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In the Banach space setting, there is another definition of the attractive points set
which is different from our definition; see Lin and Takahashi [17]. T is said to be
L-Lipschitzian if ∥Tx − Ty∥ ≤ L∥x − y∥ for any x, y ∈ C, where L ∈ [0,∞). In
particular, T is said to be nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for any x, y ∈ C.
For each x ∈ E, x0 ∈ C is called a nearest point of C to x if ∥x−x0∥ = inf{∥x−z∥ :
z ∈ C}. Here, we present typical properties of A(T ); see [27].

Lemma 2.1. Let C be a non–empty subset of a Hilbert space H and T be a mapping
of C into H. Then, A(T ) is closed and convex.

Lemma 2.2. Let C be a non–empty subset of a Banach space E and let T be a
self–mapping on C with A(T ) ̸= ø. Let x ∈ A(T ). Suppose there is the unique
nearest point x0 of C to x. Then, x0 ∈ F (T ).

Proof. By x ∈ A(T ), it is obvious that

∥x− Tx0∥ ≤ ∥x− x0∥ = inf{∥x− z∥ : z ∈ C}.
Since x0 is the unique nearest point of C to x, we have Tx0 = x0 and x0 ∈ F (T ). □

From now on, we discuss in the Hilbert space setting. Note the followings: We
denote by C a subset of a Hilbert (Euclidean) space. C is always non–empty unless
otherwise noted. Then, normally, “non–empty” is not described.

Let C be a subset of a Hilbert space H and T be a mapping of C into H. We
denote by I the identity mapping on H. T is said to be quasi–nonexpansive if

(1) F (T ) ̸= ø, (2) ∥Tx− v∥ ≤ ∥x− v∥ for x ∈ C, v ∈ F (T ).

Then T is quasi–nonexpansive if and only if ø ̸= F (T ) ⊂ A(T ). That is, the concept
of attractive points is closely related to quasi–nonexpansive mappings. However, we
can easily find a non–increasing and continuous self–mapping T on a closed interval
C in R such that F (T ) ̸= ø and A(T ) ∩ C = ø. Here, we give an example.

Example 2.3. Let C = [−1, 2] ⊂ R and T be the non–increasing and continuous
self–mapping on C defined by

Tx = −2x if x ∈ [−1, 0], Tx = −x/2 if x ∈ (0, 2].

Then, one can easily see that A(T ) ∩ C = ø and F (T ) = {0}.

Motivated by these facts as above and Takahashi and Takeuchi [27], we introduce
the concept of k–acute points. Let k ∈ [0, 1]. Let C be a subset of a Hilbert space
H and T be a mapping of C into H. We define a set Ak(T ) by

Ak(T ) = { v ∈ H : ∥Tx− v∥2 ≤ ∥x− v∥2 + k∥x− Tx∥2 for all x ∈ C }.
We call Ak(T ) the set of k–acute points of T . Because, in the 2–dimensional Eu-
clidean space setting, ∠v xTx is not an obtuse angle for x ∈ C and v ∈ A(T ).

Note A0(T ) = A(T ). We denote A1(T ) by A(T ), that is,

A(T ) = { v ∈ H : ∥Tx− v∥2 ≤ ∥x− v∥2 + ∥x− Tx∥2 for all x ∈ C }.
It is obvious that A(T ) ⊂ Ak1(T ) ⊂ Ak2(T ) ⊂ A(T ) for k1, k2 ∈ [0, 1] with k1 ≤ k2.

Let k ∈ [0, 1). T is said to be k–demi–contractive if

(1) F (T ) ̸= ø, (2) ∥Tx− v∥2 ≤ ∥x− v∥2 + k∥x− Tx∥2 for x ∈ C, v ∈ F (T ).
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Also, T is said to be hemi–contractive if

(1) F (T ) ̸= ø, (2) ∥Tx− v∥2 ≤ ∥x− v∥2 + ∥x− Tx∥2 for x ∈ C, v ∈ F (T ).

Then, for k ∈ [0, 1), T is k–demi–contractive if and only if ø ̸= F (T ) ⊂ Ak(T ).
Also, T is hemi–contractive if and only if ø ̸= F (T ) ⊂ A(T ).

T is said to be k–strictly pseudo–contractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2 for x, y ∈ C.

T is said to be pseudo–contractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2 for x, y ∈ C.

It is easy to see that T is k–demi–contractive if T is k–strictly pseudo–contractive
and F (T ) ̸= ø. Also, T is hemi–contractive if T is pseudo–contractive and F (T ) ̸= ø.

Let C be a closed and convex subset of a Hilbert space H. It is well known that,
for each x ∈ H, there is the unique nearest point x0 of C to x. The mapping PC

defined by PCx = x0 for x ∈ H is called the metric projection of H onto C. It is
also known that PC satisfies the following conditions: For x ∈ H, y ∈ C,

0 ≤ ⟨x− PCx, PCx− y⟩ and ∥x− PCx∥2 + ∥PCx− y∥2 ≤ ∥x− y∥2.

3. Acute points and attractive points

We present an example to see that the concept of attractive points is natural.

Example 3.1. Let C be the subset of a 2–dimensional Euclidean space R2 defined
by C = {(x1, x2) ∈ R2 : 1 < x21 + x22 < 4}. Then C is neither closed nor convex.

(1) Let T be the nonexpansive self–mapping on C defined by

T (x1, x2) = (−x1, x2) for (x1, x2) ∈ C.

Then A(T ) = {(x1, x2) ∈ R2 : x1 = 0} is the symmetric axis of this trans-
formation. Let {vn} and {bn} be sequences defined by v1 ∈ C and

vn+1 = Tnvn, bn =
1

n

∑n

i=1
vi for n ∈ N.

It is obvious that {bn} converges strongly to some u ∈ A(T ). However, u is
not always a fixed point of T . Note that {bn} need not be a sequence in C.

(2) Let α ∈ (0, 2π) and S be the nonexpansive self–mapping on C defined by

S(x1, x2) = (x1 cosα− x2 sinα, x1 sinα+ x2 cosα) for (x1, x2) ∈ C.

Then, A(S) consists of the center of this rotation, that is, A(S) = {(0, 0)}.
Let {vn} and {bn} be sequences defined by v1 ∈ C and

vn+1 = Snvn, bn =
1

n

∑n

i=1
vi for n ∈ N.

It is easy to see that {bn} converges strongly to (0, 0) ∈ A(S). However, C
does not contain (0, 0). Then, (0, 0) is not a fixed point of S.

We study properties of Ak(T ) and some relations among F (T ), A(T ) and A(T ).
To prove Theorem 3.3, we need the following well–known lemma.
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Lemma 3.2. Let H be a Hilbert space. Let x, y, z ∈ H and c ∈ [0, 1]. Then,

∥cx+ (1− c)y − z∥2 = c∥x− z∥2 + (1− c)∥y − z∥2 − c(1− c)∥x− y∥2.

Theorem 3.3. Let k ∈ [0, 1]. Let C be a subset of a Hilbert space H and T be a
mapping of C into H. Then the followings hold.

(1) Ak(T ) is closed and convex.
(2) If C is closed then Ak(T ) ∩ C is closed.
(3) If C is convex then Ak(T ) ∩ C is convex.
(4) If k ∈ [0, 1) and v ∈ Ak(T ) ∩ C then v ∈ F (T ).

Proof. We prove (1). We show that Ak(T ) is closed. Suppose a sequence {zn} in
Ak(T ) converges to some z ∈ H. Let x ∈ C. Then, we have that, for n ∈ N ,

∥Tx− zn∥2 ≤ ∥x− zn∥2 + k∥x− Tx∥2.

Since ∥ · ∥2 is continuous and {zn} converges strongly to z, we have

∥Tx− z∥2 ≤ ∥x− z∥2 + k∥x− Tx∥2.

Then, z ∈ Ak(T ). We have that Ak(T ) is closed. We show that Ak(T ) is convex.
Let c ∈ (0, 1) and u, v ∈ Ak(T ). Let x ∈ C and set N = ∥Tx − (cu + (1 − c)v)∥2.
By Lemma 3.2, we have that

N = c∥Tx− u∥2 + (1− c)∥Tx− v∥2 − c(1− c)∥u− v∥2

≤ c(∥x− u∥2 + k∥Tx− x∥2)
+ (1− c)(∥x− v∥2 + k∥Tx− x∥2)− c(1− c)∥u− v∥2

= (c∥x− u∥2 + (1− c)∥x− v∥2 − c(1− c)∥u− v∥2) + k∥Tx− x∥2

= ∥x− (cu+ (1− c)v)∥2 + k∥Tx− x∥2.

Then we have cu+ (1− c)v ∈ Ak(T ). That is, Ak(T ) is convex. Thus we have (1).
Note that we do not claim Ak(T ) ̸= ø. By (1), it is obvious that (2) and (3) hold.

We prove (4). Suppose v ∈ Ak(T ) ∩ C. Then,

∥Tv − v∥2 ≤ ∥v − v∥2 + k∥v − Tv∥2 = k∥v − Tv∥2.

By k ∈ [0, 1), we have Tv = v. That is, we have v ∈ F (T ). □

Remark 3.4. Let C be a subset of a Hilbert space H and T be a mapping of C into
H. By A(T ) = A0(T ) and Theorem 3.3 (1), we have Lemma 2.1 due to Takahashi
and Takeuchi [27]. By Theorem 3.3 (4), Ak(T ) ∩ C ⊂ F (T ) for k ∈ [0, 1). Then,
F (T ) = Ak(T )∩C if F (T ) ⊂ Ak(T )∩C. In other words, F (T ) is closed and convex
if T is k–demi–contractive and C is closed and convex. However, v ∈ A(T ) ∩ C
does not imply v ∈ F (T ). Let Bx = {v ∈ H : ⟨Tx− x, x− v⟩ ≤ 0} for each x ∈ C.
For v ∈ H and x ∈ C, ⟨Tx− x, x− v⟩ ≤ 0 and ∥Tx− v∥2 ≤ ∥x− v∥2 + ∥Tx− x∥2
are equivalent. Then,

A(T ) = { v ∈ H : ⟨Tx− x, x− v⟩ ≤ 0 for all x ∈ C } = ∩x∈CBx.

Since each Bx is closed and convex, we have again that A(T ) is closed and convex.

We present an example to see that v ∈ A(T ) ∩ C does not imply v ∈ F (T ).
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Example 3.5. Let C = [0, 1] ⊂ R. Define a self–mapping T on C by

Tx = −x/2 + 1 if x ∈ [0, 1/2], Tx = −x/2 + 1/2 if x ∈ (1/2, 1].

It is obvious that F (T ) = ø and ⟨Tx − x, x − y⟩ = (Tx − x)(x − y). We show
y ̸∈ A(T ) if y ∈ [0, 1/2). Let y ∈ [0, 1/2) and set x = y/2 + 1/4. Then, we have
y < x < 1/2 and Tx > 3/4. That is, x − y > 0 and Tx − x > 1/4. This implies
(Tx−x)(x− y) > 0. We also show z ̸∈ A(T ) if z ∈ (1/2, 1]. Let z ∈ (1/2, 1] and set
x = z/2 + 1/4. Then, we have 1/2 < x < z and Tx < 1/4. That is, x− z < 0 and
Tx − x < −1/4. This implies (Tx − x)(x − z) > 0. Furthermore, we can see that
(Tx− x)(x− 1

2) ≤ 0 for x ∈ [0, 1]. Thus we have A(T ) ∩C = {1/2} and F (T ) = ø.

Let C be a bounded, closed and convex subset of R, that is, C is a closed interval.
For example, we can easily see that the condition ø ̸= F (T ) = A(T )∩C ⊂ A(T )∩C
holds if T is nonexpansive. Also, non–increasing and continuous self–mappings on
C are typical examples which satisfy the condition ø ̸= F (T ) = A(T ) ∩ C. In
particular, we already have a non–increasing and continuous self–mapping T on C
such that A(T ) ∩ C = ø and ø ̸= F (T ) = A(T ) ∩ C. Here, we give a self–mapping
T on C = [0, 1] satisfying ø ̸= A(T ) ∩ C ̸= A(T ) ∩ C.

Example 3.6. Let C = [0, 1] ⊂ R. Let T be the self–mapping on C defined by

Tx = −2x+ 1 if x ∈ [0, 1/3), Tx = x if x ∈ [1/3, 2/3],

Tx = −2x+ 2 if x ∈ (2/3, 1].

Then, one can easily see the facts that F (T ) = [1/3, 2/3] ⊂ A(T )∩C, 1/2 ∈ A(T )∩C
and 1/3 ∈ (A(T ) ∩ C)\(A(T ) ∩ C).

4. Lemmas

We prepare lemmas needed in the sequel. Lemma 4.1 is due to Tan and Xu [30].

Lemma 4.1. Let {an} be a sequence of non–negative real numbers and {bn} be a
sequence of non–negative real numbers with

∑∞
j=1 bj < ∞. Suppose an+1 ≤ an + bn

for n ∈ N . Then, {an} converges to some c ∈ [0,∞).

Many researchers take the following assertion or a similar assertion in their arti-
cles; for example, see Weng [31], Xu [33] and Aoyama et.al. [1].

Lemma 4.2. Let {αn} be a sequence in [0, 1] with
∑∞

n=1 αn = ∞. Let {an} be a
sequence of non–negative real numbers and let {bn} be a sequence of real numbers
which satisfies lim supn bn ≤ 0. Let {cn} be a sequence of non–negative real numbers
with

∑∞
n=1 cn < ∞. Suppose an+1 ≤ (1 − αn)an + αnbn + cn for all n ∈ N . Then

limn an = lim supn an = 0.

Lemma 4.3. A Hilbert space H has the Opial property [22]. That is, if {un} is a
sequence in H which converges weakly to u ∈ H, then, for v ∈ H with v ̸= u,

lim infn ∥un − u∥ < lim infn ∥un − v∥.

Lemmas 4.4–4.7 and Lemma 7.3 play important roles in this article.
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Lemma 4.4. Let k ∈ [0, 1). Let C be a subset of a Hilbert space H and T be a
mapping of C into H. Let S be the mapping defined by

Sx = (kI + (1− k)T )x for x ∈ C.

Then, F (T ) = F (S) and A(S) = Ak(T ).

Proof. In our setting, it is known that F (T ) = F (S) holds. We show A(S) = Ak(T ).
Let x ∈ C and v ∈ H. Set N = ∥x−v∥2−∥Sx−v∥2. Using Lemma 3.2, we have

N = ∥x− v∥2 − ∥(kx+ (1− k)Tx)− v∥2

= ∥x− v∥2 − (k∥x− v∥2 + (1− k)∥Tx− v∥2 − k(1− k)∥x− v − (Tx− v)∥2)
= (1− k)(∥x− v∥2 + k∥x− Tx∥2 − ∥Tx− v∥2).

By k ∈ [0, 1), this equality implies that v ∈ A(S) if and only if v ∈ Ak(T ).
Note that we claim neither F (T ) ̸= ø nor Ak(T ) ̸= ø. □

Lemma 4.5. Let k ∈ [0, 1) and c ∈ [k, 1). Let C be a subset of a Hilbert space H
and T be a mapping of C into H. Let S and S′ be mappings defined by

Sx = (kI + (1− k)T )x, S′x = (cI + (1− c)T )x for x ∈ C.

Then, the followings hold.

(1) T is k–demi–contractive if and only if S is quasi–nonexpansive.
(2) Suppose T is k–demi–contractive. Then S′ is quasi–nonexpansive and

Ak(T ) ∩ C = F (T ) = F (S′) = A(S′) ∩ C.

Proof. We prove (1). Assume that T is k–demi–contractive. Then we know that
ø ̸= F (T ) ⊂ Ak(T ) ∩ C. By Theorem 3.3 (4), we have F (T ) = Ak(T ) ∩ C. By
Lemma 4.4, we have ø ̸= F (S) = F (T ) = Ak(T )∩C = A(S)∩C. This implies that
S is quasi–nonexpansive. Assume that S is quasi–nonexpansive. Then we know
ø ̸= F (S) ⊂ A(S) ∩ C. By Theorem 3.3 (4) and Lemma 4.4, we have ø ̸= F (T ) =
F (S) = A(S) ∩ C = Ak(T ) ∩ C. This implies that T is k–demi–contractive.

We prove (2). If T is k–demi–contractive then T is c–demi–contractive. Then,
by (1), we have that S′ is quasi–nonexpansive. Also, we have Ac(T )∩C = F (T ) =
F (S′) = A(S′) ∩ C and Ac(T ) ∩ C = F (T ) = Ak(T ) ∩ C. □

The following lemma is closely connected with Zhou’s result [34].

Lemma 4.6. Let k ∈ [0, 1) and c ∈ [k, 1). Let C be a subset of a Hilbert space H.
Let T be a mapping of C into H. Let S and S′ be mappings defined by

Sx = (kI + (1− k)T )x, S′x = (cI + (1− c)T )x for x ∈ C.

Then, the followings hold.

(1) T is k–strictly pseudo–contractive if and only if S is nonexpansive.
(2) Suppose T is k–strictly pseudo–contractive. Then S′ is nonexpansive and

Ak(T ) ∩ C = F (T ) = F (S′) = A(S′) ∩ C.
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Proof. Let x, y ∈ C and set N = ∥x−y∥2−∥Sx−Sy∥2. Using Lemma 3.2, we have

N = ∥x− y∥2 − ∥(kx+ (1− k)Tx)− (ky + (1− k)Ty)∥2

= ∥x− y∥2 − ∥k(x− y) + (1− k)(Tx− Ty)∥2

= ∥x− y∥2 − (k∥x− y∥2 + (1− k)∥Tx− Ty∥2 − k(1− k)∥x− y − (Tx− Ty)∥2)
= (1− k)(∥x− y∥2 + k∥(I − T )x− (I − T )y∥2 − ∥Tx− Ty∥2).

We prove (1). By k ∈ [0, 1) and this equality, T is k–strictly pseudo–contractive
if and only if S is nonexpansive. We prove (2). Since T is k–strictly pseudo–
contractive, T is c–strictly pseudo–contractive. Then, S′ is nonexpansive, that
is, F (T ) = F (S′) ⊂ A(S′). In the case of F (T ) ̸= ø, by Lemma 4.5, we know
Ak(T ) ∩ C = F (T ) = F (S′) = A(S′) ∩ C. We note that this equality holds in the
case F (T ) = ø. Note that we do not claim F (T ) ̸= ø. □

Let C be a subset of H and T be a mapping of C into H. Let {xn} be a sequence
in C which converges weakly to u ∈ C and satisfies limn ∥Txn − xn∥ = 0. I − T is
said to be demiclosed at 0 if u ∈ F (T ) always holds for such {xn} and u.

Let {yn} be a sequence in C. Then, limn ∥Tyn−yn∥ = 0 and limn ∥Tyn−yn∥2 = 0
are equivalent. In the sequel, we use this fact without notice.

Lemma 4.7. Let k ∈ [0, 1). Let C be a subset of a Hilbert space H and T be a
mapping of C into H. Let S be the mapping defined by

Sx = (kI + (1− k)T )x for x ∈ C.

Then, for any sequence {un} in C, the following holds.

limn ∥Tun − un∥ = 0 if and only if limn ∥Sun − un∥ = 0.

Furthermore, I − T is demiclosed at 0 if and only if I − S is demiclosed at 0.

Proof. It is easy to see that, for n ∈ N ,

∥Sun − un∥ = ∥(kun + (1− k)Tun)− un∥ = (1− k)∥Tun − un∥.

By k ∈ [0, 1), limn ∥Tun − un∥ = 0 and limn ∥Sun − un∥ = 0 are equivalent. By
Lemma 4.4, we know F (T ) = F (S). These imply that I − T is demiclosed at 0 if
and only if I − S is demiclosed at 0. □

Proofs of Lemmas 4.4–4.7 are easy. However, we think that these assertions are
so interesting. In the sequel, sometimes we use these lemmas without notice.

The following lemma due to Marino and Xu [21] is a version of Browder’s demi-
closed principle in the Hilbert space setting.

Lemma 4.8. Let k ∈ [0, 1). Let C be a subset of a Hilbert space H and let T be a
k–strictly pseudo–contractive mapping of C into H. Let S be the mapping defined by
Sx = (kI+(1−k)T )x for x ∈ C. Suppose {un} is a sequence in C which converges
weakly to some u ∈ C and satisfies limn ∥Tun − un∥ = 0. Then, u ∈ F (T ) = F (S).

Proof. By k ∈ [0, 1), limn ∥Tun − un∥ = 0 and limn ∥Sun − un∥ = 0 are equivalent.
By Lemma 4.6, S is nonexpansive and F (T ) = F (S). Then, we prove u ∈ F (S).
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Arguing by contradiction, assume Su ̸= u. Then, by the Opial property, we have

lim infn ∥un − u∥ < lim infn ∥un − Su∥
≤ lim infn(∥un − Sun∥+ ∥Sun − Su∥)
≤ lim infn ∥un − u∥.

This is a contradiction. Thus we have u ∈ F (S) = F (T ). □
Lemma 4.9. Let C be a subset of a Hilbert space H. Let {un} be a sequence in
H such that {∥un − w∥} converges for each w ∈ C. Suppose {uni} and {unj} are
subsequences of {un} which converge weakly to u, v ∈ C, respectively. Then u = v.

Proof. Let w ∈ C. Then, since {∥un−w∥} converges, any subsequence of {∥un−w∥}
converges to the same real number. Arguing by contradiction, we assume u ̸= v.
Then, by u, v ∈ C and the Opial property, we have the followings:

lim infi ∥uni − u∥ < lim infi ∥uni − v∥ = lim infj ∥unj − v∥,
lim infj ∥unj − v∥ < lim infj ∥unj − u∥ = lim infi ∥uni − u∥.

That is, we have lim infi ∥uni − u∥ < lim infi ∥uni − u∥. This is a contradiction. □
Lemma 4.10. Let a ∈ [0, 1]. Let C be a subset of a Hilbert space H and T be a
mapping of C into H. Let x ∈ C and set Sx = ax+(1−a)Tx. Then, the followings
hold.

(1) Suppose u ∈ A(T ). Then,

∥Sx− u∥2 ≤ ∥x− u∥2 + (1− a)2∥Tx− x∥2.

(2) Suppose v ∈ A(T ). Then,

∥Sx− v∥2 ≤ ∥x− v∥2 − a(1− a)∥Tx− x∥2.

Proof. Let x ∈ C and z ∈ H. Then, by Lemma 3.2, we have

∥Sx− z∥2 = ∥ax+ (1− a)Tx− z∥2

= a∥x− z∥2 + (1− a)∥Tx− z∥2 − a(1− a)∥Tx− x∥2.

Suppose u ∈ A(T ) and v ∈ A(T ). Then, by this equality, we have the followings:

∥Sx− u∥2 ≤ a∥x− u∥2 + (1− a)(∥Tx− x∥2 + ∥x− u∥2)− a(1− a)∥Tx− x∥2

= ∥x− u∥2 + (1− a)2∥Tx− x∥2,
∥Sx− v∥2 ≤ a∥x− v∥2 + (1− a)∥x− v∥2 − a(1− a)∥Tx− x∥2

= ∥x− v∥2 − a(1− a)∥Tx− x∥2.
□

Lemma 4.11. Let {an} be a sequence in [0, 1]. Let C be a subset of a Hilbert space
H and T be a self–mapping on C. Assume that there is a sequence {un} in C such
that un+1 = anun + (1− an)Tun for n ∈ N . Then, the followings hold.

(1) Suppose v ∈ A(T ). Then, {∥un − v∥2} is non–increasing and converges.
(2) Suppose A(T ) ̸= ø, a, b ∈ (0, 1) with a ≤ b, and {an} is a sequence in [a, b].

Then
∑∞

n=1 ∥Tun − un∥2 < ∞.
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(3) Suppose A(T ) ̸= ø, {an} satisfies
∑∞

n=1 an(1− an) = ∞, and

(OS) ∥Tun+1 − Tun∥ ≤ (1− an)∥un − Tun∥ for n ∈ N.

Then, limn ∥Tun − un∥ = 0.

Proof. We prove (1). Assume v ∈ A(T ). By Lemma 4.10, we have

∥un+1 − v∥2 ≤ ∥un − v∥2 − an(1− an)∥Tun − un∥2 for n ∈ N.

Then {∥un − v∥2} is non–increasing and converges. By this inequality, we have

(4.1) an(1− an)∥Tun − un∥2 ≤ ∥un − v∥2 − ∥un+1 − v∥2 for n ∈ N.

We prove (2). We know a(1− b) ≤ an(1− an) for n ∈ N . Then, by (4.1), we have

a(1− b)
∑n

j=1
∥Tuj − uj∥2 ≤ ∥u1 − v∥2 − ∥un+1 − v∥2 ≤ ∥u1 − v∥2

for n ∈ N . By 0 < a(1− b), we have
∑∞

n=1 ∥Tun − un∥2 < ∞.
We prove (3). By (4.1), we have that, for n ∈ N ,∑n

j=1
aj(1− aj)∥Tuj − uj∥2 ≤ ∥u1 − v∥2 − ∥un+1 − v∥2 ≤ ∥u1 − v∥2.

Then we have
∑∞

j=1 aj(1− aj)∥Tuj −uj∥2 < ∞. By
∑∞

j=1 aj(1− aj) = ∞, we have

lim infn ∥Tun − un∥2 = 0. On the other hand, by (OS), we have that, for n ∈ N ,

∥Tun+1 − un+1∥ ≤ ∥Tun+1 − Tun∥+ ∥Tun − un+1∥
≤ (1− an)∥Tun − un∥+ an∥Tun − un∥
= ∥Tun − un∥.

Then {∥Tun − un∥2} is non–increasing and converges. Thus we have

limn ∥Tun − un∥2 = lim infn ∥Tun − un∥2 = 0.

We note that T satisfies the condition (OS) if T is nonexpansive; see [14]. □

5. Convergence theorems I

Let C be a subset of a Hilbert space H and S be a mapping of C into H. Under
the condition A(S) ̸= ø, we prove some convergence theorems.

Theorem 5.1. Let a, b ∈ (0, 1) with a ≤ b and {an} be a sequence in [a, b]. Let C
be a compact subset of a Hilbert space H. Let S be a continuous self-mapping on C
satisfying F (S) ⊂ A(S) and A(S) ̸= ø. Suppose there is a sequence {un} in C such
that

un+1 = anun + (1− an)Sun for n ∈ N.

Then, {un} converges strongly to some u ∈ F (S).

Proof. By A(S) ̸= ø and Lemma 4.11 (2), we have
∑∞

n=1 ∥Sun − un∥2 < ∞. Then
limn ∥Sun−un∥2 = 0. Since C is compact, {un} has a convergent subsequence. Let
{unj} be a subsequence of {un} which converges strongly to some u ∈ C. Then we
know limj ∥unj − u∥ = 0 and limj ∥Sunj − unj∥ = 0. It is easy to see that

∥Su− u∥ ≤ ∥Su− Sunj∥+ ∥Sunj − unj∥+ ∥unj − u∥
for j ∈ N . Since S is continuous at u, we have Su = u, that is, we have u ∈ F (S).
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By u ∈ F (S) ⊂ A(S) and Lemma 4.10, we have

∥un+1 − u∥2 ≤ ∥un − u∥2 + ∥Sun − un∥2

for n ∈ N . Then, by
∑∞

n=1 ∥Sun−un∥2 < ∞ and Lemma 4.1, {∥un−u∥2} converges.
Since {∥unj − u∥2} converges to 0, {∥un − u∥2} itself converges to 0. Thus {un}
converges strongly to u ∈ F (S). □

Under the assumptions of Theorem 5.1, we had ø ̸= F (S) ⊂ A(S). However, we
cannot apply Shauder’s theorem to have this condition.

By Lemmas 4.5 and 4.7, the following theorem is derived from Theorem 5.1.

Theorem 5.2. Let a, b ∈ (0, 1) with a ≤ b and {an} be a sequence in [a, b]. Let C
be a compact subset of a Hilbert space H and T be a continuous self–mapping on C.
Assume that one of the followings holds.

(1) T is hemi–contractive with A(T ) ̸= ø. S is the mapping defined by S = T .
(2) T is k–demi–contractive. S is the mapping defined by S = kI + (1− k)T .
(3) T is quasi–nonexpansive. S is the mapping defined by S = T .

Suppose S is a self–mapping on C and there is a sequence {un}

un+1 = anun + (1− an)Sun for n ∈ N.

Then, {un} converges strongly to some u ∈ F (T ).

Let R2 be a 2-dimensional Euclidean space. Let C be the compact and convex
subset defined by C = {(x1, x2) ∈ R2 : x1, x2 ∈ [0, 1], x1 + x2 ≤ 1}. Define a
self–mapping T on C by

T (x1, x2) =

(
1

2
(1 + x1 − x2) , x2

)
for (x1, x2) ∈ C.

Let u1 ∈ C and {un} be the sequence generated by un+1 = (un+Tun)/2 for n ∈ N .
Under this setting, we can easily see the followings:

F (T ) = {(x1, x2) ∈ C : x1 + x2 = 1},
A(T ) = {(x1, x2) ∈ R2 : x1 ≥ 1}, A(T ) ∩ C = A(T ) ∩ C = {(1, 0)}.

Since F (T ) ̸⊂ A(T )∩C, T is not hemi–contractive. However, it is obvious that {un}
converges to a fixed point of T . For such T , maybe we do not have a convergence
theorem. Then we give a convergence theorem for such mappings.

Theorem 5.3. Let a, b ∈ (0, 1) with a ≤ b and {an} be a sequence in [a, b]. Let
C be a compact and convex subset of a Hilbert space H. Let T be a continuous
self–mapping on C with A(T ) ̸= ø. Let u1 ∈ C and {un} be the sequence defined by

un+1 = anun + (1− an)Tun for n ∈ N.

Suppose F (T ) ⊂ PC(A(T )), where PC is the metric projection of H onto C. Then
{un} converges strongly to some u ∈ F (T ).

Proof. In the same way as in the proof of Theorem 5.1, we know that {un} has
a subsequence {unj} which converges strongly to some u ∈ F (T ). By F (T ) ⊂
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PC(A(T )), there is v ∈ A(T ) such that u = PCv. By Lemma 4.11 (1), {∥un − v∥2}
converges. Then,

limn ∥un − v∥2 = limj ∥unj − v∥2 = ∥u− v∥2.

By {un} ⊂ C and u = PCv, we have

∥v − u∥2 + ∥u− un∥2 ≤ ∥v − un∥2 for n ∈ N.

Then lim supn ∥u− un∥2 ≤ 0. Thus {un} converges strongly to u ∈ F (T ).
Note that, in this setting, by Lemma 2.2, F (T ) = PC(A(T )) holds. □

We consider weak convergence theorems in the case A(S) ̸= ø and F (S) ⊂ A(S).
To have the following results, we have to assume demicloseness at 0 of I − S.

Theorem 5.4. Let a, b ∈ (0, 1) with a ≤ b and {an} be a sequence in [a, b]. Let C
be a weakly closed subset of a Hilbert space H. Let S be a self–mapping on C such
that F (S) ⊂ A(S), A(S) ̸= ø, and I − S is demiclosed at 0. Suppose there is a
sequence {un} in C such that

un+1 = anun + (1− an)Sun for n ∈ N.

Then, {un} converges weakly to some u ∈ F (S).

Proof. By A(S) ̸= ø and Lemma 4.11 (2), we have
∑∞

n=1 ∥Sun − un∥2 < ∞ and
limn ∥Sun − un∥2 = 0. Also, by Lemma 4.11 (1), we know that {un} is bounded.
So, {un} has a weakly convergent subsequence. Let {unj} be a subsequence of {un}
which converges weakly to some u ∈ C. We know limj ∥Sunj − unj∥2 = 0. Then,
since I − S is demiclosed at 0, we have u ∈ F (S). Let v ∈ F (S) ⊂ A(S). By
Lemma 4.10, we have

∥un+1 − v∥2 ≤ ∥un − v∥2 + ∥Sun − un∥2

for n ∈ N . By
∑∞

n=1 ∥Sun − un∥2 < ∞ and Lemma 4.1, {∥un − v∥2} converges.
We confirmed that {∥un − v∥} converges for each v ∈ F (S). We also confirmed

that every weakly convergent subsequence of {un} converges weakly to a point of
F (S). Then, by Lemma 4.9, every weakly convergent subsequence of {un} converges
weakly to u ∈ F (S). Thus {un} itself converges weakly to u ∈ F (S). □

By Lemmas 4.5 and 4.7, the following theorem is derived from Theorem 5.4.

Theorem 5.5. Let a, b ∈ (0, 1) with a ≤ b and {an} be a sequence in [a, b]. Let C
be a weakly closed subset of a Hilbert space H and T be a self–mapping on C such
that I − T is demiclosed at 0. Assume that one of the followings hold.

(1) T is hemi–contractive with A(T ) ̸= ø. S is the mapping defined by S = T .
(2) T is k–demi–contractive. S is the mapping defined by S = kI + (1− k)T .
(3) T is quasi–nonexpansive. S is the mapping defined by S = T .

Suppose S is a self–mapping on C and there is a sequence {un}

un+1 = anun + (1− an)Sun for n ∈ N.

Then, {un} converges weakly to some u ∈ F (T ).
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6. Convergence theorems II

We begin this section with presenting Theorem 6.1 due to Takahashi and Takeuchi
[27]. Then, by Lemmas 4.4, 4.6, and Theorem 6.1, we will have Theorem 6.2.

Theorem 6.1. Let C be a bounded subset of a Hilbert space H. Let S be a non-
expansive self–mapping on C. Let {vn} and {bn} be sequences defined by v1 ∈ C
and

vn+1 = Svn, bn =
1

n

∑n

t=1
vt for n ∈ N.

Then the followings hold.

(1) A(S) is non-empty, closed and convex.
(2) {bn} converges weakly to some u ∈ A(S).

Theorem 6.2. Let k ∈ [0, 1). Let C be a bounded subset of a Hilbert space H.
Let T be a k–strictly pseudo–contractive self–mapping on C. Let S be the mapping
defined by Sx = (kI + (1 − k)T )x for x ∈ C. Assume that S is a self–mapping on
C. Let {vn} and {bn} be sequences defined by v1 ∈ C and

vn+1 = Svn, bn =
1

n

∑n

t=1
vt for n ∈ N.

Then the followings hold.

(1) Ak(T ) is non-empty, closed and convex.
(2) {bn} converges weakly to some u ∈ Ak(T ).

Furthermore, if C is closed and convex then the followings hold.

(3) F (T ) is non-empty, closed and convex.
(4) {bn} converges weakly to u ∈ F (T ).

Proof. We show (1) and (2). By Lemmas 4.4 and 4.6, S is nonexpansive and F (T ) =
F (S) ⊂ Ak(T ) = A(S). By Theorem 6.1, we have that Ak(T ) is non–empty, closed
and convex. We also have that {bn} converges weakly to some u ∈ Ak(T ).

We show (3) and (4). Since both Ak(T ) and C are closed and convex, so is
F (T ) = Ak(T ) ∩ C. We can easily have {bn} ⊂ C. Then, since C is weakly closed,
we have u ∈ Ak(T ) ∩ C = F (T ). In this setting, the assumption that S is a
self–mapping on C is unnecessary. Furthermore, (3) is known. □

Remark 6.3. In Theorem 6.2 (1) and (2), convexity of C is not always necessary.
Then, we give an example. We denote by Q the set of rational numbers. Let
k ∈ [0, 1) ∩Q and C = (0, 1) ∩Q. Then, for any self–mapping T on C, S is also a
self–mapping. However, C is not convex.

Theorem 6.4 is Suzuki’s theorem in the Hilbert space setting; see Suzuki [24].
We note that Chidume and Chidume [7] also proved the theorem independently.
By Lemma 4.6 and Theorem 6.4, we will have Theorem 6.5 closely connected with
Zhou’s another result [34].

Theorem 6.4. Let c ∈ (0, 1). Let {an} be a sequence in [0, 1] satisfying limn an = 0
and

∑∞
n=1 an = ∞. Let C be a closed and convex subset of a Hilbert space H. Let
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S be a nonexpansive self–mapping on C with F (S) ̸= ø. Let z, u1 ∈ C and {un} be
the sequence defined by

un+1 = anz + (1− an)(cun + (1− c)Sun) for n ∈ N.

Then {un} converges strongly to the point of F (S) nearest to z.

Theorem 6.5. Let k ∈ [0, 1), b ∈ (0, 1) and c ∈ [k, 1). Let {an} be a sequence in
[0, 1] satisfying limn an = 0 and

∑∞
n=1 an = ∞. Let C be a closed and convex subset

of a Hilbert space H. Let T be a k–strictly pseudo–contractive self–mapping on C
with F (T ) ̸= ø and S be the mapping defined by Sx = (cI + (1− c)T )x for x ∈ C.
Let z, u1 ∈ C and {un} be the sequence defined by

un+1 = anz + (1− an)(bun + (1− b)Sun) for n ∈ N.

Then {un} converges strongly to the point of F (T ) nearest to z.

Proof. Since T is k–strictly pseudo–contractive and F (T ) ̸= ø, S is a nonexpansive
self–mapping on C with ø ̸= F (T ) = F (S) = A(S) ∩ C. By Theorem 6.4, {un}
converges strongly to the point of F (T ) = F (S) nearest to z. □

Recently, some researchers considered minimal norm problems for some nonlinear
mappings. They presented some iterations to find the fixed point nearest to 0 for
k–strictly pseudo–contractive mappings or k–demi–contractive mappings, in the
special setting C = H. It seems that the condition 0 ∈ C = H is essential for their
arguments. Let k ∈ [0, 1) and a ∈ (k, 1). Then, there is b ∈ (0, 1) such that

(6.1) a = k + b(1− k) = b+ (1− b)k, 1− a = (1− b)(1− k).

In the same setting as Theorem 6.5, assume 0 ∈ C and set c = k and z = 0. For
a ∈ (k, 1), we can take b ∈ (0, 1) satisfying (6.1). Then under the conditions as
above, the iteration in Theorem 6.5 becomes as follows:

un+1 = an0 + (1− an)(bun + (1− b)(kun + (1− k)Tun))

= (1− an)(aun + (1− a)Tun) for n ∈ N.

Thus we have the following Halpern type convergence theorem which is a corollary
of Theorem 6.5. It is obvious that we can apply Theorem 6.6 in the case of C = H.

Theorem 6.6. Let k ∈ [0, 1) and a ∈ (k, 1). Let {an} be a sequence in [0, 1]
satisfying limn an = 0 and

∑∞
n=1 an = ∞. Let C be a closed and convex subset of a

Hilbert space H with 0 ∈ C. Let T be a k–strictly pseudo–contractive self–mapping
on C with F (T ) ̸= ø. Let u1 ∈ C and {un} be the sequence defined by

un+1 = (1− an)(aun + (1− a)Tun) for n ∈ N.

Then {un} converges strongly to the point of F (T ) nearest to 0.

In 2008, Maingé and Măruşter proved the following theorem (Theorem 4.1 in [19]).

Theorem 6.7. Let k ∈ [0, 1) and b ∈ (0, 1 − k). Let {αn} be a sequence in [0, 1)
and {βn} be a sequence in (0, b] such that

limn αn = 0,
∑∞

n=1
αn = ∞, limn

αn

βn
= 0.
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Let H be a Hilbert space and T be a k–demi–contractive mapping on H. Assume
that I − T is demiclosed at 0. Let x1 ∈ H and {xn} be the sequence defined by

yn = (1− αn)xn, xn+1 = (1− βn)yn + βnTyn for n ∈ N.

Then {xn} converges strongly to the point of F (T ) nearest to 0.

Motivated by Maingé and Măruşter [19], we present the following results.

Theorem 6.8. Let {an} be a sequence in [0, 1) and {bn} be a sequence in (0, 1)
such that

limn an = 0,
∑∞

n=1
an = ∞, limn

an
bn(1− bn)

= 0.

Let C be a closed and convex subset of a Hilbert space H with 0 ∈ C. Let S be a
quasi–nonexpansive self–mapping on C such that I−S is demiclosed at 0. For each
n ∈ N , let Un be the mapping defined by Unx = (bnI + (1− bn)S)x for x ∈ C. Let
u1 ∈ C and {un} be the sequence defined by

un+1 = (1− an)Unun for n ∈ N.

Then {un} converges strongly to the point of F (S) nearest to 0.

Proof. It is easy to see that each Un is a self–mapping on C. By 0 ∈ C, each
(1− an)Un is also a self–mapping on C. Then {un} is well–defined. By the quasi–
nonexpansiveness of S and Lemma 4.5, each Un is also quasi–nonexpansive and

ø ̸= F (S) = A(S) ∩ C = A(Un) ∩ C = F (Un).

By Theorem 3.3, F (S) is closed and convex. Then we can set v = PF (S)0 ∈ F (S),
where PF (S) is the metric projection of H onto F (S).

Set D = {x ∈ C : ∥x−v∥ ≤ ∥u1−v∥+∥v∥}. Then we easily see that 0, v, u1 ∈ D
and D is bounded, closed and convex. For each n ∈ N , it is obvious that

∥Unx− v∥ ≤ ∥x− v∥ ≤ ∥u1 − v∥+ ∥v∥,
∥aUnx− v∥ ≤ a∥Unx− v∥+ (1− a)∥v∥

≤ a(∥u1 − v∥+ ∥v∥) + (1− a)∥v∥
≤ ∥u1 − v∥+ ∥v∥

for a ∈ [0, 1] and x ∈ D. Then each Un and each (1 − an)Un are self–mappings on
D. We have that {un} and {Unun} are sequences in the weakly compact set D.

It is obvious that, for n ∈ N ,

(6.2) ∥Unun − un∥ = ∥(bnun + (1− bn)Sun)− un∥ = (1− bn)∥Sun − un∥.

We know v ∈ F (S) ⊂ A(S) and Unun = bnun+(1− bn)Sun. Then, by Lemma 4.10,
we have the following:

(6.3) ∥Unun − v∥2 ≤ ∥un − v∥2 − bn(1− bn)∥Sun − un∥2 for n ∈ N.

Let {uk} be a subsequence of {un} such that a term ui of {un} is a term of {uk}
if ai > 0. We denote by P the index set of {uk}. Also, let {ul} be a subsequence
of {un} such that a term ui of {un} is a term of {ul} if ai = 0. We denote by V
the index set of {ul}. It is possible that {ul} has at most finite terms. However, by
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n=1 an = ∞, {uk} must have countable infinite terms. We can consider P and V

as subsequences {k} and {l} of N = {n}, respectively.
Consider the subsequence {ul} of {un}. By (6.3) and al = 0, for l ∈ V , we have

(6.4) ∥ul+1 − v∥2 = ∥Ulul − v∥2 ≤ ∥ul − v∥2 − bl(1− bl)∥Sul − ul∥2 ≤ ∥ul − v∥2.

For each l ∈ V , we set Kl = 0. Then we can rewrite (6.4) as follows:

(6.5) ∥ul+1 − v∥2 ≤ (1− al)∥ul − v∥2 + alKl for l ∈ V.

Consider the subsequence {uk} of {un}. For k ∈ P , set Nk = ∥uk+1 − v∥2. Then,
by (6.3), we have that, for k ∈ P ,

(6.6)

Nk = ∥(1− ak)(Ukuk − v)− akv∥2

≤ (1− ak)∥Ukuk − v∥2 + a2k∥v∥2 − 2ak(1− ak)⟨Ukuk − v, v⟩

≤
(
(1− ak)∥uk − v∥2 − (1− ak)×

ak
ak

× bk(1− bk)∥Suk − uk∥2
)

+ a2k∥v∥2 + 2ak(1− ak)⟨Ukuk − v,−v⟩.
For each k ∈ P , we set yk = Ukuk and

(6.7) Kk = − 1

ak
(1− ak)bk(1− bk)∥Suk − uk∥2 + ak∥v∥2 + 2(1− ak)⟨yk − v,−v⟩.

Then we can rewrite (6.6) as follows:

(6.8) ∥uk+1 − v∥2 ≤ (1− ak)∥uk − v∥2 + akKk for k ∈ P.

Let k ∈ P . Then, by (6.7) and ak, bk ∈ (0, 1), it is obvious that

(6.9) Kk ≤ ak∥v∥2 + 2(1− ak)⟨yk − v,−v⟩ ≤ ∥v∥2 + 2∥yk − v∥ ∥v∥.
Since D is weakly compact, we know lim supk Kk < ∞.

We show lim supk Kk ≤ 0. Arguing by contradiction, assume 0 < lim supk Kk.
Then there is a subsequence {kj} of {k} satisfying

0 < lim supk Kk = limj Kkj .

Let {ukj} be the subsequence of {uk} corresponding to {kj}. Since D is weakly
compact, {ukj} has a subsequence which converges weakly to some u ∈ D. Without
loss of generality, we can assume that {ukj} converges weakly to u ∈ D.

It is obvious that 0 < Kkj for sufficiently large j. By (6.7), we can rewrite
0 < Kkj as follows:

1

akj
(1− akj )bkj (1− bkj )∥Sukj − ukj∥

2 < akj∥v∥
2 + 2(1− akj )⟨ykj − v,−v⟩.

Then, since D is bounded and limj akj = 0, there is L > 0 such that

bkj (1− bkj )

akj
∥Sukj − ukj∥

2 <
akj

(1− akj )
∥v∥2 + 2∥ykj − v∥∥v∥ < L

for sufficiently large j. That is, for sufficiently large j, the following holds:

(6.10) ∥Sukj − ukj∥
2 <

akj
bkj (1− bkj )

L.
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Recall limj akj/bkj (1− bkj ) = 0. Then, by (6.10) and (6.2), we have

limj ∥Sukj − ukj∥
2 = 0, limj ∥Ukjukj − ukj∥

2 = limj ∥ykj − ukj∥
2 = 0.

Since I − S is demiclosed at 0, we have u ∈ F (S). It is obvious that {ykj} also
converges weakly to u. Confirm that limj akj = 0, v = PF (S)0, and {ykj} converges
weakly to u ∈ F (S). Then, by (6.9), we have

limj Kkj ≤ limj

(
akj∥v∥

2 + 2(1− akj )⟨ykj − v,−v⟩
)
= 2⟨u− v, 0− v⟩ ≤ 0.

Thus we have 0 < lim supk Kk = limj Kkj ≤ 0. This is a contradiction.
By (6.5) and (6.8), we have

(6.11) ∥un+1 − v∥2 ≤ (1− an)∥un − v∥2 + anKn for n ∈ N.

On the other hand, we know lim supk Kk ≤ 0 and Kl = 0 for all l ∈ V . These
imply lim supnKn ≤ 0. Thus, by (6.11),

∑∞
n=1 an = ∞, and Lemma 4.2, we have

limn ∥un − v∥2 = 0. Hence, {un} converges strongly to v = PF (S)0. □

Theorem 6.9. Let k ∈ [0, 1) and c ∈ [k, 1). Let {an} be a sequence in [0, 1) and
{bn} be a sequence in (0, 1) such that

limn an = 0,
∑∞

n=1
an = ∞, limn

an
bn(1− bn)

= 0.

Let C be a closed and convex subset of a Hilbert space H with 0 ∈ C. Let T be a
k–demi–contractive self–mapping on C such that I − T is demiclosed at 0. Let S
be the mapping defined by Sx = (cI + (1 − c)T )x for x ∈ C. For each n ∈ N , let
Un be the mapping defined by Unx = (bnI + (1− bn)S)x for x ∈ C. Let u1 ∈ C and
{un} be the sequence defined by

un+1 = (1− an)Unun for n ∈ N.

Then {un} converges strongly to the point of F (T ) nearest to 0.

Proof. Recall Lemmas 4.5 and 4.7. Then, since T is k–demi–contractive, S is quasi–
nonexpansive and ø ̸= F (T ) = F (S) = A(S) ∩ C. Since I − T is demiclosed at 0,
I − S is also demiclosed at 0. Then, by Theorem 6.8, we have the result. □

We can deduce the following assertion from Theorem 6.9.

Theorem 6.10. Let k ∈ [0, 1) and b ∈ (0, 1 − k). Let {αn} be a sequence in [0, 1)
and {βn} be a sequence in (0, b] such that

limn αn = 0,
∑∞

n=1
αn = ∞, limn

αn

βn
= 0.

Let C be a closed and convex subset of a Hilbert space H with 0 ∈ C. Let T be a
k–demi–contractive self–mapping on C. Assume that I − T is demiclosed at 0. Let
{yn} and {xn} be sequences defined by y1 ∈ C and

xn = (1− βn)yn + βnTyn, yn+1 = (1− αn)xn for n ∈ N.

Then {yn} converges strongly to the point of F (T ) nearest to 0.
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Proof. We can rewrite the iteration as follows:

(6.12) yn+1 = (1− αn)((1− βn)yn + βnTyn) for n ∈ N.

Set an = αn for n ∈ N and c = k. Then limn an = 0 and
∑∞

n=1 an = ∞.
Also set d = b/(1− k). By 0 < βn ≤ b < 1− k, we have

0 <
βn

1− k
≤ b

1− k
= d < 1 for n ∈ N.

Set bn = 1 − βn/(1 − k) for n ∈ N . Then {bn} is a sequence in (0, 1). Note that
1− bn = βn/(1− k) ∈ (0, d ] and bn ∈ [1− d, 1) hold for n ∈ N . We easily see that

0 <
an

(1− bn)bn
≤ 1− k

βn
× an

(1− d)
=

1− k

1− d

αn

βn
for n ∈ N.

By limn αn/βn = 0, we have limn an/bn(1 − bn) = 0. Thus {an} and {bn} satisfy
the conditions in Theorem 6.9. On the other hand, it is easy to see that

βn = (1− bn)(1− k), (1− βn) = bn + (1− bn)k for n ∈ N.

Let u1 = y1. Then consider the iteration in Theorem 6.9, in the setting as above.
Recall c = k. Then it is easy to see that the iteration becomes as follows:

un+1 = (1− an)Unun

= (1− an)(bnun + (1− bn)Sun)

= (1− an)(bnun + (1− bn)(kun + (1− k)Tun))

= (1− αn)((1− βn)un + βnTun) for n ∈ N.

So, this iteration corresponds to (6.12). By Theorem 6.9, {yn} converges strongly
to v = PF (T )0. Since limn αn = 0 and ∥yn+1∥ = (1−αn)∥xn∥, {xn} is bounded. By
∥xn − yn+1∥ = αn∥xn∥, {xn} also converges strongly to v = PF (T )0. □

Remark 6.11. From our point of view, iterations in Theorems 6.8, 6.9 and 6.10
are a kind of Halpern type iteration in structure. It is obvious that Theorem 6.10
is closely connected with Maingé and Măruşter’s theorem. In the argument on
Theorem 4.1 [19], their accounts of the sequence {αn} is not helpful. They do
not refer to the case that {αn} has a null constant subsequence. Furthermore, it
seems that the part of their proof connected with Lemma 4.3 [19] contains a circular
argument as a matter of form.

7. Convergence theorems III

We begin this section with presenting the following theorem due to Ishikawa [9].
The iterative procedure in the theorem is called Ishikawa iteration.

Theorem 7.1. Let {an} and {bn} be sequences in [0, 1] such that

(1) an ≤ bn, (2) limn bn = 0, (3)
∑∞

n=1
anbn = ∞.
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Let C be a compact and convex subset of a Hilbert space H and T be a Lipschitzian
pseudo-contractive self–mapping on C. Let {un} be the sequence defined by u1 ∈ C
and {

vn = bnTun + (1− bn)un

un+1 = anTvn + (1− an)un for n ∈ N.

Then {un} converges strongly to some fixed point of T .

Ishikawa [9] made an impact on the study of pseudo-contractions. By studying [9],
we can easily verify that his proof is also effective for Lipschitzian hemi–contractive
mappings. Furthermore, we can have Lemma 7.3. From now on, we replace the
form aI + (1− a)T by Ishikawa’s form bT + (1− b)I, where b = (1− a).

Before proving Lemma 7.3, we prepare the following trivial lemma.

Lemma 7.2. Let L be a positive real number and s be the positive solution of the
equation 1 − 2x − (Lx)2 = 0. Let b ∈ (0, s), c ∈ (0, b] and d = 1 − 2b − (bL)2. Let
C be a convex subset of a Hilbert space H and T be an L-Lipschitzian self–mapping
on C. Let S be the mapping defined by Sx = (cT + (1 − c)I)x for x ∈ C. Then
bL, d ∈ (0, 1) and the following holds:

∥TSx− Tx∥ ≤ cL∥Tx− x∥ for x ∈ C.

Proof. We know c > 0 and s = 1/(
√
L2 + 1 + 1). Then we have

0 < cL ≤ bL < sL =
1√

L2 + 1 + 1
L <

1

L+ 1
L <

1

L
L = 1.

By d = 1− 2b− (bL)2 and b ∈ (0, s), it is obvious that

0 = 1− 2s− (sL)2 < 1− 2b− (bL)2 = d < 1.

It is easy to see that, for x ∈ C,

∥TSx− Tx∥ ≤ L∥(cTx+ (1− c)x)− x∥ = cL∥Tx− x∥.

□

Lemma 7.3. Let L be a positive real number and s = 1/(
√
L2 + 1+1). Let a and b

be positive real numbers satisfying a, b ∈ (0, s) and a ≤ b. Set d = 1−2b−(bL)2. Let
C be a convex subset of a Hilbert space H and T be an L-Lipschitzian self–mapping
on C. Define mappings S and U by

Sx = bTx+ (1− b)x, Ux = aTSx+ (1− a)x for x ∈ C.

Then there are k ∈ (0, 1) and K ∈ (0,∞) such that

k∥Tx− x∥ ≤ ∥TSx− x∥, ∥Ux− x∥ ≤ K∥Tx− x∥ for x ∈ C.

Furthermore, suppose ø ̸= F (T ) ⊂ A(T ). Then the followings hold:

(1) ∥Ux− v∥2 ≤ ∥x− v∥2 − dab∥Tx− x∥2 for x ∈ C and v ∈ A(T ),

(2) F (T ) = F (S) = F (TS) = F (U) = A(T ) ∩ C = A(U) ∩ C,
A1−a(TS) ∩ C = A(U) ∩ C.
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Proof. We show the first assertion. Let x ∈ C. By Lemma 7.2, we have

∥Tx− x∥ ≤ ∥TSx− Tx∥+ ∥TSx− x∥ ≤ bL∥Tx− x∥+ ∥TSx− x∥.

By ∥Ux− x∥ = ∥(aTSx+ (1− a)x)− x∥, we also have

∥Ux− x∥ = a∥TSx− x∥
≤ a(∥T (bTx+ (1− b)x)− Tx∥+ ∥Tx− x∥)
≤ a(bL+ 1)∥Tx− x∥.

By setting k = 1− bL ∈ (0, 1) and K = a(bL+ 1) ∈ (0,∞), we have the result.
We prove (1). By our assumptions, we know d, dab ∈ (0, 1) and ø ̸= F (T ) ⊂ A(T ).

Let v ∈ A(T ) and x ∈ C. Recall T is L-Lipschitzian and S = bT + (1− b)I.
Then, by a ≤ b and Lemmas 7.2, 4.10 and 3.2, we have the followings:

∥TSx− v∥2 ≤ ∥Sx− v∥2 + ∥TSx− Sx∥2,
∥Sx− v∥2 ≤ ∥x− v∥2 + b2∥Tx− x∥2,

∥TSx− Sx∥2 = ∥TSx− (bTx+ (1− b)x)∥2

= b∥TSx− Tx∥2 + (1− b)∥TSx− x∥2 − b(1− b)∥Tx− x∥2

≤ b(bL)2∥Tx− x∥2 + (1− a)∥TSx− x∥2 − b(1− b)∥Tx− x∥2.

Recall U = aTS + (1− a)I and set N = ∥Ux− v∥2. Then we have

(7.1)

N = a∥TSx− v∥2 + (1− a)∥x− v∥2 − a(1− a)∥TSx− x∥2

≤ a(∥x− v∥2 + b2∥Tx− x∥2

+ b(bL)2∥Tx− x∥2 + (1− a)∥TSx− x∥2 − b(1− b)∥Tx− x∥2)
+ (1− a)∥x− v∥2 − a(1− a)∥TSx− x∥2

= ∥x− v∥2 + ab(b+ (bL)2 − (1− b))∥Tx− x∥2

= ∥x− v∥2 − dab∥Tx− x∥2.

Thus we have ∥Ux− v∥2 ≤ ∥x− v∥2 − dab∥Tx− x∥2 for v ∈ A(T ) and x ∈ C.
We prove (2). By (1) and Lemma 4.4, we have A(T ) ⊂ A(U) = A1−a(TS).

Then, by Theorem 3.3 (4), we have

(7.2) ø ̸= F (T ) ⊂ A(T ) ∩ C ⊂ A1−a(TS) ∩ C = A(U) ∩ C ⊂ F (U).

By the definitions of S and U , it is obvious that

(7.3) F (T ) = F (S) ⊂ F (TS) = F (U).

Let u ∈ F (U) ⊂ C and v ∈ A(T ). By (1), we have

∥u− v∥2 = ∥Uu− v∥2 ≤ ∥u− v∥2 − dab∥Tu− u∥2.

Then, by dab > 0, we have ∥Tu− u∥ = 0. Thus F (U) ⊂ F (T ). Hence, by (7.2) and
(7.3), we have

F (T ) = F (S) = F (TS) = F (U) = A(T ) ∩ C = A1−a(TS) ∩ C = A(U) ∩ C.

□
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Remark 7.4. Techniques in the proof of Lemma 7.3 are essentially prepared by
Ishikawa [9]. For mappings in Lemma 7.3 (1) and (2), we know F (T ) = F (U) =
A(U)∩C and F (T ) = F (TS) = A1−a(TS)∩C. That is, U is a quasi–nonexpansive
mapping with F (T ) = F (U) and TS is a (1 − a)–demi–contractive mapping with
F (T ) = F (TS).

The following is a version of Theorem 7.1.

Theorem 7.5. Let L be a positive real number and s = 1/(
√
L2 + 1+1). Let b be a

real number satisfying b ∈ (0, s). Let {an} and {bn} be sequences in [0, b] such that

(1) an ≤ bn, (2)
∑∞

n=1
anbn = ∞.

Let C be a compact and convex subset of a Hilbert space H and T be an L-
Lipschitzian self–mapping on C satisfying F (T ) ⊂ A(T ). For each n ∈ N , define
mappings Sn and Un by

Snx = bnTx+ (1− bn)x, Unx = anTSnx+ (1− an)x for x ∈ C.

Let {un} be the sequence defined by u1 ∈ C and

un+1 = Unun for n ∈ N.

Then {un} converges strongly to some u ∈ F (T ).

Proof. By Shauder’s theorem, we have ø ̸= F (T ) ⊂ A(T ). Set d = 1 − 2b − (bL)2

and dn = 1− 2bn − (bnL)
2 for n ∈ N . Then 0 < d ≤ dn for n ∈ N .

Let v ∈ A(T ). By an ≤ bn, it is obvious that un+1 = Unun = un if anbn = 0.
Then, by Lemma 7.3 (1), we have that, for n ∈ N ,

∥un+1 − v∥2 = ∥Unun − v∥2 ≤ ∥un − v∥2 − danbn∥Tun − un∥2.

This implies that {∥un − v∥2} converges. Furthermore, we have that, for n ∈ N ,∑n

i=1
daibi∥Tui − ui∥2 ≤ ∥u1 − v∥2 − ∥un+1 − v∥2 ≤ ∥u1 − v∥2.

Then we have
∑∞

i=1 daibi∥Tui − ui∥2 < ∞. By
∑∞

i=1 daibi = ∞, we have
lim infn ∥Tun − un∥2 = 0. We know that there is a subsequence {unj} of {un}
satisfying limj ∥Tunj − unj∥2 = lim infn ∥Tun − un∥2 = 0. Since C is compact,
{unj} has a subsequence converging strongly to some u ∈ C. Without loss of gener-
ality, we can assume that {unj} converges strongly to u ∈ C. Since T is continuous,

we have ∥Tu−u∥2 = limj ∥Tunj −unj∥2 = 0. Then u ∈ F (T ) ⊂ A(T ). This implies

that {∥un − u∥2} converges. Since {∥unj − u∥2} converges to 0, {∥un − u∥2} itself
converges to 0. Thus {un} converges strongly to u ∈ F (T ). □

By theoretical interest, we present the following theorem.

Theorem 7.6. Let a, b, c ∈ (0, 1). Let C be a compact and convex subset of a
Hilbert space H and T be a continuous self–mapping on C. Define mappings S and
U by

Sx = bTx+ (1− b)x, Ux = aTSx+ (1− a)x for x ∈ C.

Assume F (U) ⊂ A(U). Let {un} be the sequence defined by u1 ∈ C and

un+1 = cUun + (1− c)un for n ∈ N.
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Suppose there are k ∈ (0, 1) and a subsequence {uns} of {un} which satisfy either
of the following conditions:

(L1) k∥Tuns − uns∥ ≤ ∥TSuns − uns∥ for s ∈ N,

(L2) k∥Tuns − uns∥ ≤ ∥TTSuns − Tuns∥ for s ∈ N.

Then {un} converges strongly to some u ∈ F (T ).

Proof. By Shauder’s theorem, we have ø ̸= F (T ), that is,

ø ̸= F (T ) = F (S) ⊂ F (TS) = F (U) ⊂ A(U).

Let v ∈ A(U). Then, by Lemma 4.10, we have that, for n ∈ N ,

∥un+1 − v∥2 = ∥(cUun + (1− c)un)− v∥2 ≤ ∥un − v∥2 − c(1− c)∥Uun − un∥2.

By this inequality, {∥un − v∥2} converges. Furthermore, we have that, for n ∈ N ,

c(1− c)∥Uun − un∥2 ≤ ∥un − v∥2 − ∥un+1 − v∥2.

By c ∈ (0, 1), we have limn ∥Uun − un∥2 = 0. Since C is compact, there is a
subsequence {unj} of {un} which converges strongly to some u ∈ C. Since U is

continuous, we have ∥Uu− u∥2 = limj ∥Uunj − unj∥2 = 0. Thus u ∈ F (U) ⊂ A(U).

Hence, {∥un−u∥2} converges. Since {∥unj −u∥2} converges to 0, {∥un−u∥2} itself
converges to 0. Thus {un} converges strongly to u ∈ F (U).

We show u ∈ F (T ). Recall F (U) = F (TS). By our assumptions, there are
k ∈ (0, 1) and a subsequence {uns} of {un} which satisfy (L1) or (L2).

Assume that k and {uns} satisfy (L1). Note that TS and T are continuous. Since
{uns} converges strongly to u ∈ F (TS), we have

lims ∥TSuns − uns∥ = ∥TSu− u∥ = ∥u− u∥ = 0.

Then we have

k∥Tu− u∥ = k lims ∥Tuns − uns∥ ≤ lims ∥TSuns − uns∥ = 0.

By k ∈ (0, 1), we have ∥Tu− u∥ = 0.
Assume that k ∈ (0, 1) and {uns} satisfy (L2). We know that TTS and T are

continuous. Since {uns} converges strongly to u ∈ F (TS), we have

lims ∥TTSuns − Tuns∥ = ∥T (TS)u− Tu∥ = ∥Tu− Tu∥ = 0.

Then we have

k∥Tu− u∥ = k lims ∥Tuns − uns∥ ≤ lims ∥TTSuns − Tuns∥ = 0.

By k ∈ (0, 1), we have ∥Tu− u∥ = 0. Thus, in both cases, we have u ∈ F (T ). □

Remark 7.7. For simplicity’s sake, we chose simple control sequences in Theo-
rem 7.6. In the theorem, let T be an L–Lipschitzian hemi–contractive mapping and
assume that a, b satisfy conditions in Lemma 7.3. Then U satisfies F (U) ⊂ A(U).
Since T is L–Lipschitzian, there is k ∈ (0, 1) such that k and {un} satisfy condition
(L1) by Lemma 7.3. So, Theorem 7.6 is slightly wider than Theorem 7.5.

To see relations between Theorem 7.5 and Theorem 7.6, we give an example.
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Example 7.8. Let C = [−1, 1] ⊂ R and T be the self–mapping on C defined by

Tx = x2 if x ≤ 0, Tx = −
√
x if x > 0.

Then C is compact and convex. It is obvious that T is a strictly decreasing con-
tinuous self–mapping on C. One can easily see F (T ) = A(T ) ∩ C = {0} and
A(T ) ∩ C = ø. For convenience, we set u = 0. We show some properties of T . By
F (T ) = A(T ) ∩ C = {0}, T is hemi–contractive. Let x, y ∈ C with x, y > 0. Then
we can easily see that T is not Lipschitzian by the following:

|Tx− Ty| = | −
√
x− (−√

y)| = |
√
x−√

y| = 1√
x+

√
y
|x− y|.

Note F (T ) = A(T )∩C = {u} = {0}. Let k ∈ [0, 1) and x ∈ (0, 1]. Then we have
|Tx− u|2 = (−

√
x)2 = x and

|x− u|2 + k|Tx− x|2 = x2 + k(x+
√
x)2 = (1 + k)x2 + 2kx

√
x+ kx.

Thus we have

limx↓0
|x− u|2 + k|Tx− x|2

|Tx− u|2
= k < 1.

This implies that T is not k–demi–contractive.
We consider a sequence {un} generated by the iteration in Theorem 7.6. For

simplicity’s sake, we consider mappings S = (T + I)/2 and U = (TS + I)/2. That
is, a = b = 1/2. Note that F (TS) ⊂ A(TS) implies F (U) ⊂ A(U). In our
setting, we can easily see that F (T ) = F (TS) and F (TS) is singleton. Furthermore,
F (TS) = {0} and TS(−1) = TS(0) = TS(1) = 0. Then, to see F (TS) ⊂ A(TS),
we may assume u1 ∈ (−1, 0) ∪ (0, 1).

Let x ∈ (0, 1) and y ∈ (−1, 0). Set z = −y ∈ (0, 1). We confirm that F (TS) ⊂
A(TS) holds. We can easily have the following calculation results:

0 < TSx =
(x−

√
x)2

4
< (−

√
x)2 = x, 0 < TSy =

(z2 − z)2

4
< (−z)2 < |y|.

That is, |TSx− 0| ≤ |x− 0| for x ∈ (0, 1) and |TSy − 0| ≤ |y − 0| for y ∈ (−1, 0).
We can also have the followings:

TTSx− Tx = −(
√
x− x)

2
+

√
x =

(
√
x+ x)

2
=

1

2
|Tx− x|,

TSy − y =
(z2 − z)2

4
+ z > z >

1

2
(z2 + z) =

1

2
|Ty − y|.

Then {un} must have a subsequence {uns} such that 1/2 and {uns} satisfy (L1) or
(L2). Thus {un} converges strongly to 0 ∈ F (T ) by Theorem 7.6.

Motivated by [19], we show the following theorem for Lipschitzian hemi–contractive
mappings. In an easily understood manner, we choose simple control sequences.

Theorem 7.9. Let L be a positive real number and s = 1/(
√
L2 + 1+1). Let a and

b be real numbers satisfying a, b ∈ (0, s) and a ≤ b. Let C be a closed and convex
subset of a Hilbert space H with 0 ∈ C. Let T be an L–Lipschitzian self–mapping on
C with ø ̸= F (T ) ⊂ A(T ). Assume that I − T is demiclosed at 0. Define mappings
S and U by

Sx = bTx+ (1− b)x, Ux = aTSx+ (1− a)x for x ∈ C.
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Let {an} be a sequence in (0, 1) satisfying limn(1−an) = 0 and
∑∞

n=1(1−an) = ∞.
Let {un} be the sequence defined by u1 ∈ C and

un+1 = anUun for n ∈ N.

Then {un} converges strongly to the point of F (T ) nearest to 0.

Proof. It is easy to see that S, TS and U are self–mappings on C. By 0 ∈ C,
each anU is also a self–mapping on C. Then {un} is well–defined. By Lemma 7.3
and Theorem 3.3, U is quasi–nonexpansive, F (T ) = F (U) = A(U) ∩ C, and F (T )
is closed and convex. Then we can set v = PF (T )0, where PF (T ) is the metric
projection of H onto F (T ). Set D = {x ∈ C : ∥x− v∥ ≤ ∥u1 − v∥+ ∥v∥}. Then we
can easily see that 0, v, u1 ∈ D and D is bounded, closed and convex. It is obvious
that, for a ∈ [0, 1] and x ∈ D,

∥Ux− v∥ ≤ ∥x− v∥ ≤ ∥u1 − v∥+ ∥v∥,
∥aUx− v∥ ≤ a∥Ux− v∥+ (1− a)∥v∥

≤ a(∥u1 − v∥+ ∥v∥) + (1− a)∥v∥
≤ ∥u1 − v∥+ ∥v∥.

Then U and each anU are self–mappings on D. We confirmed that {un} and {Uun}
are sequences in the weakly compact set D.

Set Nn = ∥un+1−v∥2 for n ∈ N . Then, by v ∈ F (T ) ⊂ A(T ) and Lemma 7.3 (1),
we have that, for n ∈ N ,

(7.4)

Nn = ∥an(Uun − v)− (1− an)v∥2

≤ an∥Uun − v∥2 + (1− an)
2∥v∥2 − 2an(1− an)⟨Uun − v, v⟩

≤ an(∥un − v∥2 − dab∥Tun − un∥2)
+ (1− an)

2∥v∥2 + 2an(1− an)⟨Uun − v,−v⟩,

where d = 1− 2b− (bL)2 ∈ (0, 1). For each n ∈ N , we set yn = Uun and

(7.5) Kn = − 1

1− an
andab∥Tun − un∥2 + (1− an)∥v∥2 + 2an⟨yn − v,−v⟩.

Then we can rewrite (7.4) as follows:

(7.6) ∥un+1 − v∥2 ≤ an∥un − v∥2 + (1− an)Kn for n ∈ N.

By (7.5) and an ∈ (0, 1), it is obvious that, for n ∈ N ,

(7.7) Kn ≤ (1− an)∥v∥2 + 2an⟨yn − v,−v⟩ ≤ ∥v∥2 + 2∥yn − v∥ ∥v∥.

Then, since D is weakly compact, we have lim supnKn < ∞.
We show lim supnKn ≤ 0. Arguing by contradiction, assume 0 < lim supnKn.

Then there is a subsequence {nj} of {n} such that

0 < lim supnKn = limj Knj .

Let {unj} be the subsequence of {un} corresponding to {nj}. Since D is weakly
compact, {unj} has a subsequence which converges weakly to some u ∈ D. Without
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loss of generality, we can assume that {unj} converges weakly to u ∈ D. It is obvious
that 0 < Knj for sufficiently large j. By (7.5), we can rewrite 0 < Knj as follows:

1

1− anj

anjdab∥Tunj − unj∥2 < (1− anj )∥v∥2 + 2anj ⟨ynj − v,−v⟩.

Then, since D is bounded and limj(1− anj ) = 0, there is K > 0 such that

dab

1− anj

∥Tunj − unj∥2 <
(1− anj )

anj

∥v∥2 + 2∥ynj − v∥∥v∥ < K

for sufficiently large j. That is, for sufficiently large j, the following holds:

∥Tunj − unj∥2 <
1− anj

dab
K.

By limj(1− anj ) = 0 and Lemma 7.3, we have

limj ∥Tunj − unj∥2 = 0, limj ∥Uunj − unj∥2 = limj ∥ynj − unj∥2 = 0.

Since I − T is demiclosed at 0, we have u ∈ F (T ). It is obvious that {ynj} also
converges weakly to u. Confirm that limj(1 − anj ) = 0, v = PF (T )0, and {ynj}
converges weakly to u ∈ F (T ). Then, by (7.7), we have

limj Knj ≤ limj

(
(1− anj )∥v∥2 + 2anj ⟨ynj − v,−v⟩

)
= 2⟨u− v, 0− v⟩ ≤ 0.

Thus we have 0 < lim supnKn = limj Knj ≤ 0. This is a contradiction.
We know lim supnKn ≤ 0. Thus, by

∑∞
n=1(1− an) = ∞, (7.6), and Lemma 4.2,

we have limn ∥un − v∥2 = 0. That is, {un} converges strongly to v = PF (T )0. □

We present procedures finding a common fixed point of two Lipschitzian hemi–
contractive mappings. For simplicity’s sake, we choose simple control sequences.

Theorem 7.10. Let L be a positive real number and s = 1/(
√
L2 + 1+1). Let a be

a real number satisfying a ∈ (0, s). Let C be a closed and convex subset of a Hilbert
space H. For j ∈ {1, 2}, let Tj be an L–Lipschitzian self–mapping on C satisfying
F (Tj) ⊂ A(Tj). Assume that each I − Tj is demiclosed at 0 and ∩2

j=1F (Tj) ̸= ø.

For j ∈ {1, 2}, define mappings Sj and Uj by

Sjx = aTjx+ (1− a)x, Ujx = aTjSjx+ (1− a)x for x ∈ C.

Generate sequences {un} and {wn} in C by the following iterations, respectively.

(a) Let u1 ∈ C and define a sequence {un} in C by

un+1 = U2U1un for n ∈ N.

(b) Let w1 ∈ C and define a sequence {wn} in C by

wn+1 =
1

2

∑2

j=1
Ujwn for n ∈ N.

Then {un} and {wn} converge weakly to some u,w ∈ ∩2
j=1F (Tj), respectively.
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Proof. Fix v ∈ ∩2
j=1F (Tj) arbitrarily. Set D(a) = {x ∈ C : ∥x − v∥ ≤ ∥u1 − v∥}.

Then v ∈ ∩2
j=1F (Tj) ⊂ ∩2

j=1A(Tj) and u1, v ∈ D(a). It is obvious that D(a) is

bounded, closed and convex. By Lemma 7.3 (2), F (Tj) = F (Uj) = A(Uj) ∩ C for
j ∈ {1, 2}. That is, for each j, Uj is a self–mapping on D(a). Then U2U1 is also a
self–mapping on D(a). Thus we can generate {un} in D(a).

Set D(b) = {x ∈ C : ∥x− v∥ ≤ ∥w1 − v∥}. Then w1, v ∈ D(b). We also know that
D(b) is bounded, closed and convex. In the same way as above, for each j, Uj is a

self–mapping on D(b). Then
1
2

∑2
j=1 Uj is also a self–mapping on D(b). Thus we can

generate {wn} in D(b). Furthermore, we have

0 < 2 sup{∥wn − v∥ : n ∈ N}+ 1 ≤ 2∥w1 − v∥+ 1 < ∞.

We show that {un} converges weakly to a point of ∩2
j=1F (Tj). By v ∈ ∩2

j=1A(Tj)

and Lemma 7.3 (1), we have

(7.8)

∥un+1 − v∥2 = ∥U2U1un − v∥2

≤ ∥U1un − v∥2 − da2∥T2U1un − U1un∥2

≤ ∥un − v∥2 − da2∥T1un − un∥2 − da2∥T2U1un − U1un∥2

for n ∈ N , where d = 1 − 2a − (aL)2 ∈ (0, 1). Then {∥un − v∥2} and {∥un − v∥}
converge. We confirmed that {∥un − v∥} converges for each v ∈ ∩2

j=1F (Tj).

By (7.8), we also have that, for n ∈ N ,

da2(∥T1un − un∥2 + ∥T2U1un − U1un∥2) ≤ ∥un − v∥2 − ∥un+1 − v∥2.

By da2 > 0, we have limn ∥T1un − un∥2 = 0 and limn ∥T2U1un − U1un∥2 = 0.
Since {un} is bounded, {un} has a weakly convergent subsequence. Let {unl

} be
a subsequence which converges weakly to some u ∈ H. Since C is weakly closed,
we know u ∈ C. Furthermore, since I − T1 is demiclosed at 0, u ∈ F (T1). By
limn ∥T1un − un∥2 = 0 and Lemma 7.3, we have limn ∥U1un − un∥2 = 0. Then
{U1unl

} also converges weakly to u. We know liml ∥T2U1unl
− U1unl

∥2 = 0. Since
I − T2 is demiclosed at 0, we have u ∈ F (T2). Then we have u ∈ ∩2

j=1F (Tj). We

confirmed that every weakly convergent subsequence of {un} converges weakly to a
point of ∩2

j=1F (Tj). Thus, by Lemma 4.9, every weakly convergent subsequence of

{un} converges weakly to u. That is, {un} converges weakly to u ∈ ∩2
j=1F (Tj).

We show that {wn} converges weakly to a point of ∩2
j=1F (Tj). By v ∈ ∩2

j=1A(Tj)

and Lemma 7.3 (1), we know that, for each j,

(7.9) ∥Ujwn − v∥2 ≤ ∥wn − v∥2 − da2∥Tjwn − wn∥2

for n ∈ N , where d = 1− 2a− (aL)2 ∈ (0, 1). Set K = 2∥w1 − v∥+ 1. We need not
know the value of K. We know ∥Ujwn − v∥ ≤ ∥wn − v∥ ≤ ∥w1 − v∥ for n ∈ N . For
positive real numbers s, t, c, k, kc2 ≤ s2 − t2 and kc2 ≤ (s− t)(s+ t) are equivalent.
Then, for each j, it follows from (7.9) that, for n ∈ N ,

∥Ujwn − v∥ ≤ ∥wn − v∥ − da2

K
∥Tjwn − wn∥2.
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This inequality holds even if wn = v. We can easily have

(7.10)

∥wn+1 − v∥ ≤ 1

2

∑2

j=1
∥Ujwn − v∥

≤ 1

2

∑2

j=1
(∥wn − v∥ − da2

K
∥Tjwn − wn∥2)

= ∥wn − v∥ − da2

2K

∑2

j=1
∥Tjwn − wn∥2

for n ∈ N . Then {∥wn − v∥} converges. We confirmed that {∥wn − v∥} converges
for each v ∈ ∩2

j=1F (Tj). By (7.10), we also have that, for n ∈ N , j ∈ {1, 2},

da2

2K
∥Tjwn − wn∥2 ≤

da2

2K

∑2

i=1
∥Tiwn − wn∥2 ≤ ∥wn − v∥ − ∥wn+1 − v∥.

By (da2)/(2K) > 0, this implies limn ∥Tjwn − wn∥2 = 0 for j ∈ {1, 2}. Since
{wn} is bounded, {wn} has a weakly convergent subsequence. Let {wnl

} be a
subsequence which converges weakly to some w ∈ C. Since I − Tj is demiclosed
at 0 for j ∈ {1, 2}, we have w ∈ ∩2

j=1F (Tj). We also confirmed that every weakly

convergent subsequence of {wn} converges weakly to a point of ∩2
j=1F (Tj). Thus,

by Lemma 4.9, every weakly convergent subsequence of {wn} converges weakly to
w. That is, {wn} itself converges weakly to w ∈ ∩2

j=1F (Tj). □

We show a strong convergence theorem corresponding to Theorem 7.10.

Theorem 7.11. Let L be a positive real number and s = 1/(
√
L2 + 1 + 1). Let

a be a real number satisfying a ∈ (0, s). Let C be a compact and convex subset of
a Hilbert space H. For j ∈ {1, 2}, let Tj be an L–Lipschitzian self–mapping on C
satisfying F (Tj) ⊂ A(Tj). Assume ∩2

j=1F (Tj) ̸= ø. For j ∈ {1, 2}, define mappings
Sj and Uj by

Sjx = aTjx+ (1− a)x, Ujx = aTjSjx+ (1− a)x for x ∈ C.

Generate sequences {un} and {wn} in C by the following iterations, respectively.

(a) Let u1 ∈ C and define a sequence {un} in C by

un+1 = U2U1un for n ∈ N.

(b) Let w1 ∈ C and define a sequence {wn} in C by

wn+1 =
1

2

∑2

j=1
Ujwn for n ∈ N.

Then {un} and {wn} converge strongly to some u,w ∈ ∩2
j=1F (Tj), respectively.

Proof. Refer to the proof of Theorem 7.10 to have the results.
We already know that we can generate {un} and {wn}. We show that {un}

converges strongly to a point of ∩2
j=1F (Tj). In the same way as in the proof

of Theorem 7.10, we have that {∥un − v∥} converges for each v ∈ ∩2
j=1F (Tj),

limn ∥T1un − un∥2 = 0 and limn ∥T2U1un − U1un∥2 = 0. Since C is compact,
{un} has a subsequence {unl

} which converges strongly to some u ∈ C. Since
T1 and T2U1 are continuous, we have ∥T1u − u∥2 = limn ∥T1un − un∥2 = 0 and
∥T2U1u − U1u∥2 = limn ∥T2U1un − U1un∥2 = 0. We already know F (U1) = F (T1).
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Then we have ∥T2u − u∥2 = 0. Thus we have u ∈ ∩2
j=1F (Tj). This implies that

{∥un−u∥} converges. Since {∥unl
−u∥} converges to 0, {∥un−u∥} itself converges

to 0. Thus {un} converges strongly to u ∈ ∩2
j=1F (Tj).

We show that {wn} converges strongly to a point of ∩2
j=1F (Tj). In the same

way as in the proof of Theorem 7.10, we have that {∥wn − v∥} converges for each
v ∈ ∩2

j=1F (Tj) and limn ∥Tjwn−wn∥2 = 0 for j ∈ {1, 2}. Since C is compact, {wn}
has a subsequence {wnl

} which converges strongly to some w ∈ C. Since each Tj

is continuous, ∥Tjw − w∥2 = liml ∥Tjwnl
− wnl

∥2 = 0 for j ∈ {1, 2}. That is, w ∈
∩2
j=1F (Tj). So, {∥wn−w∥} converges. Since {∥wnl

−w∥} converges to 0, {∥wn−w∥}
itself converges to 0. Thus {wn} converges strongly to w ∈ ∩2

j=1F (Tj). □
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