume 2, Number 1, 2016, 17-28
ISSN 2188-8167 Copyright 2016

RETRACTION FROM A UNIT BALL ONTO ITS SPHERICAL CUP

JUMPOT INTRAKUL* AND PHICHET CHAOHA ${ }^{\dagger}$

Abstract

The Lipschitz constant of an optimal retraction from a unit ball in a Hilbert space onto its spherical cup is reinvestigated to obtain a precise formula for a finite-dimensional Hilbert space, and an improved upper bound for an infinite-dimensional Hilbert space.

1. Introduction and preliminaries

It is generally known that, in an infinite-dimensional normed space, there is a retraction from a unit ball onto its boundary. However, the existence of the lipschitzian version of such a retraction is far from trivial, but was finally accomplished by Nowak [6], and Benyamini and Sternfeld [2]. Since then, the quest for the least possible Lipschitz constant of such a retraction became interesting. To be pricise, for a given normed space X, let B_{X} and S_{X} denote the unit ball centered at the origin and its sphere (boundary), respectively. The so-called optimal retraction constant for X, denoted by $k_{0}(X)$, is defined to be

$$
k_{0}(X):=\inf \left\{k: \text { there exists a } k \text {-lipschitzian retraction from } \mathrm{B}_{X} \text { onto } \mathrm{S}_{X}\right\} .
$$

Although it has been more than thirty years after the birth of this problem, the exact value of $k_{0}(X)$ is still unknown for a Banach space. Only approximations for some Banach spaces are found; for example, $k_{0}\left(\ell_{1}\right) \in[4,8], k_{0}(C[0,1]) \in[3,14.93]$, $k_{0}(B C(\mathbb{R})) \in[3,6.83]$, and when H is a Hilbert space, $k_{0}(H) \in(4.5,28.99]$ (see [1], [5], [7] and [3]). Until recently, Chaoha, Goebel, and Termwuttipong [4] studied this problem in a Hilbert space by considering only a certain part of the sphere, namely the spherical cup, as the image of the retraction. This leads to a new constant $\kappa(t)$ defined as follows :

Let $(H,\langle\cdot, \cdot\rangle)$ be a (real) Hilbert space, $\mathrm{B}=\mathrm{B}_{H}, \mathrm{~S}=\mathrm{S}_{H}, \mathrm{e} \in \mathrm{S}$ and $E=\operatorname{span}\{\mathrm{e}\}^{\perp}$ the orthogonal complement of e. For each $t \in[-1,1]$,

- the parallel hyperplane is $E_{t}:=E+t$;
- the parallel ball section is $\mathrm{B}_{t}:=\mathrm{B} \cap E_{t}$;
- the lense cut by E_{t} is $D_{t}:=\{x \in \mathrm{~B}:\langle x, \mathrm{e}\rangle \geq t\}$;
- the spherical cup cut by E_{t} is $\mathrm{S}_{t}:=D_{t} \cap \mathrm{~S}$.

[^0]Then, $\mathrm{S}_{-1}=\mathrm{S}$, and for $t \in(-1,1], \mathrm{S}_{t}$ is always a retract of B . Define $\kappa:[-1,1] \rightarrow \mathbb{R}$ by
$\kappa(t)=\inf \left\{k:\right.$ there exists a k-lipschitzian retraction from B onto $\left.S_{t}\right\}$.
Following from [4], we have
$-\kappa(1)=0 ;$

- if $\operatorname{dim} H<\infty, \kappa(-1)=\infty$, and for $-1<t<1, \kappa(t) \geq \frac{\arccos t}{\sqrt{1-t^{2}}}$;
- if $\operatorname{dim} H=\infty, \kappa(-1)=k_{0}(H)$, and for $-1<t<1$,

$$
\kappa(t) \leq \min \left\{\frac{2}{1+t},\left(1+k_{0}(H)\right) k_{0}(H)\right\}
$$

Moreover, the following question is still open (see [4]) :
What is the precise formula for $\kappa(t)$ in both cases $\operatorname{dim} H<\infty$ and $\operatorname{dim} H=\infty$?
Notice that, for an infinite-dimensional Hilbert space H, the last inequality above amounts to saying that $\left(1+k_{0}(H)\right) k_{0}(H)$ is an upper bound of $\kappa(t)$ as $t \rightarrow-1^{+}$. Together with Observation 3.11 [4], we obtain the inequality

$$
1 \leq \frac{\kappa(t)}{k_{0}(H)} \leq 1+k_{0}(H)
$$

as $t \rightarrow-1^{+}$, which is equivalent to

$$
\frac{1}{2}(\sqrt{1+4 \kappa(t)}-1) \leq k_{0}(H) \leq \kappa(t)
$$

This certainly gives an approximation of $k_{0}(H)$ in terms of $\kappa(t)$ when t is closed enough to -1 . Therefore, a natural way to improve such an approximation is to consider the upper bound of $\frac{\kappa(t)}{k_{0}(H)}$ which is currently known to be $1+k_{0}(H) \in$ (5.5, 29.99].

In this work, we will answer the open problem mentioned above for a finitedimensional Hilbert space by giving a concrete construction of an $\left(\frac{\arccos t}{\sqrt{1-t^{2}}}\right)$-lipschitzian retraction, and give a sharper upper bound of $\kappa(t)$ for an infinite-dimensional Hilbert space that leads to a better approximation of $k_{0}(H)$ in term of $\kappa(t)$ when t is closed enough to -1 .

Throughout this work, all retractions are assumed to be lipschitzian. Denote by P_{A} the nearest point projection onto A, which is nonexpansive if A is convex, and by $\nu(x)$ the unit vector $\frac{x}{\|x\|}$ for every $x \in H-\{0\}$ and $\nu(0)=0$.

2. ROOF MAPS

We first introduce the notion of roof maps which is essential for our construction in the next section. Let H be the Euclidean plane \mathbb{R}^{2} throughout this section, and $\mathrm{e}=(0,1)$. Denote by $\triangle P Q R$ the isosceles triangle in \mathbb{R}^{2} whose base is the segment $Q R$ and legs are segments $P Q$ and $P R$ (see Figure $1(\mathrm{~A})$), and by $\triangle P Q R$ the closed region bounded by $\triangle P Q R$ (see Figure $1(\mathrm{~B})$).

Definition. A selfmap $r: \triangle P Q R \rightarrow P Q \cup P R$ is called a roof map if

$$
r=\left(\left.P_{Q R}\right|_{P Q \cup P R}\right)^{-1} \circ P_{Q R}
$$

(see Figure $1(\mathrm{C}))$. Notice that $r(\boldsymbol{\Delta} P Q R)=P Q \cup P R$; i.e., r is surjective onto legs of $\triangle P Q R$.

Figure 1. $\triangle P Q R, \triangle P Q R$ and the roof map.

Properties 2.1. Let r be the roof map defined on $\triangle P Q R$. Then
(i) $\left.r\right|_{Q R}$ is both injective and expansive; i.e., for each $x, y \in Q R,\|r(x)-r(y)\| \geq$ $\|x-y\|$;
(ii) for each $x \in \triangle P Q R, r(x)=r \circ P_{Q R}(x)$.

For a fixed $-1<t<1$, we recall that $\mathrm{B}_{t}=\left[-\sqrt{1-t^{2}}, \sqrt{1-t^{2}}\right] \times\{t\}, D_{t}=$ $\{(x, s):\|(x, s)\| \leq 1, s \geq t\}$ and $\mathrm{S}_{t}=\{(x, s):\|(x, s)\|=1, s \geq t\}$ (see Figure $2(\mathrm{~A})$). For each $\phi \in \mathbb{R}$ and $P, Q \in \mathrm{~S}_{t}$, let ρ_{ϕ} denote $\left(-\sqrt{1-t^{2}} \cos \phi+t \sin \phi, \sqrt{1-t^{2}} \sin \phi+\right.$ $t \cos \phi$) (see Figure $2(\mathrm{~B})$), and $\varangle(P, Q)$ denote the central angle of the arc $\overparen{P Q}$, i.e., $\varangle(P, Q)=\arccos \langle P, Q\rangle \in[0, \pi]$. Then $|\phi-\theta|=\varangle\left(\rho_{\phi}, \rho_{\theta}\right)$ for all $\phi, \theta \in[0,2 \arccos t]$, and the homeomorphism $\varphi:[0,1] \rightarrow \mathrm{S}_{t}$ defined by $\varphi(a)=\varphi_{a}=\rho_{2 a \arccos t}$ clearly satisfies:

$$
\frac{\varangle\left(\varphi_{a}, \varphi_{b}\right)}{\varangle\left(\varphi_{c}, \varphi_{d}\right)}=\frac{\varangle\left(\rho_{2 a \arccos t}, \rho_{2 b \arccos t}\right)}{\varangle\left(\rho_{2 c \arccos t}, \rho_{2 d \arccos t}\right)}=\frac{2|a-b| \arccos t}{2|c-d| \arccos t}=\frac{|a-b|}{|c-d|},
$$

for all $a, b, c, d \in[0,1]$. Note that, by substituting $c=1$ and $d=0$,

$$
\varangle\left(\varphi_{a}, \varphi_{b}\right)=|a-b| \varangle\left(\varphi_{1}, \varphi_{0}\right)=2|a-b| \arccos t .
$$

The above relation of φ shows that each $a, b, c \in[0,1]$ with $|a-b|=|a-c|$ induce $\mathbf{\Delta} \varphi_{a} \varphi_{b} \varphi_{c}$ on D_{t}, and hence, by setting $p=\frac{1}{2}(a+b)$ and $q=\frac{1}{2}(a+c)$,

$$
\mathbf{\Delta} \varphi_{a} \varphi_{b} \varphi_{c} \cap \mathbf{\Delta} \varphi_{p} \varphi_{a} \varphi_{b}=\varphi_{a} \varphi_{b} \quad \text { and } \quad \mathbf{\Delta} \varphi_{a} \varphi_{b} \varphi_{c} \cap \mathbf{\Delta} \varphi_{q} \varphi_{a} \varphi_{c}=\varphi_{a} \varphi_{c}
$$

Let $\mathscr{D}=\left\{\frac{m}{2^{n}} \in[0,1]: m, n \in \mathbb{N} \cup\{0\}\right\}$. Then $\overline{\mathscr{D}}=[0,1]$ and $\overline{\varphi(\mathscr{D})}=\mathrm{S}_{t}$. For convenience, write $\mathbf{\Delta}_{n}^{m}$ for $\boldsymbol{\Delta} \varphi_{\frac{2 m-1}{2^{n}}} \varphi_{\frac{m-1}{2^{n-1}}} \varphi_{\frac{m}{2^{n-1}}}$ for all $m, n \in \mathbb{N}$ with $m \leq n$ (see Figure 3). Thus

$$
\overline{\bigcup\left\{\boldsymbol{\Delta}_{n}^{m}: n, m \in \mathbb{N}, m \leq n\right\}}=D_{t} .
$$

For each $m, n \in \mathbb{N}$ with $m \leq n$, let r_{n}^{m} be the roof map defined on $\boldsymbol{\Delta}_{n}^{m}$, and write $\boldsymbol{\Delta}_{n}=\bigcup_{m \leq n} \mathbf{\Delta}_{n}^{m}$ for any $n \in \mathbb{N}$. Then $r_{n}:=\left(\bigcup_{m \leq n} r_{n}^{m}: \boldsymbol{\Delta}_{n} \rightarrow \boldsymbol{\Delta}_{n}\right)$ maps each $\boldsymbol{\Delta}_{n}^{m}$, $m \leq n$, onto its legs. By letting P_{1} be the projection $P_{\text {span }\{(1,0)\}}$, it is straightforward to verify the following properties for every $(x, s) \in \boldsymbol{\Delta}_{n}$:
(1) $P_{1} \circ r_{n}(x, s)=-P_{1} \circ r_{n}(-x, s)$;
(2) $\left\|P_{1}(x, s)-(0, t)\right\|=\sqrt{|x|^{2}+t^{2}} \leq \sqrt{\left|P_{1} \circ r_{n}(x, s)\right|^{2}+t^{2}}$

$$
=\left\|P_{1} \circ r_{n}(x, s)-(0, t)\right\| ;
$$

(3) $\nu\left(P_{1}(x, s)\right)=\nu(x, 0)=\nu\left(P_{1} \circ r_{n}(x, s)\right)$.

For each $n \in \mathbb{N}$, define $f_{n}: D_{t} \rightarrow D_{t}$ by

$$
f_{n}:=\bigcup_{k \leq n}\left(r_{n} \circ r_{n-1} \circ \cdots \circ r_{k}\right) \cup \operatorname{id}_{D_{t}-\bigcup_{m \leq n} \Delta_{m}}
$$

(see Figure 4). That is, f_{n} maps $\bigcup_{m \leq n} \mathbf{\Delta}_{m}$ continuously onto all legs of $\boldsymbol{\Delta}_{n}$, but fixes $D_{t}-\bigcup_{m \leq n} \boldsymbol{\Delta}_{m}$. Observe that $\bigcup_{m \leq n} \boldsymbol{\Delta}_{m}$ is convex. By defining a $\left(\frac{1}{2 \sqrt{1-t^{2}}}\right)$ lipschitzian homeomorphism

$$
\psi:\left[-\sqrt{1-t^{2}}, \sqrt{1-t^{2}}\right] \times\{t\} \rightarrow[0,1], \quad(x, t) \mapsto \frac{x+\sqrt{1-t^{2}}}{2 \sqrt{1-t^{2}}}
$$

each f_{n} satisfies $f_{n} \circ \psi^{-1}\left(\frac{m}{2^{n}}\right)=\varphi\left(\frac{m}{2^{n}}\right)$ for all $m=0, \ldots, 2^{n}$.

(A)

(B)

Figure 2. $\mathrm{B}_{t}, D_{t}, \mathrm{~S}_{t}$ in \mathbb{R}^{2} and ρ_{ϕ}.

Figure 3. φ_{n} 's and $\boldsymbol{\Lambda}_{n}^{m}$'s.

Figure 4. Maps f_{1}, f_{2} and f_{3} where the gray areas are fixed.

Denote by h_{n} and l_{n} the (common) height and the (common) legs' length of $\mathbf{\Delta}_{n}^{1}, \ldots, \mathbf{\Delta}_{n}^{n}$, respectively. For each $n \in \mathbb{N}$, since all $\mathbf{\Delta}_{n}^{m}$'s are defined on the unit ball,

$$
h_{n}<l_{n}=\left|\varphi_{0} \varphi_{\frac{1}{2^{n}}}\right| \leq \varangle\left(\varphi_{0}, \varphi_{\frac{1}{2^{n}}}\right)=2\left|0-\frac{1}{2^{n}}\right| \arccos t=\frac{\arccos t}{2^{n-1}}
$$

Lemma 2.2. The sequence $\left(f_{n}\right)$ converges uniformly.
Proof. For each $n \in \mathbb{N}$, observe that $f_{n}(x) \neq f_{n+1}(x)$ only if $x \in \boldsymbol{\Lambda}_{n}$. Then

$$
\left\|f_{n}-f_{n+1}\right\|_{\infty}=\sup _{x \in \mathbf{\Delta}_{n}}\left\|f_{n}(x)-f_{n+1}(x)\right\|=h_{n}<\frac{\arccos t}{2^{n-1}}
$$

and the result follows immediately from the fact that

$$
\left\|f_{n}-f_{m}\right\|_{\infty} \leq \sum_{i=m}^{n-1}\left\|f_{i+1}-f_{i}\right\|_{\infty} \leq \sum_{i=k+1}^{\infty} \frac{\arccos t}{2^{i-1}}=\frac{\arccos t}{2^{k-1}}
$$

for each $n \geq m>k$.
Throughout this work, we let $f=\lim _{n \rightarrow \infty} f_{n}$. Then f is continuous by the previous lemma, and clearly, $f\left(D_{t}\right)=\overline{\bigcap_{n \in \mathbb{N}} f_{n}\left(D_{t}\right)}=S_{t}$. The followings are some properties of f :

Properties 2.3.

(i) $P_{1} \circ f(x, s)=-P_{1} \circ f(-x, s)$ for all $(x, s) \in D_{t}$;
(ii) $\left\|P_{1}(x, s)-(0, t)\right\| \leq\left\|P_{1} \circ f(x, s)-(0, t)\right\|$ for all $(x, s) \in D_{t}$;
(iii) $\nu\left(P_{1}(x, s)\right)=\nu(x, 0)=\nu\left(P_{1} \circ f(x, s)\right)$ for all $(x, s) \in D_{t}$;
(iv) $\left.f\right|_{\mathrm{B}_{t}}=\varphi \circ \psi$, which is a homeomorphism;
(v) each $x \in D_{t}$ has its unique associated base point $x_{0} \in \mathrm{~B}_{t}$ in sense that $f(x)=f\left(x_{0}\right) ;$
(vi) $\left\|x_{0}-y_{0}\right\| \leq\|x-y\|$ for all $x, y \in D_{t}$.

Proof. The properties of r_{n} 's imply (i)-(iii) while the properties of f_{n} 's imply (iv). (v) follows from (iv), and (vi) follows from (ii) and (v).

3. Main Results

We will give a new upper bound of $\kappa(t)$ that simultaneously yields the precise formula of $\kappa(t)$ for a finite-dimensional Hilbert space, and a sharper upper bound of $\kappa(t)$ for an infinite-dimensional Hilbert space.

As usual, let $(H,\langle\cdot, \cdot\rangle)$ be a (real) Hilbert space, $H=E \oplus \operatorname{span}\{\mathrm{e}\}=E \oplus \mathbb{R}$, where E is the orthogonal complement of e. Each element in H can be uniquely represented as $x \oplus y$, for some $x \in E$ and $y=\langle x, \mathrm{e}\rangle \in \mathbb{R}$, and hence $\|x \oplus y\|^{2}=\|x\|^{2}+|y|^{2}$. Recall that every n-dimensional Hilbert space is isometrically isomorphic to the n dimensional Euclidean space \mathbb{R}^{n}. Also, it is straightforward to verify the following proposition :
Proposition 3.1. For each $\phi \in(0, \pi)$ and $s>0$, the map $(0,1) \rightarrow \mathbb{R}$ defined by $r \mapsto \frac{\sqrt{2-2 \cos (r \phi)}}{r s}$ is decreasing with $\sup _{r \in(0,1)} \frac{\sqrt{2-2 \cos (r \phi)}}{r s}=\frac{\phi}{s}$.
Lemma 3.2. Let $\triangle A P P^{\prime}, \triangle B Q Q^{\prime}, \triangle C R R^{\prime}$ and $\triangle C S S^{\prime}$ be pairwise similar isosceles triangles on parallel planes in \mathbb{R}^{n}, where $n \geq 3$, with relations:
(i) $[A, B, C]$ are collinear and perpendicular to each triangles;
(ii) $\{Q, R, S\} \subseteq \operatorname{span}\{B-A, P-A\}$ and $\left\{Q^{\prime}, R^{\prime}, S^{\prime}\right\} \subseteq \operatorname{span}\left\{B-A, P^{\prime}-A\right\}$;
(iii) $\left\|R-R^{\prime}\right\| \leq\left\|S-S^{\prime}\right\|$;
(iv) $\left\|P-P^{\prime}\right\| \leq\left\|Q-Q^{\prime}\right\|$ (so that $\|A-P\| \leq\|B-Q\|$).

Set $\phi=$ the base-angle of each triangles (i.e. $\phi=\hat{P}=\hat{P}^{\prime}=\hat{Q}=\hat{Q}^{\prime}=\hat{S}=$ $\hat{S}^{\prime}=\angle C R R^{\prime}=\angle C R^{\prime} R$),

$$
\begin{array}{llll}
p=\left\|P-P^{\prime}\right\|, & q=\left\|Q-Q^{\prime}\right\|, & & l=\|P-Q\|=\left\|P^{\prime}-Q^{\prime}\right\|, \\
h=\|A-B\|, & k=\|B-Q\|-\|A-P\|, & & n=\left\|P-Q^{\prime}\right\|=\left\|P^{\prime}-Q\right\|, \\
r=\left\|R-R^{\prime}\right\|, & & s=\|R-S\|=\left\|R^{\prime}-S^{\prime}\right\|, & \\
t=\left\|R-S^{\prime}\right\|=\left\|R^{\prime}-S\right\|
\end{array}
$$

(see Figure 5). If either $\frac{p}{r}, \frac{l}{s} \leq \alpha$ or $\frac{q}{r}, \frac{l}{s} \leq \alpha$ for some $\alpha>0$, so is $\frac{n}{t}$.

Figure 5. Relations of isosceles triangle in Lemma 3.2.

Proof. Note that $\cos \phi \geq 0$ because ϕ is the base-angle of the isosceles triangle. Consider the following cases.
Case I: $\frac{p}{r}, \frac{l}{s} \leq \alpha$ for some $\alpha>0$. Then

$$
\begin{aligned}
\frac{n^{2}}{t^{2}} & =\frac{h^{2}+\left(k^{2}+p^{2}-2 k p \cos (\pi-\phi)\right)}{s^{2}+r^{2}-2 s r \cos (\pi-\phi)} \\
& =\frac{\left(h^{2}+k^{2}\right)+p^{2}+2 k p \cos \phi}{s^{2}+r^{2}+2 s r \cos \phi} \\
& \leq \frac{l^{2}+p^{2}+2 l p \cos \phi}{s^{2}+r^{2}+2 s r \cos \phi} .
\end{aligned}
$$

Case II: $\frac{q}{r}, \frac{l}{s} \leq \alpha$ for some $\alpha>0$. Then
$\frac{n^{2}}{t^{2}}=\frac{h^{2}+\left(k^{2}+q^{2}-2 k q \cos \phi\right)}{s^{2}+r^{2}-2 s r \cos (\pi-\phi)} \leq \frac{\left(h^{2}+k^{2}\right)+q^{2}+2 k q|\cos \phi|}{s^{2}+r^{2}+2 s r \cos \phi} \leq \frac{l^{2}+q^{2}+2 l q \cos \phi}{s^{2}+r^{2}+2 s r \cos \phi}$.
Recall that for each $a, b, c, d, k>0, \frac{a+b}{c+d} \leq k$ if $\frac{a}{c}, \frac{b}{d} \leq k$. Therefore, since $\frac{l^{2}}{s^{2}} \leq \alpha^{2}$, $\frac{p^{2}}{r^{2}} \leq \alpha^{2}\left(\right.$ or $\left.\frac{q^{2}}{r^{2}} \leq \alpha^{2}\right)$ and $\frac{2 l p \cos \phi}{2 s r \cos \phi} \leq \alpha^{2}\left(\right.$ or $\left.\frac{2 l q \cos \phi}{2 s r \cos \phi} \leq \alpha^{2}\right)$, it follows that $\frac{n}{t} \leq \alpha$.

Theorem 3.3. For each $-1<t<1$,

$$
\kappa(t) \leq \frac{\arccos t}{\sqrt{1-t^{2}}}
$$

Proof. Let $-1<t<1$, and write $k_{t}=\frac{\arccos t}{\sqrt{1-t^{2}}}$. If a k_{t}-lipschitzian retraction $F: D_{t} \rightarrow \mathrm{~S}_{t}$ exists, $F \circ P_{D_{t}}: \mathrm{B} \rightarrow \mathrm{S}_{t}$ is also a k_{t}-lipschitzian retraction because $P_{D_{t}}: \mathrm{B} \rightarrow D_{t}$ is nonexpansive, and so, the proof is complete. Thus it suffices to show the existence of such a map F. Consider the following cases.
Case I: $\operatorname{dim} H=2$.
The map f defined in the previous section plays the role of F in this case. To see this, it suffices, by Properties 2.3(iii)-(v), to prove that $\left.f\right|_{\mathrm{B}_{t}}=\varphi \circ \psi$ is $k_{t^{\prime}}$ lipschitzian. Let $x \neq y \in \mathrm{~B}_{t}$. Then $x=\psi^{-1}(a)$ and $y=\psi^{-1}(b)$ for some $a, b \in[0,1]$. Since ψ is $\left(\frac{1}{2 \sqrt{1-t^{2}}}\right)$-lipschitzian, $|a-b|=|\psi(x)-\psi(y)| \leq \frac{1}{2 \sqrt{1-t^{2}}}\|x-y\|$, which implies that

$$
\begin{aligned}
\frac{\|f(x)-f(y)\|}{\|x-y\|} & =\frac{\left\|\varphi_{a}-\varphi_{b}\right\|}{\|x-y\|} \leq \frac{\sqrt{2-2 \cos \varangle\left(\varphi_{a}, \varphi_{b}\right)}}{2|a-b| \sqrt{1-t^{2}}} \\
& =\frac{\sqrt{2-2 \cos (2|a-b| \arccos t)}}{2|a-b| \sqrt{1-t^{2}}}
\end{aligned}
$$

Note that $\arccos t \in(0, \pi)$ and $2 \sqrt{1-t^{2}}>0$. By Proposition 3.1, we obtain

$$
\frac{\|f(x)-f(y)\|}{\|x-y\|} \leq \lim _{2|r-s| \rightarrow 0^{+}} \frac{\sqrt{2-2 \cos (2|r-s| \arccos t)}}{2|r-s| \sqrt{1-t^{2}}}=\frac{\arccos t}{\sqrt{1-t^{2}}}=k_{t}
$$

Case II: $\operatorname{dim} H>2$.
Observe that $\left(\operatorname{span}\{\mathrm{e}, x\} \cap D_{t}\right) \cap\left(\operatorname{span}\{\mathrm{e}, y\} \cap D_{t}\right)=\operatorname{span}\{\mathrm{e}\} \cap D_{t}$ for any $x \neq$ $y \in \mathrm{~B}_{t} \cap \mathrm{~S}_{t}$. Let $F=\bigcup_{p \in \mathrm{~B}_{t} \cap \mathrm{~S}_{t}} f_{p}: D_{t} \rightarrow \mathrm{~S}_{t}$, where f_{p} is the map f defined on $\operatorname{span}\{\mathrm{e}, p\} \cap D_{t}$. Then F is a k_{t}-lipschitzian retraction. To see this, without loss of generality, let $A=x \oplus r, C=y \oplus s \in H-\operatorname{span}\{\mathrm{e}\}$. If $A \in \operatorname{span}\{\mathrm{e}, C\}$, the proof follows from Case I. Assume $A \notin \operatorname{span}\{\mathrm{e}, C\}$. Write $F A=x_{f} \oplus r_{f}$ and $F C=y_{f} \oplus s_{f}$. Set $P=\frac{\left\|y_{f}\right\|}{\left\|x_{f}\right\|} x_{f} \oplus s_{f}=z_{f} \oplus s_{f}$ and $Q=\frac{\left\|x_{f}\right\|}{\left\|y_{f}\right\|} y_{f} \oplus r_{f}=w_{f} \oplus r_{f}$. By Properties 2.3(v), there are $A_{0}=x_{t} \oplus t, P_{0}=z_{t} \oplus t \in \operatorname{span}\{\mathrm{e}, x \oplus 0\} \cap \mathrm{B}_{t}$ and $C_{0}=y_{t} \oplus t, Q_{0}=w_{t} \oplus t \in \operatorname{span}\{\mathrm{e}, y \oplus 0\} \cap \mathrm{B}_{t}$ such that $F A=F A_{0}, F C=F C_{0}$, $P=F P=F P_{0}$ and $Q=F Q=F Q_{0}$. Since the isometric isomorphism among $\operatorname{span}\{\mathrm{e}, A\}, \operatorname{span}\{\mathrm{e}, C\}$ and \mathbb{R}^{2} yields $\left\|z_{t}\right\|=\left\|y_{t}\right\|,\left\|z_{f}\right\|=\left\|y_{f}\right\|,\left\|w_{t}\right\|=\left\|x_{t}\right\|$ and $\left\|w_{f}\right\|=\left\|x_{f}\right\|$, this shows that $\triangle\left(F A, 0 \oplus r_{f}, Q\right), \triangle\left(F C, 0 \oplus s_{f}, P\right), \triangle\left(A_{0}, 0 \oplus t, Q_{0}\right)$ and $\triangle\left(C_{0}, 0 \oplus t, P_{0}\right)$ form isosceles triangles as required by Lemma 3.2. Recall from Properties 2.3(iii) that $\nu\left(z_{f}\right)=\nu\left(z_{t}\right)$ and $\nu\left(y_{f}\right)=\nu\left(y_{t}\right)$. Then $\varangle\left(y_{t}, z_{t}\right)=\varangle\left(y_{f}, z_{f}\right)$, and so,

$$
\begin{aligned}
\left\|F C_{0}-F P_{0}\right\|^{2}=\left\|y_{f}-z_{f}\right\|^{2} & =\left(2-2 \cos \varangle\left(y_{f}, z_{f}\right)\right)\left\|y_{f}\right\|^{2} \\
& \leq\left(2-2 \cos \varangle\left(y_{t}, z_{t}\right)\right)\|F C-\mathrm{e}\|^{2} \\
& =\left(2-2 \cos \varangle\left(y_{t}, z_{t}\right)\right)\left\|f_{C} C_{0}-f_{C}(0 \oplus t)\right\|^{2} \\
& \leq k_{t}^{2}\left(2-2 \cos \varangle\left(y_{t}, z_{t}\right)\right)\left\|C_{0}-(0 \oplus t)\right\|^{2} \\
& \leq k_{t}^{2}\left(2-2 \cos \varangle\left(y_{t}, z_{t}\right)\right)\left\|y_{t}\right\|^{2} \\
& =k_{t}^{2}\left\|\left(y_{t} \oplus t\right)-\left(z_{t} \oplus t\right)\right\|^{2}=k_{t}^{2}\left\|C_{0}-P_{0}\right\|^{2}
\end{aligned}
$$

Since f_{A} is k_{t}-lipschitzian, $\left\|F P_{0}-F A_{0}\right\| \leq k_{t}\left\|P_{0}-A_{0}\right\|$. Apply Lemma 3.2 and Properties 2.3(vi), hence

$$
\|F A-F C\|=\left\|F A_{0}-F C_{0}\right\| \leq k_{t}\left\|A_{0}-C_{0}\right\| \leq k_{t}\|A-C\| .
$$

Corollary 3.4. For every finite-dimensional Hilbert space and $-1<t<1$,

$$
\kappa(t)=\frac{\arccos t}{\sqrt{1-t^{2}}} .
$$

Proof. Follows directly from Theorem 3.3 and the fact that $\kappa(t) \geq \frac{\arccos t}{\sqrt{1-t^{2}}}[4, \mathrm{Ob}-$ servation 3.5].

We are now assume that H is infinite-dimensional. For convenience, we write $k_{0}=k_{0}(H)$. Notice that, in this case, H is isometrically isomorphic to E because E has co-dimension one.
For $0<\phi<\frac{\pi}{2}$ and $s \in \mathbb{R}$, define the cone C_{ϕ}, its boundary V_{ϕ}, and the parallel cone section $\mathrm{B}_{s}\left(C_{\phi}\right)$ of the cone C_{ϕ} respectively by

- $C_{\phi}=\{x \oplus r \in E \oplus \mathbb{R}:\|x\| \leq r \cot \phi\} ;$
- $V_{\phi}=\{x \oplus r \in E \oplus \mathbb{R}:\|x\|=r \cot \phi\} ;$
- $\mathrm{B}_{s}\left(C_{\phi}\right)=C_{\phi} \cap E_{s}=C_{\phi} \cap(E+s e)$.

We also let

$$
\begin{aligned}
& --C_{\phi}=\{x \oplus r \in E \oplus \mathbb{R}:\|x\| \leq-r \cot \phi\} ; \\
& \text { - } C_{\phi, s}=C_{\phi}+s e
\end{aligned}
$$

Notice that $r \geq 0$ for both C_{ϕ} and V_{ϕ}, while $r \leq 0$ for $-C_{\phi}$, and $r \geq s$ for $C_{\phi, s}$.
Lemma 3.5. Let $0<\phi<\frac{\pi}{2}$. Each $A=x \oplus r, B=y \oplus s$ and $P=\frac{r}{s} y \oplus r$ in C_{ϕ} with $r \geq s>0$ satisfy

$$
2\langle P-A, P-B\rangle \leq\left(\|P-A\|^{2}+\|P-B\|^{2}\right) \cos \phi
$$

Proof. Let $A, B, C \in C_{\phi}$ be as above. Set $Q=\left\|\frac{r}{s} y-x\right\| \frac{y}{\|y\|} \oplus 0$. Then $\|Q\|=\|P-A\|$ and

$$
\begin{aligned}
\langle P-A, P-B\rangle & =\left\langle\left(\frac{r}{s} y-x\right) \oplus 0,\left(\frac{r}{s}-1\right) y \oplus(r-s)\right\rangle \\
& =\left\langle\left(\frac{r}{s} y-x\right) \oplus 0,\left(\frac{r}{s}-1\right) y \oplus 0\right\rangle \\
& \leq\left\|\frac{r}{s} y-x\right\|\left(\frac{r}{s}-1\right)\|y\| \\
& =\left\langle\left\|\frac{r}{s} y-x\right\| \frac{y}{\|y\|} \oplus 0,\left(\frac{r}{s}-1\right) y \oplus 0\right\rangle \\
& =\left\langle\left\|\frac{r}{s} y-x\right\| \frac{y}{\|y\|} \oplus 0,\left(\frac{r}{s}-1\right) y \oplus(r-s)\right\rangle=\langle Q, P-B\rangle
\end{aligned}
$$

Recall the following equivalence:

$$
\|y\| \leq s \cot \phi \Longleftrightarrow\|y\|^{2}\left(1-(\cos \phi)^{2}\right) \leq(s \cos \phi)^{2} \Longleftrightarrow \frac{\|y\|}{\sqrt{\|y\|^{2}+s^{2}}} \leq \cos \phi
$$

Since $\|P-A\|\|P-B\|=\|Q\|\|P-B\|=\left\|\frac{r}{s} y-x\right\|\left(\frac{r}{s}-1\right) \sqrt{\|y\|^{2}+s^{2}}$ and $\|y\| \leq s \cot \phi$,

$$
\frac{\langle P-A, P-B\rangle}{\|P-A\|\|P-B\|} \leq \frac{\langle Q, P-B\rangle}{\|P-A\|\|P-B\|}=\frac{\|y\|}{\sqrt{\|y\|^{2}+s^{2}}} \leq \cos \phi
$$

which implies that

$$
2\langle P-A, P-B\rangle \leq 2\|P-A\|\|P-B\| \cos \phi \leq\left(\|P-A\|^{2}+\|P-B\|^{2}\right) \cos \phi
$$

Lemma 3.6. Let $g: \mathrm{B}_{E} \rightarrow \mathrm{~S}_{E}$ be k-lipschitzian and $0<\phi<\frac{\pi}{2}$. The map $G: C_{\phi} \rightarrow D_{\phi}$ defined by $G(0 \oplus 0)=0 \oplus 0$, and $G(x \oplus r)=(r \cot \phi) g\left(\frac{x}{r \cot \phi}\right) \oplus r$ if $r>0$, is $\frac{\max \{k, \csc \phi\}}{\sqrt{1-\cos \phi}}$-lipschitzian.
Proof. Firstly, let us observe that the maps $0 \mapsto 0$, and $x \mapsto(r \cot \phi) g\left(\frac{x}{r \cot \phi}\right)$ for $r>0$, on $\{x:\|x\| \leq r \cot \phi\} \subseteq E$ is k-lipschitzian. Without loss of generality, let $A=x \oplus r, B=y \oplus s \in C_{\phi}$ where $r \geq s$. The case $r=s$ is clear. The case $s=0$ yields $y=0$, which implies that

$$
\begin{aligned}
\|G A-G B\|^{2} & =\|G A\|^{2}=(r \cot \phi)^{2}+r^{2}=(r \csc \phi)^{2} \\
& \leq(\csc \phi)^{2}\left(\|x\|^{2}+r^{2}\right)=(\csc \phi)^{2}\|A-B\|^{2} .
\end{aligned}
$$

For case $r>s>0$, let $P=\frac{r}{s} y \oplus r \in C_{\phi}$. Apply Lemma 3.5 to obtain

$$
\begin{aligned}
\|A-B\|^{2} & =\|P-A\|^{2}+\|P-B\|^{2}-2\langle P-A, P-B\rangle \\
& \geq(1-\cos \phi)\left(\|P-A\|^{2}+\|P-B\|^{2}\right) .
\end{aligned}
$$

Recall that $\langle g(z) \oplus 0, g(w) \oplus 0\rangle \leq 1=\|g(z)\|^{2}$ for all $z, w \in \mathrm{~B}, G A=$ $(r \cot \phi) g\left(\frac{x}{r \cot \phi}\right) \oplus r, G B=(s \cot \phi) g\left(\frac{y}{s \cot \phi}\right) \oplus s$ and $G P=(r \cot \phi) g\left(\frac{y}{s \cot \phi}\right) \oplus r$. Then

$$
\begin{aligned}
& \langle G P-G A, G P-G B\rangle=\left\langle(r \cot \phi)\left(g\left(\frac{y}{s \cot \phi}\right)-g\left(\frac{y}{r \cot \phi}\right)\right) \oplus 0,\right. \\
& \\
& \left.\quad((r-s) \cot \phi) g\left(\frac{y}{s \cot \phi}\right) \oplus(r-s)\right\rangle \\
& =r(r-s)(\cot \phi)^{2}\left(\left\|g\left(\frac{y}{s \cot \phi}\right)\right\|^{2}-\left\langle g\left(\frac{y}{r \cot \phi}\right) \oplus 0, g\left(\frac{y}{s \cot \phi}\right) \oplus 0\right\rangle\right) \geq 0,
\end{aligned}
$$

and hence, again by Lemma 3.5,

$$
\begin{aligned}
\|G A-G B\|^{2} & =\|G P-G A\|^{2}+\|G P-G B\|^{2}-2\langle G P-G A, G P-G B\rangle \\
& \leq\|G P-G A\|^{2}+\|G P-G B\|^{2} \\
& \leq k^{2}\|P-A\|^{2}+\left\|(r-s)(\cot \phi) g\left(\frac{y}{s \cot \phi}\right) \oplus(r-s)\right\|^{2} \\
& =k^{2}\|P-A\|^{2}+\left(1+\cot ^{2} \phi\right)(r-s)^{2} \\
& \leq k^{2}\|P-A\|^{2}+\left(\csc ^{2} \phi\right)\|P-B\|^{2} \\
& \leq \max \left\{k^{2}, \csc ^{2} \phi\right\}\left(\|P-A\|^{2}+\|P-B\|^{2}\right) \\
& \leq \frac{\max \left\{k^{2}, \csc ^{2} \phi\right\}}{1-\cos \phi}\|A-B\|^{2} .
\end{aligned}
$$

Figure 6. Points $A, B, P, G A, G B$ and $G P$ in Lemma 3.6.

Lemma 3.7. Let $g: E \rightarrow E$ be k-lipschitzian where $k \geq 1$. The map $G: H \rightarrow H$ defined by $G(x \oplus r)=g x \oplus r$ is k-lipschitzian.

Proof. Let $A=x \oplus r, B=y \oplus s \in H$. Then

$$
\|G A-G B\|^{2}=\|g x-g y\|^{2}+|r-s|^{2} \leq k^{2}\left(\|x-y\|^{2}+|r-s|^{2}\right)=k^{2}\|A-B\|^{2}
$$

Theorem 3.8. For every infinite-dimensional Hilbert space and $-1 \leq t \leq 1$,

$$
\kappa(t) \leq \frac{3 \sqrt{3}}{2} k_{0}
$$

Proof. Recall that $\kappa(-1)=k_{0}$ and $\kappa(t) \leq \frac{\arccos t}{\sqrt{1-t^{2}}}<11.2<\frac{3 \sqrt{3}}{2} k_{0}$ if $-\frac{1+\sqrt{3}}{2 \sqrt{2}}<t \leq 1$. It suffices to assume that $-1<t \leq-\frac{1+\sqrt{3}}{2 \sqrt{2}}$. Let $\varepsilon>0$. By the definition of k_{0}, there exists a $\left(k_{0}+\varepsilon\right)$-lipschitzian retraction $g_{\varepsilon}: \mathrm{B} \rightarrow \mathrm{S}$. Fix $0<\phi<\frac{\pi}{2}$. Construct two cones $C_{1}=-C_{\phi}+\mathrm{e}$ and $C_{2}=C_{\phi,\left(t-\sqrt{1-t^{2}} \tan \phi\right)}$. Let F_{s} be the common parallel cone section of C_{1} and C_{2}, i.e., $F_{s}=\mathrm{B}_{s}\left(C_{1}\right) \cap \mathrm{B}_{s}\left(C_{2}\right)=\mathrm{B}_{s}\left(C_{1}\right)=\mathrm{B}_{s}\left(C_{2}\right)$.
Case I: $F_{s} \subseteq D_{t}$.
Let $P=\left\{x \oplus r \in C_{1}: r \geq s\right\} \subseteq D_{t}$ and $Q=\left\{x \oplus r \in C_{2} \cap D_{t}: r \leq s\right\}$ (see Figure 7(A)). Then $A=P \cup Q$ is convex.
Case II: $F_{s} \nsubseteq D_{t}$.
Let $a=\max \left\{r: \mathrm{B}_{r}\left(C_{2}\right) \subseteq D_{t}\right\}$. Set $P=\left\{x \oplus r \in C_{1}: r \geq 1-\left(\sqrt{1-a^{2}}\right) \tan \phi\right\}$, $Q=\left\{x \oplus r \in C_{2} \cap D_{t}: r \leq a\right\}$ and construct a cylinder $R=\left\{x \oplus r \in D_{t}:\|x\| \leq\right.$ $\left.\sqrt{1-a^{2}}, a \leq r \leq 1-\left(\sqrt{1-a^{2}}\right) \tan \phi\right\}$ (see Figure 7(B)). Then $A=P \cup Q \cup R$ is convex with $P \cap Q=\emptyset, P \cap R=\mathrm{B}_{1-\sqrt{1-a^{2}} \tan \phi}\left(C_{1}\right)$ and $Q \cap R=\mathrm{B}_{a}\left(C_{2}\right)$.

Recall that $\mathrm{B}_{E}=\mathrm{B} \cap E$ and $\mathrm{S}_{E}=\mathrm{S} \cap E$. Since E and H are isometrically isomorphic, there is a $\left(k_{0}+\varepsilon\right)$-lipschitzian retraction $g_{\varepsilon}: \mathrm{B}_{E} \rightarrow \mathrm{~S}_{E}$. By applying Lemma 3.6 and Lemma 3.7 with the map g_{ε} to P, Q and R in both cases, there exists a $\frac{\max \left\{k_{0}+\varepsilon, \csc \phi\right\}}{\sqrt{1-\cos \phi}}$-lipschitzian retraction $G: A \rightarrow \partial A-\mathrm{B}_{t}^{\circ}$ (because $k_{0}+\varepsilon>1$, $\sqrt{1-\cos \phi}^{-1}>1$ and A is convex).

The straightforward calculation shows that for each $-1<t \leq-\frac{1+\sqrt{3}}{2 \sqrt{2}}$,

$$
\begin{aligned}
\inf \left\{\|x \oplus r\|: x \oplus r \in \partial A-\mathrm{B}_{t}^{\circ}\right\} & =\inf \{\|x \oplus r\|: x \oplus r \in P\} \\
& =\inf \{\|x \oplus r\|:\|x\|=(1-r) \cot \phi\} \\
& =\inf \left\{\sqrt{((1-r) \cot \phi)^{2}+r^{2}}:-1<r<1\right\}=\cos \phi
\end{aligned}
$$

Denote by ρ the radial projection onto S . Then $\rho \circ G \circ P_{D_{t}}: \mathrm{B} \rightarrow \mathrm{S}_{t}$ is a $\frac{\max \left\{k_{0}+\varepsilon, \csc \phi\right\}}{(\sqrt{1-\cos \phi)} \cos \phi}$-lipschitzian retraction. Finally, by minimizing such a Lipschitz constant, a $\frac{3 \sqrt{3}}{2}\left(k_{0}+\varepsilon\right)$-lipschitzian retraction is obtained at $\phi=\arccos \frac{2}{3}$.

Figure 7. The set A (white area) in Theorem 3.8.

By Theorem 3.3, Theorem 3.8 and Observation 3.9 [4], we obtain :
Corollary 3.9. For every infinite-dimensional Hilbert space and $-1 \leq t \leq 1$,

$$
\kappa(t) \leq \min \left\{\frac{2}{1+t}, \frac{\arccos t}{\sqrt{1-t^{2}}}, \frac{3 \sqrt{3}}{2} k_{0}\right\}
$$

Moreover, by combining Theorem 3.8 and Observation 3.11 [4], we have the following better approximation results :

Corollary 3.10. For every infinite-dimensional Hilbert space, there exists $-1<$ $a<1$ such that

$$
\frac{2}{3 \sqrt{3}} \kappa(t) \leq k_{0} \leq \kappa(t)
$$

or equivalently,

$$
1 \leq \frac{\kappa(t)}{k_{0}} \leq \frac{3 \sqrt{3}}{2} \approx 2.59808
$$

for all $-1<t<a$.

References

[1] M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l_{1}, Studia. Math. 180 (2007), 73-76.
[2] Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.
[3] M. Baronti, E. Casini and C. Franchetti, The retraction constant in some Banach spaces, J. Approx. Theory. 120 (2003), 296-308.
[4] P. Chaoha, K. Goebel and I. Termwuttipong, Around Ulam's question on retractions, Topol. Methods Nonlinear Anal. 40 (2012), 215-224.
[5] K. Goebel, and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, London. 1990.
[6] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 861-864.
[7] Ł. Piasecki, Retracting ball onto sphere in $B C_{0}(\mathbb{R})$, Topol. Methods Nonlinear Anal. 33 (2009), 307-314.

Manuscript received 31 August 2015 revised 20 June 2016

Jumpot Intrakul

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: intrakul.j@gmail.com

Phichet Chaoha

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: phichet.c@chula.ac.th

[^0]: 2010 Mathematics Subject Classification. 47H10.
 Key words and phrases. Lipschitz retraction, optimal retractions on sphere.

