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RETRACTION FROM A UNIT BALL ONTO ITS SPHERICAL
CcuP

JUMPOT INTRAKUL* AND PHICHET CHAOHAT

ABSTRACT. The Lipschitz constant of an optimal retraction from a unit ball
in a Hilbert space onto its spherical cup is reinvestigated to obtain a precise
formula for a finite-dimensional Hilbert space, and an improved upper bound for
an infinite-dimensional Hilbert space.

1. INTRODUCTION AND PRELIMINARIES

It is generally known that, in an infinite-dimensional normed space, there is a
retraction from a unit ball onto its boundary. However, the existence of the lips-
chitzian version of such a retraction is far from trivial, but was finally accomplished
by Nowak [6], and Benyamini and Sternfeld [2]. Since then, the quest for the least
possible Lipschitz constant of such a retraction became interesting. To be pricise,
for a given normed space X, let By and Sx denote the unit ball centered at the
origin and its sphere (boundary), respectively. The so-called optimal retraction
constant for X, denoted by ko(X), is defined to be

ko(X) := inf{k : there exists a k-lipschitzian retraction from Bxonto Sx}.

Although it has been more than thirty years after the birth of this problem, the
exact value of ko(X) is still unknown for a Banach space. Only approximations for
some Banach spaces are found; for example, ko(¢1) € [4,8], ko(C[0,1]) € [3,14.93],
ko(BC(R)) € [3,6.83], and when H is a Hilbert space, ko(H) € (4.5,28.99] (see [1],
[5], [7] and [3]). Until recently, Chaoha, Goebel, and Termwuttipong [4] studied this
problem in a Hilbert space by considering only a certain part of the sphere, namely
the spherical cup, as the image of the retraction. This leads to a new constant x(t)
defined as follows :

Let (H, {-,-)) be a (real) Hilbert space, B = By, S = Sy, e € Sand E = span{e}*
the orthogonal complement of e. For each t € [—1,1],

the parallel hyperplane is E; := E + te;

the parallel ball section is By := B N Ey;

the lense cut by E; is Dy := {x € B: (z,e) > t};
the spherical cup cut by E; is S; := D; N S.
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Then, S_; =S, and for t € (—1, 1], S; is always a retract of B. Define x : [-1,1] = R
by

k(t) = inf{k : there exists a k-lipschitzian retraction from B onto S;}.

Following from [4], we have
- k(1) =05
- if dim H < oo, k(—1) = 00, and for —1 <t < 1, k(t) > %;
- if dim H = oo, k(—1) = ko(H), and for —1 <t < 1,

k(£) < min {12+t (1 -+ ko(H) ko) }.

Moreover, the following question is still open (see [4]) :
What is the precise formula for k(t) in both cases dim H < oo and dim H = oo ?

Notice that, for an infinite-dimensional Hilbert space H, the last inequality above
amounts to saying that (1 + ko(H))ko(H) is an upper bound of (t) as t — —17.
Together with Observation 3.11 [4], we obtain the inequality

1< Oy k),

= ko(H)
as t — —17, which is equivalent to
1
5( 1+4k(t) — 1) < ko(H) < K(2).

This certainly gives an approximation of ko(H) in terms of x(¢) when ¢ is closed
enough to -1. Therefore, a natural way to improve such an approximation is to
consider the upper bound of ks% which is currently known to be 1+ ko(H) €
(5.5,29.99].

In this work, we will answer the open problem mentioned above for a finite-
dimensional Hilbert space by giving a concrete construction of an (%)—hpschitzian
retraction, and give a sharper upper bound of (t) for an infinite-dimensional Hilbert
space that leads to a better approximation of ko(H) in term of k() when ¢ is closed
enough to -1.

Throughout this work, all retractions are assumed to be lipschitzian. Denote by
P4 the nearest point projection onto A, which is nonexpansive if A is convex, and
by v(x) the unit vector II%II for every x € H — {0} and v(0) = 0.

2. ROOF MAPS

We first introduce the notion of roof maps which is essential for our construction
in the next section. Let H be the Euclidean plane R? throughout this section, and
e = (0,1). Denote by APQR the isosceles triangle in R? whose base is the segment
QR and legs are segments PQ and PR (see Figure 1(A)), and by APQR the closed
region bounded by APQR (see Figure 1(B)).

Definition. A selfmap r : APQR — PQ U PR is called a roof map if

r = (Porlpourr) " © Pgr
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(see Figure 1(C)). Notice that r(APQR) = PQ U PR; i.e., r is surjective onto legs
of APQR.

(A) (B) (c)

F1GURE 1. APQR, APQR and the roof map.

Properties 2.1. Let r be the roof map defined on APQR. Then
(i) r|gr is both injective and expansive; i.e., for each x,y € QR, ||r(z)—r(y)| >

&~ vl )
(ii) for each x € APQR, r(z) =1 o Pogr(z).

For a fixed —1 < ¢t < 1, we recall that B; = [—v1 —2,vV1 — 2] x {t}, Dy =
{(z,s) : ||(z,s)|| <1,s >t} and S = {(z,s) : ||(x,s)|| = 1,s > t} (see Figure 2(A)).
For each ¢ € Rand P,Q € Sy, let pg denote (—v'1 — t? cos p+tsin g, v'1 — t? sin g+

tcos ¢) (see Figure 2(B)), and <(P, Q) denote the central angle of the arc 1;’_52, ie.,
<(P,Q) = arccos (P, Q) € [0, 7]. Then [¢p—6| = <t(py, po) for all ¢,0 € [0,2arccost],
and the homeomorphism ¢ : [0,1] — S; defined by ¢(a) = ¢4 = pP2aarccost clearly

satisfies:
<I(80a7 SDb) _ <[(pQOLamccostap2barccost) . 2‘& - b| arccost o ’a — b|

4(9007 SOd) <I(PZ(:achcosta pZdarccost) B 2|C - d| arccost B |C - d| ’
for all a,b,c,d € [0,1]. Note that, by substituting ¢ = 1 and d = 0,

U pas p) = |a —b|<t(e1,0) = 2|a — bl arccos't.
The above relation of ¢ shows that each a,b,c € [0, 1] with |a — b| = |a — ¢| induce
Ao, oppe on Dy, and hence, by setting p = %(a +b) and ¢ = %(a + ),
Apapope N APpPaps = Papy  and  ApaPppe N APgPaPe = PaiPe-

Let 2 = {& € [0,1] : m,n € NU{0}}. Then 2 = [0,1] and ¢(Z) = S;. For
convenience, write A]" for AQD27;71 Ppmt o for all m,n € N with m < n (see
0 on—

Figure 3). Thus

_m __
on—1

U{Anm :n,m € N,m <n} = Dy
For each m,n € N with m < n, let " be the roof map defined on A", and write
A, = U, <, A} for any n € N. Then 7, := (U,,<, 77’ : An — Ay) maps each A7,
m < n, onto its legs. By letting 1 be the projection Fypan((1,0)}, it is straightforward
to verify the following properties for every (z,s) € A, :
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(1) Pyo Tn(xas) =—-Po Tn(—l‘,S);
(2) [1Pa(z,8) = (0,0)] = V/]x? + 2 < /[Py o rp(z, 5)[2 + ¢
= HPI o T’n($,8) - (Ovt)H;
3) v(Pi(z,s)) = v(z,0) = v(Pror(,s)).
For each n € N, define f, : Dy — D; by

fo=J (rnorn_r0-om) Uidp, _ an
k<n -

(see Figure 4). That is, f, maps U,,<,
fixes Dy — U,,,<,, Am. Observe that (J
lipschitzian homeomorphism

VTP AT= ) x {t} — [0,1], <x,w;{¢§

A, continuously onto all legs of A,, but

A, is convex. By defining a (2\/5)‘

m<n

each f, satisfies f, o ¢*1(2ﬂn) = (%) forallm =0,...,2™

(—V1—12,t)

(A) (B)

FIGURE 2. By, Dy, S; in R? and Pp-

- A

FIGURE 3. ¢,’s and A]'’s.

) Yl Xl

FIGURE 4. Maps fi, fo and f3 where the gray areas are fixed.

3
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Denote by h, and [, the (common) height and the (common) legs’ length of

Al ... A" respectively. For each n € N, since all A™’s are defined on the unit ball,
1 arccost
hn <ln = lpop 1| < <po, 1) =2 ‘0 — o |ArCCOst = —r

Lemma 2.2. The sequence (fy) converges uniformly.

Proof. For each n € N, observe that f,(z) # fn+1(x) only if x € A,,. Then
arccost
[fn = fatilloe = sup [[fu(2) = frsr ()l = hn < —7—,
TEAn 2
and the result follows immediately from the fact that

n—1 00
arccost arccost
HfTL_foLHOOS Z"f%+1_f1”00§ Z 9i—1 = ok—1 7

i=m i=k-+1
for each n > m > k. O

Throughout this work, we let f = lim, o fr. Then f is continuous by the
previous lemma, and clearly, f(D;) = (,ey fn(D:) = S;. The followings are some
properties of f :

Properties 2.3.
(i) Pio f(x,8) = —Pyo f(—xz,s) for all (x,s) € Dy;
(i) 1Py (z,5) — (0,8)]| < 1Py o f(2,5) — (0,)]] for all (z,5) € Dy;
(iii) v(Pi(z,s)) =v(x,0) =v(Pyo f(x,s)) for all (x,s) € Dy;
(iv) flB, = ¢ o, which is a homeomorphism;
(v) each © € Dy has its unique associated base point xy € By in sense that
f(@) = f(zo);
(Vi) [lzo = yoll < llz —y|| for all z,y € Ds.

Proof. The properties of r,,’s imply (i)-(iii) while the properties of f,,’s imply (iv).
(v) follows from (iv), and (vi) follows from (ii) and (v). O

3. MAIN RESULTS

We will give a new upper bound of x(t) that simultaneously yields the precise
formula of k(t) for a finite-dimensional Hilbert space, and a sharper upper bound
of k(t) for an infinite-dimensional Hilbert space.

As usual, let (H, (-, -)) be a (real) Hilbert space, H = F@®span{e} = F®R, where
F is the orthogonal complement of e. Each element in H can be uniquely represented
as @y, for some z € F and y = (v,e) € R, and hence ||z @ y||?> = ||z[|* + |y|*.
Recall that every n-dimensional Hilbert space is isometrically isomorphic to the n-
dimensional Euclidean space R™. Also, it is straightforward to verify the following
proposition :

Proposition 3.1. For each ¢ € (0,7) and s > 0, the map (0,1) — R defined by
RN v/ 2—2cos(r¢) V2-2cos(r¢) _ ¢

- is decreasing with sup,.¢ 1) s o

Lemma 3.2. Let NANAPP', ABQQ', ACRR' and ACSS’ be pairwise similar isosce-
les triangles on parallel planes in R™, where n > 3, with relations:
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(i) [A, B,C] are collinear and perpendicular to each triangles;
(ii) {Q,R,S} Cspan{B — A, P — A} and {Q',R',S'} Cspan{B — A, P — A};
(iii) |R—R| <S5 -5

(iv) [P =P < Q= Q|| (so that [|[A—P| < [|B=Ql)
Set ¢ = the base-angle of each triangles (i.e. ¢ = P =P = Q = Q’ =95 =
S§' = /CRR' = ZCR'R),

p=IP-PI  a=l2-q], L= P~ Q| = I|P'~ Q.
h=lA=B|,  k=|B-QI-[A-P|. n=|P-Q|=|F-Ql
r=lR-Rl, s=|R-S|=IR-5] t=|R-5]=|R-S]|

(see Figure 5). If either g,é <a«aor g,é < a for some a >0, so is .

FI1GURE 5. Relations of isosceles triangle in Lemma 3.2.

Proof. Note that cos¢ > 0 because ¢ is the base-angle of the isosceles triangle.
Consider the following cases.
Case I: g,é < « for some « > 0. Then

n? h? + (k? 4+ p? — 2kpcos(m — ¢))
12 s2 4+ r2 — 2srcos(m — @)
(h% + k?) + p? + 2kpcos ¢
s2 +1r2 4 2srcos ¢
12 + p? + 2lpcos ¢
524+ 72+ 2srcos¢’

Case IT: 4, L < « for some o > 0. Then

S
an B h? 4 (k? 4 ¢* — 2kqcos ¢) <
2 s24 12 —2srcos(m—¢)

(% + k%) + ¢% + 2kq] cos ¢ < 12 +¢* +2lgcos ¢
2+ 12+ 2srcos¢ ~ 5247124 2srcos¢’
Recall that for each a,b,c,d, k > 0, ZTJ“g < k if %,2 < k. Therefore, since 2—22 < a?,

2 2
p 2 q 2 2lpcos ¢ 2 2lgcos ¢ 2\
b <a (or L <a ) and S cos & < a (or St cos < a?), it follows that % <a. O

Theorem 3.3. For each —1 <t <1,
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Proof. Let —1 < t < 1, and write k; = % If a kg-lipschitzian retraction
F: D, — S; exists, FoPp, : B— S; is also a k;-lipschitzian retraction because
Pp, : B — D, is nonexpansive, and so, the proof is complete. Thus it suffices to
show the existence of such a map F. Consider the following cases.
Case I: dim H = 2.

The map f defined in the previous section plays the role of F' in this case. To see
this, it suffices, by Properties 2.3(iii)-(v), to prove that f|g, = o1 is ks-lipschitzian.
Let © # y € B;. Then 2 = ¢~!(a) and y = ¢~ 1(b) for some a,b € [0,1]. Since 1) is

—2L__)lipschitzian, |a — b| = [1(z) — ¥(y)| < —~—= ||z — y||, which implies that
2v/1—t2 2v/1—t2

If @) = f@I _ llea =@l _ V2= 2c0s<(2a, 1)
[l = yll le =yl = 2/a—bv1-¢2
/2 —2cos(2]a — bl arccost)
o bVI-

Note that arccost € (0,7) and 2v/1 — t? > 0. By Proposition 3.1, we obtain

IIf(x) — f)l < 1 V/2 — 2cos(2|r — s|arccost)  arccost k:
_— 1m = = .
lz—yll  ~ 2lr—sl—0* 2r — s|vV1— 2 Vi

Case II: dim H > 2.

Observe that (span{e,z} N D;) N (span{e,y} N D;y) = span{e} N D; for any z #
y € BgNS;. Let F = UpeBtﬁSt fp : Dy — S, where f, is the map f defined on
span{e,p} N D;. Then F is a k-lipschitzian retraction. To see this, without loss
of generality, let A = x @ r,C = y® s € H — span{e}. If A € span{e,C}, the
proof follows from Case I. Assume A ¢ span{e,C'}. Write FA = z;y @ ry and

FC = yy ®sfp. Set P = ”?;J;fo ®sp =z ®spand Q = Hi;”yf Dry=wrdry.
By Properties 2.3(v), there are Ag =z ©t, Py = 2 &t € span{e,z @& 0} N B; and
Co=y:Dt,Qp = wy ®t € span{e,y ® 0} N B, such that FA = FAy, FC = FCy,
P =FP = FFy and Q = FQQ = FQqy. Since the isometric isomorphism among
spane, A}, spane, C} and B? yields ]l = luell, 127l] = lysll, llwell = 1)) and
|lwg|| = ||z ¢]|, this shows that A(FA, 01y, Q), AFC,0® sy, P), A(Ag, 0 t, Qo)
and A(Cp, 0@ t, Py) form isosceles triangles as required by Lemma 3.2. Recall from
Properties 2.3(iii) that v(z¢) = v(z) and v(yr) = v(y:). Then <(ys, 2) = <(yy, 2¢),
and so,

IFCo — FPo|1> = llyy — 271> = (2 — 2 cos <(yy, 2)) lys |I°
< (2 —2cos <(ys, %)) | FC — el?
= (2 —2cos <t(ys, 2))|| feCo — fo (0 @ t)|?
< k2(2 —2cos <t(ys, 2))||Co — (0@ 1))
< k7 (2 = 2cos <(yt, z0)) [yt
=kl @t) — (@ 1)|* = k{[|Co — Po*.
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Since fa is ke-lipschitzian, ||[F'Py — FAo| < kt||Po — Aol|. Apply Lemma 3.2 and
Properties 2.3(vi), hence

|FA— FC|| = ||[FAo — FCo| < k||Ao — Co|| < k||A—C||. 0
Corollary 3.4. For every finite-dimensional Hilbert space and —1 <t < 1,
) arccost
Kk(t) = .
V1—1t2
Proof. Follows directly from Theorem 3.3 and the fact that x(t) > a\t;cchSt [4, Ob-
servation 3.5]. O

We are now assume that H is infinite-dimensional. For convenience, we write
ko = ko(H). Notice that, in this case, H is isometrically isomorphic to E because
FE has co-dimension one.

For 0 < ¢ < § and s € R, define the cone Cy, its boundary Vj;, and the parallel
cone section B4(Cy) of the cone Cy respectively by

-Cy={r@®rec EQR: ||z|| < rcot¢};
-Vy={z®re E®R:|z| =rcoto};
BUC) = Can By = o N (B4 50)

We also let
-—Co={zdre E@R: |z|| < —rcotd};
- Cqb,s = C¢ + se.

Notice that » > 0 for both Cy and Vj, while » < 0 for —Cy, and r > s for Cy .

Lemma 3.5. Let 0 < ¢ < 5. Bach A=x®r, B=y®s and P =Ly ®r in Cy
with r > s > 0 satisfy

2(P~A,P—B) < (|P~AI*+|P~ B|I*) cos ¢

Proof. Let A, B,C € Cy be as above. Set Q = Hgy—xH”Z—”@O. Then ||Q| = ||P—A]|
and

(P— AP - B) <(y m)@O,(T )y r-s)
{Cos)en i)y
LA o
:< Hﬁ@O,(—l)y@0>

~(er=slgigee G- 1)vev-0)-@r-n

Recall the following equivalence:

lyll < scoté <= IyllP(1 - (cos §)?) < (scosd)? = ——L__ < cos,

ViIyll? +s*
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Since | P—A[[| P~ BI| = |QIII P—B| = | Zy—all(5~1)v/Tyl? + 57 and [ly] < s cot 6,
P—AP-B P-B
(P-AP-B) ___(QP-B) |l __
[P AP =Bl = TP - ANP- Bl ~ /IyP ++

which implies that
2(P— A,P—B) <2|P— A||[P - Bllcos¢ < (|P — AJ* + | P - B|?) cosg. O

Lemma 3.6. Let g : Bg — Sg be k-lipschitzian and 0 < ¢ < 5. The map
G : Cy = Dy defined by G(0®0) =0& 0, and G(z & 1) = (rcot )g(;5r5) B 1 if

r >0, s %-hpschitm‘(m.

Proof. Firstly, let us observe that the maps 0 — 0, and 2 — (rcot ¢)g(;55) for

r>0,on {z: |z|| <rcot¢g} C E is k-lipschitzian. Without loss of generality, let
A=x®r,B=y®sc Cy where r > 5. The case r = s is clear. The case s = 0
yields y = 0, which implies that

IGA—=GB|* = |GA|P = (rcot¢)” +r® = (resc)?

< (esco)*(||l=f* +7%) = (CSC<15)2HA - B

Ly ®r € Cy. Apply Lemma 3.5 to obtain

|A=B|* = |P-A|*+|P-B|*-2(P-AP-B)
> (1-cosd)(|P — A2 +||P - BJ?)

Recall that (g(z) ®0,9(w)@0) < 1 = |g(2)|? for all z,w € B, GA =
(rcot¢)g (mow) ©r, GB = (scot ¢)g(s-% )69 s and GP = (rcot¢)g (Scot(ﬁ) @r.
Then

(GP — GA,GP — GB) = <(rcot¢)) <g (Sci/w) —g <rczt¢>> ®0,
(tr=s)eotaly (s 5 ) o= 9)

= r(r = s)(eot ) (H (scow) 2 <g<rccy>t¢>®0’g<wij>w>@o>> =0

and hence, again by Lemma 3.5,

|GA - GB|> = |GP — GA|* + |GP — GB||* - 2(GP — GA,GP — GB)
<||GP - GA|* + |GP — GBJ?

(r —s)(cot @)g ( J ) @ (r—s)

scot ¢
= k2| P — A|* + (1 + cot? ¢)(r — 5)*

< KPP = A|? + (csc? ¢)|| P - B|)?

< max{k? cs? 6} (| P — A|P* + | P — BIP)
< max{k?, csc? ¢}
- 1—-coso

For case r > s> 0, let P =

2

< K*||P — A|® +

1A= B>
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FIGURE 6. Points A, B, P,GA,GB and GP in Lemma 3.6.

Lemma 3.7. Let g : E — E be k-lipschitzian where k > 1. The map G : H — H
defined by G(x @ r) = gz ® r is k-lipschitzian.

Proof. Let A=x@®r,B=y®s¢& H. Then
|GA - GBIP = llgz — gyl + I — s < & (llz — yll* + |r — s2) = KA - BIP. O

Theorem 3.8. For every infinite-dimensional Hilbert space and —1 <t <1,

3vV3
K(t) < \2[/%0.
Proof. Recall that k(—1) = kg and k(t) < % <11.2< %ko if —%\}? <t<l1.
It suffices to assume that —1 < ¢t < _ 13 Let € > 0. By the definition of kg,

2v2
there exists a (ko + €)-lipschitzian retraction g : B — S. Fix 0 < ¢ < §. Construct

two cones C1 = —Cy +e and Cy = Cqb,(t—ﬂtanqb)' Let F be the common parallel
cone section of C7 and Cy, i.e., Fy = B4(C1) N Bs(Ca) = Bs(C1) = Bs(Co).
Case I: Fy, C Dy.

Let P={x®dreCi:r>s} CDiand Q ={x@r € CoNnD;:r < s} (see Figure
7(A)). Then A = PUQ is convex.

Case IT: F, ¢ Dy.

Let a = max{r : B,(Cy) C Di}. Set P={z@dreC;:r>1—-(V1—a?) tan¢},
Q={x®reConD;:r<a}and construct a cylinder R ={zx & r € D; : ||z| <
V1—a?,a <r <1-(V1-a?)tang¢} (see Figure 7(B)). Then A = PUQ U R is
convex with PNQ =0, PNR = Bl_mtan¢(01) and Q N R = B,(Cy).

Recall that B = BN F and Sgp = SN E. Since F and H are isometrically
isomorphic, there is a (ko + ¢)-lipschitzian retraction g. : By — Sg. By applying
Lemma 3.6 and Lemma 3.7 with the map g. to P, Q and R in both cases, there

%\/%icqﬁ}—lipschitzian retraction G : A — A — By (because ko +¢ > 1,

VI—cos¢ ' >1and A is convex).

exists a
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The straightforward calculation shows that for each —1 <t < — 1;:/‘/53,

inf{llz@®r|:zdrcdA-Bi}=inf{|lzdr|:zdrec P}
= nf{[lz @ r| : [lz]| = (1 —r) cot ¢}
= inf{\/((1 —r)cot¢)2+7r2: —1 <r < 1} = cos ¢.

Denote by p the radial projection onto S. Then poGo Pp, : B — S; is a

max{ko+ecsed} jiq hitzian retraction. Finally, by minimizing such a Lipschitz con-

(v/1—cos @) cos ¢
stant, a 3?\/g(ko + ¢)-lipschitzian retraction is obtained at ¢ = arccos % 0

---------- 1
1 —cos¢
r ---17mtan¢
R )-8
---aQa
Q
/o,

FIGURE 7. The set A (white area) in Theorem 3.8.

By Theorem 3.3, Theorem 3.8 and Observation 3.9 [4], we obtain :

Corollary 3.9. For every infinite-dimensional Hilbert space and —1 <t <1,

2 arccost 3v/3 }
ko ¢ .

1+t V1I—¢2 2

Moreover, by combining Theorem 3.8 and Observation 3.11 [4], we have the
following better approximation results :

k(t) < min{

Corollary 3.10. For every infinite-dimensional Hilbert space, there exists —1 <
a < 1 such that

or equivalently,

for all =1 <t < a.
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