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CONVERGENCE THEOREMS FOR SOME CLASSES OF
NONLINEAR MAPPINGS IN HILBERT SPACES

SACHIKO ATSUSHIBA*, SHIGERU IEMOTO, RIEKO KUBOTA, AND YUKIO TAKEUCHI

ABSTRACT. In this article, we introduce the concept of k-acute points of a map-
ping T in the Hilbert space setting, where k € [0, 1]. Then, we have some proper-
ties of k-acute points and relations among k—acute points, attractive points and
fixed points. Further, we apply these to rearrange proofs of some known conver-
gence theorems and to prove new convergence theorems for nonlinear mappings.

1. INTRODUCTION

In 1967, Browder and Petryshyn [4] initiated the study of fixed points of strictly
pseudo-contractions. In 1974, Ishikawa [9] made an impact on this study area.
On the other hand, in 2011, Takahashi and Takeuchi [27] introduced the concept
of attractive points and apply it to have an extension of the Baillon type ergodic
theorem due to Kocourek, Takahashi, and Yao [12] without convexity. Motivated
by these works, in the Hilbert space setting, we introduce the concept of k—acute
points of a mapping T, where k € [0,1]. Then, we study some properties of k-acute
points and relations among k—acute points, attractive points and fixed points. In
other words, we rearrange properties of some nonlinear mappings by using the
concept of k—acute points and relations between 7" and S = kI + (1 — k)T, where
I is the identity mapping. In this direction, we have some results and apply these
to rearrange proofs of known convergence theorems and to prove new convergence
theorems for such nonlinear mappings in Hilbert spaces.

2. PRELIMINARIES AND BASIC CONCEPTS

In this article, we denote by R the set of real numbers and by N the set of positive
integers. We denote by E a real Banach space and by H a real Hilbert space. For
simplicity’s sake, we remove “real”. Of course, a Hilbert space is a Banach space.

Let C be a non—empty subset of a Banach space ¥ and T' be a mapping of C' into
E. F(T) denotes the set of fixed points of T, that is, F(T) = {z € C : Tax = z}.
A(T) denotes the set of attractive points [27] of T, that is,

AT)={veE: |[Tx—v| <|x—v| for all xe€C }.
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In the Banach space setting, there is another definition of the attractive points set
which is different from our definition; see Lin and Takahashi [17]. T is said to be
L-Lipschitzian if [Tz — Ty|| < L[z — y| for any z,y € C, where L € [0,00). In
particular, T is said to be nonexpansive if ||Tx — Ty|| < ||z — y|| for any z,y € C.
For each = € E, zp € C' is called a nearest point of C to x if ||z — z¢|| = inf{||z —z]| :
z € C'}. Here, we present typical properties of A(T); see [27].

Lemma 2.1. Let C' be a non—empty subset of a Hilbert space H and T be a mapping
of C into H. Then, A(T) is closed and convex.

Lemma 2.2. Let C' be a non—empty subset of a Banach space E and let T be a
self-mapping on C with A(T) # ¢. Let x € A(T). Suppose there is the unique
nearest point o of C' to x. Then, xo € F(T).

Proof. By = € A(T), it is obvious that
|z — Txol| < ||z — ol = inf{||Jz — 2| : z € C}.
Since ¢ is the unique nearest point of C' to x, we have T'xog = zp and 2o € F(T). O

From now on, we discuss in the Hilbert space setting. Note the followings: We
denote by C' a subset of a Hilbert (Euclidean) space. C' is always non—empty unless
otherwise noted. Then, normally, “non—empty” is not described.

Let C be a subset of a Hilbert space H and T be a mapping of C into H. We
denote by I the identity mapping on H. T is said to be quasi-nonexpansive if

(1) F(T) #9, (2) ||Tx—v|<|lx—v| for ze€C, ve F(T).

Then T is quasi-nonexpansive if and only if ¢ # F(T') C A(T"). That is, the concept
of attractive points is closely related to quasi-nonexpansive mappings. However, we
can easily find a non—increasing and continuous self-mapping 7" on a closed interval
C' in R such that F(T') # ¢ and A(T) N C = ¢. Here, we give an example.

Example 2.3. Let C = [-1,2] C R and T be the non-increasing and continuous
self-mapping on C' defined by
Tx=—-2zx if zel-1,0], Tex=—x/2 if z€(0,2].

Then, one can easily see that A(T) N C = ¢ and F(T) = {0}.

Motivated by these facts as above and Takahashi and Takeuchi [27], we introduce
the concept of k—acute points. Let k € [0,1]. Let C' be a subset of a Hilbert space
H and T be a mapping of C into H. We define a set o (T") by

dpy(T)={veH: |[Tzx—v|?<|z—v|*+kl|lz —Tz|* for all z€C}.

We call o (T) the set of k—acute points of T'. Because, in the 2-dimensional Eu-
clidean space setting, Zv Tz is not an obtuse angle for x € C and v € «(T).
Note #y(T") = A(T). We denote #1(T") by «(T'), that is,

AT)={veH: |Te—ov|> <|z—v|?+|z—Tz|* for all z€C }.

It is obvious that A(T) C Ay, (T) C Ay, (T) C A(T) for ki, ke € [0, 1] with k1 < ko.
Let k € [0,1). T is said to be k—-demi-contractive if

(1) F(T) # o, (2) [Tz —o|> < ||z —v|* +k|z—Tx|*> for z€C, ve F(T).
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Also, T is said to be hemi—contractive if
(1) F(T) #9, (2) |Tz—v|><|lz—v|*+ |z —Tz|® for z€C, veF(T).
Then, for k € [0,1), T is k—demi—contractive if and only if ¢ # F(T) C i (T).
Also, T is hemi-contractive if and only if ¢ # F(T') C < (T).
T is said to be k—strictly pseudo—contractive if
ITw —Tyl|2 < o - yl2 + KT = T)a — (I = T)yl®  for a,yeC.
T is said to be pseudo—contractive if
ITe — Tyl < oyl + | -T)a— (I -T)y|2  for a,yeC.

It is easy to see that T is k—demi—contractive if T" is k—strictly pseudo—contractive
and F(T) # ¢. Also, T is hemi—contractive if T' is pseudo—contractive and F(T') # o.

Let C be a closed and convex subset of a Hilbert space H. It is well known that,
for each x € H, there is the unique nearest point zg of C' to . The mapping Pg
defined by Pox = xg for x € H is called the metric projection of H onto C. It is
also known that Po satisfies the following conditions: For x € H, y € C,

0<(z—Por,Pex—y) and |lz— Pox|® +||Pea —y|* < [la —y|*.

3. ACUTE POINTS AND ATTRACTIVE POINTS
We present an example to see that the concept of attractive points is natural.

Example 3.1. Let C be the subset of a 2-dimensional Euclidean space R? defined
by C = {(z1,72) € R? : 1 < 2% + 22 < 4}. Then C is neither closed nor convex.

(1) Let T be the nonexpansive self-mapping on C' defined by
T(x1,x9) = (—x1,22) for (z1,29) € C.

Then A(T) = {(z1,72) € R?: 71 = 0} is the symmetric axis of this trans-
formation. Let {v,} and {b,} be sequences defined by v; € C and
1 n
Upt1 = Ty, b, = - Zi:l v; for neN.

It is obvious that {b,} converges strongly to some u € A(T"). However, u is
not always a fixed point of 7. Note that {b,} need not be a sequence in C'.
(2) Let a € (0,27) and S be the nonexpansive self-mapping on C' defined by
S(x1,x2) = (z1cosa — xasina, zysina + xacosa)  for (x1,x2) € C.
Then, A(S) consists of the center of this rotation, that is, A(S) = {(0,0)}.
Let {v,} and {b,} be sequences defined by v; € C and
1 n
Upt1 = S"vp, b, = - Zi:l v; for ne N.

It is easy to see that {b,} converges strongly to (0,0) € A(S). However, C
does not contain (0,0). Then, (0,0) is not a fixed point of S.

We study properties of o (7) and some relations among F'(T'), A(T) and #(T).
To prove Theorem 3.3, we need the following well-known lemma.



128 S. ATSUSHIBA, S. IEMOTO, R. KUBOTA, AND Y. TAKEUCHI

Lemma 3.2. Let H be a Hilbert space. Let x,y,z € H and c € [0,1]. Then,
lez + (1 = )y — 2| = cllz — 2* + (1 = ) [ly — 2| = e(1 = ¢)l|l= — y|*.
Theorem 3.3. Let k € [0,1]. Let C be a subset of a Hilbert space H and T be a

mapping of C into H. Then the followings hold.

(1) Ay(T) is closed and convex.

(2) If C s closed then di(T) N C' is closed.

(3) If C is convex then Ay (T) N C is conver.

(4) If k € [0,1) and v € AR(T)NC then v € F(T).

Proof. We prove (1). We show that «;(7T') is closed. Suppose a sequence {z,} in
Ay (T) converges to some z € H. Let z € C. Then, we have that, for n € N,

1Tz = zal* < & = 2nl® + Kl — T

Since || - ||? is continuous and {z,} converges strongly to z, we have
1Tz — 2| < [|lo — 2] + K[|z — Tz

Then, z € (7). We have that «;(T) is closed. We show that (T") is convex.
Let c € (0,1) and u,v € d(T). Let x € C and set N = ||Tz — (cu+ (1 —c)v)|*
By Lemma 3.2, we have that

N =el|lTz —ull® + (1 = )|z — v]|* — e(1 = ¢)[lu — v]®
< e(llz = ul* + k| Tz - z|?)
+ (1= c)(|lz = ol® + K[| Tz — 2]*) — c(1 — ¢)llu— o]
= (cllz = ull® + (1 = ¢)llz — v|* = e(1 = ) Ju = v|f*) + k|| Tz — *
= |lz = (cu+ (1 =)o) ||* + k| Tz — .

Then we have cu + (1 — ¢)v € di(T). That is, o, (T") is convex. Thus we have (1).
Note that we do not claim 4 (T") # ¢. By (1), it is obvious that (2) and (3) hold.
We prove (4). Suppose v € (1) N C. Then,

ITv = wlf* < flo = vl* + kllo = Tv||* = k||lv - Tv||*.
By k € [0,1), we have Tv = v. That is, we have v € F(T). O

Remark 3.4. Let C be a subset of a Hilbert space H and T' be a mapping of C into
H. By A(T) = «do(T) and Theorem 3.3 (1), we have Lemma 2.1 due to Takahashi
and Takeuchi [27]. By Theorem 3.3 (4), 4, (T)NC C F(T) for k € [0,1). Then,
F(T)=d,(T)NCif F(T) C di(T)NC. In other words, F'(T) is closed and convex
if T' is k—demi-contractive and C' is closed and convex. However, v € «(T)NC
does not imply v € F(T). Let By ={ve H: (Tv — z,z —v) <0} for each z € C.
Forve Handz € C, (T — 2,7 —v) <0 and ||[Tx —v||? < ||z — v|)? + |[Tx — |
are equivalent. Then,

AT)={veH: Tr—z,x—v) <0 for all x € C } =NyecBs.
Since each B, is closed and convex, we have again that o/ (7T') is closed and convex.

We present an example to see that v € o (T') N C does not imply v € F(T).
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Example 3.5. Let C' = [0,1] C R. Define a self-mapping 7" on C' by
Te=—x/2+1 if z€0,1/2], Tx=-z/2+1/2 if z€(1/2,1].

It is obvious that F(T) = ¢ and (Tz — z,z — y) = (Tz — z)(z — y). We show
y & A(T) if y € [0,1/2). Let y € [0,1/2) and set © = y/2 + 1/4. Then, we have
y<x<1/2and Te > 3/4. That is, x —y > 0 and Tx — x > 1/4. This implies
(Tz —x)(x—y) > 0. We also show z ¢ A(T) if z € (1/2,1]. Let z € (1/2,1] and set
x = 2z/241/4. Then, we have 1/2 < x < z and Tx < 1/4. That is, x — z < 0 and
Tx —x < —1/4. This implies (T'x — x)(z — z) > 0. Furthermore, we can see that
(Tz —z)(x — 3) <0 for z € [0,1]. Thus we have @/ (T)NC = {1/2} and F(T) = o.

Let C be a bounded, closed and convex subset of R, that is, C' is a closed interval.
For example, we can easily see that the condition ¢ # F(T) = A(T)NC C 4(T)NC
holds if T" is nonexpansive. Also, non—increasing and continuous self-mappings on
C' are typical examples which satisfy the condition ¢ # F(T) = 4(T)NC. In
particular, we already have a non—increasing and continuous self-mapping 7" on C
such that A(T)NC =g and ¢ # F(T) = 4(T) N C. Here, we give a self-mapping
T on C' = [0, 1] satisfying ¢ # A(T)NC #A(T)NC.

Example 3.6. Let C = [0,1] C R. Let T be the self-mapping on C defined by
Tex=-2x+1 if z€][0,1/3), Tex=z if x€[1/3,2/3],
Tr=-2x+2 if z€(2/3,1].

Then, one can easily see the facts that F(T) = [1/3,2/3] C 4 (T)NC, 1/2 € A(T)NC
and 1/3 € (4(T) N C)\(A(T) N C).

4. LEMMAS

We prepare lemmas needed in the sequel. Lemma 4.1 is due to Tan and Xu [30].

Lemma 4.1. Let {a,} be a sequence of non—negative real numbers and {b,} be a
sequence of non—negative real numbers with Z;’il bj < oo. Suppose ant1 < ap + by
forn € N. Then, {a,} converges to some c € [0, 00).

Many researchers take the following assertion or a similar assertion in their arti-
cles; for example, see Weng [31], Xu [33] and Aoyama et.al. [1].

Lemma 4.2. Let {a,} be a sequence in [0,1] with > >" | o, = 0. Let {an} be a
sequence of non—negative real numbers and let {b,} be a sequence of real numbers
which satisfies limsup,, b, < 0. Let {c,} be a sequence of non—negative real numbers
with Y 07 | ¢ < 00. Suppose ant1 < (1 — ap)ay + anby + ¢ for alln € N. Then

lim, a,, = limsup,, a, = 0.

Lemma 4.3. A Hilbert space H has the Opial property [22]. That is, if {u,} is a
sequence in H which converges weakly to w € H, then, for v € H with v # u,

liminf,, ||u, — u|| < liminf, ||u, —v|.

Lemmas 4.4-4.7 and Lemma 7.3 play important roles in this article.
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Lemma 4.4. Let k € [0,1). Let C be a subset of a Hilbert space H and T be a
mapping of C into H. Let S be the mapping defined by

Sx=(kI+(1—-k)T)x for zeC.
Then, F(T) = F(S) and A(S) = dy(T).

Proof. In our setting, it is known that F/(T') = F(S) holds. We show A(S) = «(T).
Let x € Candv € H. Set N = ||z —v||?> — ||Sx —v||?. Using Lemma 3.2, we have
N = o —vf* = [[(kz + (1 = k)T) - v||?
= llo = v)* = (kllz = v* + (1 = W) Tz = v|* = k(1L = k)|lo — v = (Tz = v)|]*)
= (1 =k)(lz = vl + kllz — Tz||* — || Tz — v||?).
By k € [0,1), this equality implies that v € A(S) if and only if v € o (T).
Note that we claim neither F(T") # ¢ nor dy(T) # ¢. O

Lemma 4.5. Let k € [0,1) and c € [k,1). Let C be a subset of a Hilbert space H
and T be a mapping of C into H. Let S and S’ be mappings defined by

Sr=(kI+(1-kT)x, Sz=(l+1-c)T)x for zeC.
Then, the followings hold.

(1) T is k—demi—contractive if and only if S is quasi—nonexpansive.
(2) Suppose T is k—demi—contractive. Then S’ is quasi-nonezrpansive and

di(T)NC = F(T) = F(S') = A(S') N C.

Proof. We prove (1). Assume that 7" is k—demi—contractive. Then we know that
0 # F(T) C 4, (T)NC. By Theorem 3.3 (4), we have F(T) = #,(T) N C. By
Lemma 4.4, we have ¢ # F(S) = F(T) = 4 (T)NC = A(S)NC. This implies that
S is quasi-nonexpansive. Assume that S is quasi-nonexpansive. Then we know
o # F(S) C A(S)NC. By Theorem 3.3 (4) and Lemma 4.4, we have ¢ # F(T) =
F(S)=A(S)NC = 4d,(T)NC. This implies that T is k—demi-contractive.

We prove (2). If T is k—demi—contractive then T is ¢-demi-contractive. Then,
by (1), we have that S’ is quasi-nonexpansive. Also, we have #.(T)NC = F(T) =
F(S")=AS)NC and A(T)NC = F(T) =dx(T)NC. O

The following lemma is closely connected with Zhou’s result [34].

Lemma 4.6. Let k € [0,1) and c € [k,1). Let C be a subset of a Hilbert space H.
Let T be a mapping of C into H. Let S and S’ be mappings defined by

Sr=(kI+(1-kT)x, Sz=(l+1-c)T)x for zeC.
Then, the followings hold.

(1) T is k—strictly pseudo—contractive if and only if S is nonexpansive.
(2) Suppose T is k-strictly pseudo—contractive. Then S’ is nonexpansive and

d(T)NC = F(T) = F(S') = A(S') N C.
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Proof. Let z,y € C and set N = |lz —y|> — ||Sz— Sy||>. Using Lemma 3.2, we have
N =z —yl? = |(kx + (1 = k)Tw) — (ky + (1 - k)Ty) >

=z =yl — [k(z —y) + (1 = &)(Tz — Ty)|?

=z =yl = (kllz = ylI* + 1 = B)| Tz = Ty|* = k(1 = k) |lz —y — (Tz — Ty)|*)

= —=k)(lz —yl> + K| = T)z — (I = T)yl* || Tz — Ty|*).
We prove (1). By k € [0,1) and this equality, T is k-strictly pseudo—contractive
if and only if S is nonexpansive. We prove (2). Since T is k-strictly pseudo—
contractive, T is c-strictly pseudo—contractive. Then, S’ is nonexpansive, that
is, F(T) = F(S') ¢ A(S"). In the case of F(T) # o, by Lemma 4.5, we know

Ar(T)NC = F(T) = F(S’) = A(S") N C. We note that this equality holds in the
case F(T) = ¢. Note that we do not claim F(T') # o. O

Let C be a subset of H and T be a mapping of C' into H. Let {z,,} be a sequence
in C which converges weakly to u € C' and satisfies lim,, ||Tx, — x| =0. I — T is
said to be demiclosed at 0 if w € F(T) always holds for such {z,} and u.

Let {y,} be a sequence in C. Then, lim,, || Ty, —y,| = 0 and lim,, || Ty, —yx||* = 0
are equivalent. In the sequel, we use this fact without notice.

Lemma 4.7. Let k € [0,1). Let C be a subset of a Hilbert space H and T be a
mapping of C' into H. Let S be the mapping defined by

Se=(kI+(1—-kT)x for xzeC.
Then, for any sequence {uy} in C, the following holds.
limy, |[Tup — up|| =0 if and only if  lim, |[Su, — uy|| = 0.
Furthermore, I — T is demiclosed at 0 if and only if I — S is demiclosed at 0.
Proof. 1t is easy to see that, for n € N,
[Sun = unll = [ (kun + (1 = k)Tun) = unl| = (1 = k)| Tun — ual-
By k € [0,1), lim, ||Tuy, — u,|| = 0 and lim, || Su, — u,|| = 0 are equivalent. By

Lemma 4.4, we know F(T) = F(S). These imply that I — T is demiclosed at 0 if
and only if I — S is demiclosed at 0. g

Proofs of Lemmas 4.4-4.7 are easy. However, we think that these assertions are
so interesting. In the sequel, sometimes we use these lemmas without notice.

The following lemma due to Marino and Xu [21] is a version of Browder’s demi-
closed principle in the Hilbert space setting.

Lemma 4.8. Let k € [0,1). Let C be a subset of a Hilbert space H and let T be a
k—strictly pseudo—contractive mapping of C into H. Let S be the mapping defined by
Sz = (kI+(1—k)T)x for x € C. Suppose {un} is a sequence in C which converges
weakly to some u € C and satisfies lim,, ||Tu, — uy|| = 0. Then, u € F(T) = F(S5).

Proof. By k € [0,1), lim, ||Tu,, — uy|| = 0 and lim,, ||Su, — uy|| = 0 are equivalent.
By Lemma 4.6, S is nonexpansive and F'(T') = F(S). Then, we prove u € F(S).
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Arguing by contradiction, assume Su # u. Then, by the Opial property, we have
liminf,, ||u, — u|| < liminf, ||u, — Sul|
< liminf, (||un, — Sup|| + || Sun — Sul|)
< liminf, ||u, — u]|.

This is a contradiction. Thus we have u € F(S) = F(T). O

Lemma 4.9. Let C be a subset of a Hilbert space H. Let {u,} be a sequence in
H such that {|lu, — wl||} converges for each w € C. Suppose {un,} and {un,} are
subsequences of {un} which converge weakly to u,v € C, respectively. Then u = v.

Proof. Let w € C. Then, since {||u, —w||} converges, any subsequence of {||u, —w||}
converges to the same real number. Arguing by contradiction, we assume u # v.
Then, by u,v € C and the Opial property, we have the followings:

liminf; [|u,, — ul| <liminf; [[u,, — v|| = liminf; |lu,, — ||,
liminf} [[u,; —v|| <liminf; [Ju,; — v = liminf; |Ju,, —u].
That is, we have liminf; ||uy, — u|| < liminf; ||u,, — u||. This is a contradiction. [

Lemma 4.10. Let a € [0,1]. Let C be a subset of a Hilbert space H and T be a
mapping of C into H. Let x € C' and set Sx = ax+ (1 —a)Tz. Then, the followings
hold.

(1) Suppose u € A(T). Then,
ISz —ul? < [l —ul* + (1 — )| T2 — |
(2) Suppose v € A(T). Then,
ISz —v|* < [lz = v|* = a(l = a)|| T2 — z|*.
Proof. Let x € C and z € H. Then, by Lemma 3.2, we have
Sz — 2||? = ||laz 4+ (1 — a)Tx — 2|?
= alz —2|* + (1 = a)||Tz - 2|* - a(1 - a)|| Tz — |
Suppose u € #(T) and v € A(T'). Then, by this equality, we have the followings:
1Sz —ul” < allz —ul? + (1 = a)(| Tz — 2|® + ||z — u®) = a(l — )| Tz — z|?
= [l —ul* + (1 = a)?|| T2 — x|,
ISz — )| < allz —ol* + (1 = a) ||z —v[* = a(1 - a)|| Tz — 2|
= |l —v|* - a(l - )| Tz — ||.
O

Lemma 4.11. Let {ay} be a sequence in [0,1]. Let C be a subset of a Hilbert space
H and T be a self-mapping on C. Assume that there is a sequence {u,} in C such
that up+1 = anup + (1 — ap)Tuy, for n € N. Then, the followings hold.
(1) Suppose v € A(T). Then, {||un, — v||*} is non—increasing and converges.
(2) Suppose A(T) # @, a,b € (0,1) with a < b, and {a,} is a sequence in [a,b].
Then >0 1 |1 Tun — un|)* < .
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(3) Suppose A(T) # o, {an} satisfies Y o2 | an(l — a,) = oo, and
(0s) | Tups1 — Tun|| < (1 — ap)||up, — Tuy|| for n e N.

Then, lim,, ||Tu, — uy|| = 0.

Proof. We prove (1). Assume v € A(T'). By Lemma 4.10, we have
tns1 — vl|* < Jun —v]|* = an(1 — an)||Tun — up|* for n € N.

Then {||u, — v||?} is non-increasing and converges. By this inequality, we have
(4.1) an(1 = ap)||Tun — un||* < ||ltn — v||* = |tnger —v||> for n e N.
We prove (2). We know a(1 —b) < a,(1 — ay,) for n € N. Then, by (4.1), we have

a1 =5) 3" Ty — il < o = ol ~ ot = ol < g — o

for n € N. By 0 < a(1 —b), we have Y 0 | || Tu,, — u,||* < oco.
We prove (3). By (4.1), we have that, for n € IV,

S a5 = Ty = w5l < o = ol = s = o < s — o]
Then we have 372 a;(1 —a;)||Tu; — u;j||? < 0o. By > 521 a;(1—aj;) = oo, we have
lim inf,, || Tu, — u,|/? = 0. On the other hand, by (Og), we have that, for n € N,
ITns1 — sl < [ Tns1 — Tl + [Tt — v
< (1= an)[[Tun = un| + an||Tun — un||
= [|[Tup, — uy||.
Then {||Tu, — u,|/?} is non-increasing and converges. Thus we have
lim,, | Tup — up||? = liminf, | Tu, —u,||* = 0.

We note that 7" satisfies the condition (Og) if 7" is nonexpansive; see [14]. O

5. CONVERGENCE THEOREMS I

Let C be a subset of a Hilbert space H and S be a mapping of C' into H. Under
the condition A(S) # @, we prove some convergence theorems.

Theorem 5.1. Let a,b € (0,1) with a < b and {an} be a sequence in [a,b]. Let C
be a compact subset of a Hilbert space H. Let S be a continuous self-mapping on C
satisfying F(S) C A (S) and A(S) # 0. Suppose there is a sequence {uy} in C such
that

Upt1 = ptn + (1 — ap)Suy, for n € N.

Then, {u,} converges strongly to some u € F(S).
Proof. By A(S) # ¢ and Lemma 4.11 (2), we have > o, |[Suy, — up||* < co. Then
lim,, || S, —uy||? = 0. Since C is compact, {u,} has a convergent subsequence. Let
{un,} be a subsequence of {u,} which converges strongly to some u € C. Then we
know limy [|uy, — ul| = 0 and lim; ||Suy,; — uy, || = 0. It is easy to see that

[Su = ull < [[Su = Sun[| + [|Sun; = wn;l[ + [Jun; — ull

for j € N. Since S is continuous at u, we have Su = u, that is, we have u € F(S).
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By u € F(S) C 4(S) and Lemma 4.10, we have
1 = ul® < [l — ul|* + | Sup — g

forn € N. Then, by > .°° | ||Suy—up||? < co and Lemma 4.1, {|ju, —u|?} converges.

n=1
Since {|lun, — ul*} converges to 0, {||un, — ul/*} itself converges to 0. Thus {u,}
converges strongly to u € F(S). O

Under the assumptions of Theorem 5.1, we had ¢ # F(S) C «(5). However, we
cannot apply Shauder’s theorem to have this condition.
By Lemmas 4.5 and 4.7, the following theorem is derived from Theorem 5.1.

Theorem 5.2. Let a,b € (0,1) with a < b and {a,} be a sequence in [a,b]. Let C
be a compact subset of a Hilbert space H and T be a continuous self-mapping on C.
Assume that one of the followings holds.

(1) T is hemi—contractive with A(T) # ¢. S is the mapping defined by S =T.
(2) T is k—demi—contractive. S is the mapping defined by S = kI + (1 —k)T.
(3) T is quasi—-nonexpansive. S is the mapping defined by S =T .

Suppose S is a self-mapping on C' and there is a sequence {uy}
Unt1 = Gty + (1 — ap)Suy, for ne N.
Then, {un} converges strongly to some u € F(T).

Let R? be a 2-dimensional Euclidean space. Let C' be the compact and convex
subset defined by C' = {(x1,22) € R? : 1,22 € [0,1], 21 + 22 < 1}. Define a
self-mapping T on C by

1
T(x1,x2) = <2(1 +x1 — x2), x2> for (z1,z2) € C.
Let u; € C and {u,} be the sequence generated by up+1 = (uy, +Tuy)/2 forn € N.
Under this setting, we can easily see the followings:
F(T)={(z1,22) € C: x1 + x2 = 1},
AT) = {(z1,72) e R* 121 > 1},  AT)NC=o(T)NC = {(1,0)}.

Since F(T') ¢ 4 (T)NC, T is not hemi-contractive. However, it is obvious that {uy, }
converges to a fixed point of T'. For such T, maybe we do not have a convergence
theorem. Then we give a convergence theorem for such mappings.

Theorem 5.3. Let a,b € (0,1) with a < b and {a,} be a sequence in [a,b]. Let
C be a compact and convex subset of a Hilbert space H. Let T be a continuous
self-mapping on C with A(T) # ¢. Let u; € C and {u,} be the sequence defined by

Unt1 = Gptn + (1 — ap)Tuy for ne N.

Suppose F(T) C Po(A(T)), where Po is the metric projection of H onto C. Then
{un} converges strongly to some u € F(T).

Proof. In the same way as in the proof of Theorem 5.1, we know that {u,} has
a subsequence {uy,,} which converges strongly to some v € F(T). By F(T) C
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Po(A(T)), there is v € A(T) such that u = Pov. By Lemma 4.11 (1), {|lu, — v||*}
converges. Then,

lim,, [Ju, — v||2 = limy [Jup; — v||2 = ||u— v||2.
By {u,} C C and u = Pcv, we have
HU—uHZ—i—Hu—unHQS Hv—unH2 for n € N.

Then limsup,, ||[u — u,||?> < 0. Thus {u,} converges strongly to u € F(T).
Note that, in this setting, by Lemma 2.2, F(T') = Pc(A(T)) holds. O

We consider weak convergence theorems in the case A(S) # ¢ and F(S) C «(S5).
To have the following results, we have to assume demicloseness at 0 of 1 — S.

Theorem 5.4. Let a,b € (0,1) with a < b and {a,} be a sequence in [a,b]. Let C
be a weakly closed subset of a Hilbert space H. Let S be a self-mapping on C' such
that F(S) C A(S), A(S) # o, and I — S is demiclosed at 0. Suppose there is a
sequence {uy} in C such that

Unt1 = Aty + (1 — ap)Suy, for n € N.
Then, {u,} converges weakly to some u € F(S).

Proof. By A(S) # ¢ and Lemma 4.11 (2), we have Y % ||Su, — uy]|?* < oo and
limy, ||Su, — uy||> = 0. Also, by Lemma 4.11 (1), we know that {u,} is bounded.
So, {un} has a weakly convergent subsequence. Let {uy,} be a subsequence of {uy}

which converges weakly to some u € C. We know limy || Sy, — un,||* = 0. Then,
since I — S is demiclosed at 0, we have u € F(S). Let v € F(S) C #(S). By
Lemma 4.10, we have

|tn+1 — UH2 < lun — U”2 + [|Sun — unH2

for n € N. By Yo% ||Sus — uy]|? < 0o and Lemma 4.1, {||u,, — v||*} converges.
We confirmed that {|lu, — v||} converges for each v € F(S). We also confirmed
that every weakly convergent subsequence of {u,} converges weakly to a point of
F(S). Then, by Lemma 4.9, every weakly convergent subsequence of {u,,} converges
weakly to u € F(S). Thus {u,} itself converges weakly to u € F'(5). O

By Lemmas 4.5 and 4.7, the following theorem is derived from Theorem 5.4.

Theorem 5.5. Let a,b € (0,1) with a < b and {a,} be a sequence in [a,b]. Let C
be a weakly closed subset of a Hilbert space H and T be a self-mapping on C such
that I —T is demiclosed at 0. Assume that one of the followings hold.

(1) T is hemi—contractive with A(T) # ¢. S is the mapping defined by S =T.
(2) T is k—demi—contractive. S is the mapping defined by S = kI + (1 —k)T.
(3) T is quasi-nonexpansive. S is the mapping defined by S =T .

Suppose S is a self-mapping on C' and there is a sequence {u,}

Upt1 = Gty + (1 — ap)Suy, for ne€ N.

Then, {u,} converges weakly to some u € F(T).
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6. CONVERGENCE THEOREMS II

We begin this section with presenting Theorem 6.1 due to Takahashi and Takeuchi
[27]. Then, by Lemmas 4.4, 4.6, and Theorem 6.1, we will have Theorem 6.2.

Theorem 6.1. Let C be a bounded subset of a Hilbert space H. Let S be a non-
expansive self-mapping on C. Let {v,} and {b,} be sequences defined by vi € C
and

Uptl = SUp, by =— Z:Zl Vg for n € N.
Then the followings hold.

(1) A(S) is non-empty, closed and conver.
(2) {bn} converges weakly to some u € A(S).

Theorem 6.2. Let k € [0,1). Let C be a bounded subset of a Hilbert space H.
Let T be a k—strictly pseudo—contractive self-mapping on C. Let S be the mapping
defined by Sz = (kI + (1 — k)T)x for x € C. Assume that S is a self-mapping on
C. Let {v,} and {b,} be sequences defined by v1 € C' and

1
Uptl = SUp, by =— Zj_l Vg for n e N.

n
Then the followings hold.

(1) Ak(T) is non-empty, closed and convez.
(2) {bn} converges weakly to some u € Ay (T).

Furthermore, if C is closed and convex then the followings hold.

(3) F(T) is non-empty, closed and convex.
(4) {bn} converges weakly to uw € F(T).

Proof. We show (1) and (2). By Lemmas 4.4 and 4.6, S is nonexpansive and F(T') =
F(S) C di(T) = A(S). By Theorem 6.1, we have that #/;(T") is non-empty, closed
and convex. We also have that {b,} converges weakly to some u € o (7).

We show (3) and (4). Since both #(T") and C are closed and convex, so is
F(T)=4d,(T)NC. We can easily have {b,} C C. Then, since C is weakly closed,
we have u € oi(T) N C = F(T). In this setting, the assumption that S is a
self-mapping on C' is unnecessary. Furthermore, (3) is known. O

Remark 6.3. In Theorem 6.2 (1) and (2), convexity of C' is not always necessary.
Then, we give an example. We denote by ) the set of rational numbers. Let
kEe€[0,1)NQ and C = (0,1) N Q. Then, for any self-mapping 7" on C, S is also a
self-mapping. However, C' is not convex.

Theorem 6.4 is Suzuki’s theorem in the Hilbert space setting; see Suzuki [24].
We note that Chidume and Chidume [7] also proved the theorem independently.
By Lemma 4.6 and Theorem 6.4, we will have Theorem 6.5 closely connected with
Zhou’s another result [34].

Theorem 6.4. Let ¢ € (0,1). Let {an} be a sequence in [0,1] satisfying lim,, a,, = 0
and Yo7 a, = co. Let C' be a closed and convex subset of a Hilbert space H. Let
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S be a nonexpansive self-mapping on C with F(S) # ¢. Let z,u; € C and {u,} be
the sequence defined by

Upt1 = a2z + (1 — ap)(cup + (1 — ¢)Suy) for neN.
Then {un} converges strongly to the point of F(S) nearest to z.

Theorem 6.5. Let k € [0,1), b € (0,1) and ¢ € [k,1). Let {a,} be a sequence in
[0,1] satisfying limy, an, =0 and > o2 | an = 00. Let C be a closed and conver subset
of a Hilbert space H. Let T be a k—strictly pseudo—contractive self-mapping on C
with F(T) # ¢ and S be the mapping defined by Sx = (¢ + (1 —¢)T)x for x € C.
Let z,u; € C and {uy} be the sequence defined by

Unt1 = anz + (1 — an)(buy + (1 — b)Suy,) for ne N.
Then {uy} converges strongly to the point of F(T) nearest to z.

Proof. Since T is k—strictly pseudo—contractive and F(T') # ¢, S is a nonexpansive
self-mapping on C with ¢ # F(T) = F(S) = A(S)NC. By Theorem 6.4, {u,}
converges strongly to the point of F(T) = F(S) nearest to z. O

Recently, some researchers considered minimal norm problems for some nonlinear
mappings. They presented some iterations to find the fixed point nearest to 0 for
k—strictly pseudo—contractive mappings or k—demi—contractive mappings, in the
special setting C' = H. It seems that the condition 0 € C' = H is essential for their
arguments. Let k£ € [0,1) and a € (k,1). Then, there is b € (0, 1) such that

(6.1) a=k+b1—k) =b+(1-0k 1—a=(1-0b)(1—Ek).

In the same setting as Theorem 6.5, assume 0 € C and set ¢ = k£ and z = 0. For
a € (k,1), we can take b € (0,1) satisfying (6.1). Then under the conditions as
above, the iteration in Theorem 6.5 becomes as follows:
Unt1 = an0 4+ (1 — ap)(buy + (1 — b)(kup + (1 — k)Tuy))
= (1—ap)(aup + (1 —a)Tuy,) for n e N.

Thus we have the following Halpern type convergence theorem which is a corollary
of Theorem 6.5. It is obvious that we can apply Theorem 6.6 in the case of C' = H.

Theorem 6.6. Let k € [0,1) and a € (k,1). Let {a,} be a sequence in [0,1]
satisfying limy, a, =0 and > " | a, = co. Let C be a closed and convex subset of a
Hilbert space H with 0 € C. Let T be a k-strictly pseudo—contractive self-mapping
on C with F(T) # ¢. Let uy € C and {uy} be the sequence defined by

Unt1 = (1 —ap)(auy, + (1 — a)Tuy,) for n e N.
Then {uy} converges strongly to the point of F(T) nearest to 0.
In 2008, Maingé and Maruster proved the following theorem (Theorem 4.1 in [19]).

Theorem 6.7. Let k € [0,1) and b € (0,1 — k). Let {a,} be a sequence in [0,1)
and {Bn} be a sequence in (0,b] such that
lim,, o, = 0, Zzozl Qay, = 00, lim,, S _ 0.

Bn
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Let H be a Hilbert space and T be a k—demi—contractive mapping on H. Assume
that I — T is demiclosed at 0. Let x1 € H and {x,} be the sequence defined by

yn = (L —apn)zn, xny1 = (1= Bn)yn + BuTyn for n € N.
Then {z,} converges strongly to the point of F(T) nearest to 0.
Motivated by Maingé and Maruster [19], we present the following results.

Theorem 6.8. Let {a,} be a sequence in [0,1) and {b,} be a sequence in (0,1)
such that
an

b (1 — by)

Let C' be a closed and convexr subset of a Hilbert space H with 0 € C. Let S be a
quasi—nonexpansive self-mapping on C such that I — S is demiclosed at 0. For each
n € N, let U, be the mapping defined by Upx = (bpI + (1 — by,)S)x for x € C. Let
uy € C and {u,} be the sequence defined by

=0.

o0
lim,, a,, = 0, E | @n = 00, lim,,
n—=

Unt1 = (1 — apn)Upuy, for ne N.
Then {uy,} converges strongly to the point of F(S) nearest to 0.

Proof. It is easy to see that each U, is a self-mapping on C. By 0 € C, each
(1 —a,)U, is also a self-mapping on C. Then {u,} is well-defined. By the quasi-
nonexpansiveness of S and Lemma 4.5, each U, is also quasi-nonexpansive and

0% F(S) = A(S)NC = A(U,) N C = F(Uy).

By Theorem 3.3, F'(S) is closed and convex. Then we can set v = Pr(s)0 € F(S),
where Pp(g) is the metric projection of H onto F'(S).
Set D ={xz € C: |l —v|| < |lur —v| +]|v||}. Then we easily see that 0,v,u; € D
and D is bounded, closed and convex. For each n € NN, it is obvious that
[Una — vl| < flz = o] < flus = vl + o],
laUnz — ]| < a||Unz — v[| + (1 — a)]|v]]

< a(flur = vl + [ol]) + (1 = a)[v]

< lur — o + vl
for a € [0,1] and = € D. Then each U,, and each (1 — a,)U, are self-mappings on

D. We have that {u,} and {Upu,} are sequences in the weakly compact set D.
It is obvious that, for n € NV,

(6.2) [Untn — upl| = [[(bpn 4+ (1 = bp)Sun) — upl| = (1 = bp)||Sun — un.

We know v € F(S) C A(S) and Uyuy, = bpup + (1 —by)Suy. Then, by Lemma 4.10,
we have the following:

(6.3) |Unttn, — 0|2 < [Jttn — 0|2 = b (1 = bp) || St — n|? for n e N.

Let {uy} be a subsequence of {uy} such that a term u; of {u,} is a term of {uy}
if a; > 0. We denote by P the index set of {uy}. Also, let {u;} be a subsequence
of {u,} such that a term wu; of {u,} is a term of {u;} if a; = 0. We denote by V'
the index set of {u;}. It is possible that {u;} has at most finite terms. However, by
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>0 | an = 00, {u} must have countable infinite terms. We can consider P and V/

as subsequences {k} and {l} of N = {n}, respectively.
Consider the subsequence {u;} of {u,}. By (6.3) and a; = 0, for [ € V| we have

(64) lwgr —ol* = Uy = l* < Jug = 0l* = (1 = b)) [ S — w* < [|uy — v]*.
For each [ € V, we set K; = 0. Then we can rewrite (6.4) as follows:
(6.5) Juger — ol < (1 —a))|lug — v||* + ayK; for 1€ V.

Consider the subsequence {uz} of {u,}. For k € P, set Ny = ||ugr1 — v||>. Then,
by (6.3), we have that, for k € P,

Ny = [|(1 = ag) (Upug — v) — ago|)?
< (1 = ap) |Upug, — 0]|* + ai[[o]* — 2ax(1 = ay,){Ugug — v, v)
a
< (0= o = ol = (1= @) % 2 b1 = b1 Sue — )

+agl|v]l* + 2ax(1 — ar)(Uruy, — v, —0).

(6.6)

For each k € P, we set yp = Upug and
1
(6.7) Ky = T (1 = ar)br(1 = bg)[|Sup, — ugl|* + arf|v)|* + 2(1 — ax) (yx — v, —v).

Then we can rewrite (6.6) as follows:

(6.8) |uper —v]|? < (A — ap)|lug — v||*> + arK), for ke P.
Let k € P. Then, by (6.7) and ay, b, € (0, 1), it is obvious that
(6.9) K < agl]o]? + 2(1 — ag)(yr. — v, —v) < [[0]1* + 2[lyx — ]| [|v]].

Since D is weakly compact, we know limsup,, K} < oo.
We show limsup,, K} < 0. Arguing by contradiction, assume 0 < limsup, K.
Then there is a subsequence {k;} of {k} satisfying

0 < limsupy, K, = lim; Ky;.

Let {ug,} be the subsequence of {uy} corresponding to {k;}. Since D is weakly
compact, {u; } has a subsequence which converges weakly to some u € D. Without
loss of generality, we can assume that {uy,} converges weakly to u € D.
It is obvious that 0 < Ky, for sufficiently large j. By (6.7), we can rewrite
0 < Ky; as follows:
o (1 (1= i S, |7 < a o+ 200 ), — )

Then, since D is bounded and lim; ax, = 0, there is L > 0 such that

b (1 — by, ag.
O 2 Oh) g — g 2 <
a/kj (1 - a/k‘j)
for sufficiently large j. That is, for sufficiently large j, the following holds:

akj I
b, (1 —br,)

[l1? + 2lyx, = vllfloll < L

(6.10) Sk, — u, ||* <
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Recall lim; ay, /by, (1 — bg;) = 0. Then, by (6.10) and (6.2), we have
. 2 . 2 : 2
limy [[Sug, — ug, || =0,  limy [|Uk;ug; — ug, || = limy |lyx; — ug, ||” = 0.

Since I — S is demiclosed at 0, we have u € F(S). It is obvious that {y,} also
converges weakly to u. Confirm that lim; ax; = 0, v = Pp(s)0, and {yy,} converges
weakly to u € F(S). Then, by (6.9), we have

lim; K, < lim; (ag, o] 4+ 2(1 — ak;) Yk, — v, —0)) = 2(u—v,0 —v) < 0.

Thus we have 0 < limsup;, K, = lim; K, k; < 0. This is a contradiction.
By (6.5) and (6.8), we have

(6.11) ltns1 —vl|? < (1 = an)||un —v||> + anK, for n € N.

On the other hand, we know limsup, Ky < 0 and K; = 0 for all [ € V. These
imply limsup,, K;, < 0. Thus, by (6.11), >°>° | a, = 00, and Lemma 4.2, we have
limy, [|un, — v]|* = 0. Hence, {u,} converges strongly to v = Pp(g)0. O

Theorem 6.9. Let k € [0,1) and ¢ € [k,1). Let {an} be a sequence in [0,1) and
{bn} be a sequence in (0,1) such that
Qn,

b (1 — by)

Let C be a closed and convex subset of a Hilbert space H with 0 € C. LetT be a
k—demi—contractive self-mapping on C such that I — T is demiclosed at 0. Let S
be the mapping defined by Sx = (cI + (1 — ¢)T)x for x € C. For each n € N, let
U, be the mapping defined by Upx = (bpI 4+ (1 —b,)S)x forx € C. Let uy € C and
{un} be the sequence defined by

o0
lim,, a,, = 0, g | @n = 00, lim,, =0.
n=

Unt1 = (1 — apn)Upun, for ne N.
Then {u,} converges strongly to the point of F(T) nearest to 0.

Proof. Recall Lemmas 4.5 and 4.7. Then, since T is k—demi—contractive, .S is quasi—
nonexpansive and ¢ # F(T) = F(S) = A(S)NC. Since I — T is demiclosed at 0,
I — S is also demiclosed at 0. Then, by Theorem 6.8, we have the result. U

We can deduce the following assertion from Theorem 6.9.

Theorem 6.10. Let k € [0,1) and b € (0,1 — k). Let {a,} be a sequence in [0, 1)
and {Bn} be a sequence in (0,b] such that

. o . (679
lim,, o, = 0, E | Gn = 00, lim,, — = 0.
n=

Bn

Let C be a closed and convex subset of a Hilbert space H with 0 € C. Let T be a
k—demi—contractive self-mapping on C. Assume that I —T is demiclosed at 0. Let
{yn} and {x,} be sequences defined by y1 € C and

Tp = (1= B0)yn + BnTYns  Yny1 = (1 — an)zy for n e N.

Then {yn} converges strongly to the point of F(T) nearest to 0.
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Proof. We can rewrite the iteration as follows:
(6.12) Ynt+1 = (L —an) (1 = Bn)yn + BnTyn) for n € N.

Set ap = ay, for n € N and ¢ = k. Then lim, a,, =0 and > | a, = c0.
Alsoset d=0/(1 — k). By 0 < 8, <b<1—k, we have
Bn b

< — = .
I d<1 for ne N

Set b, = 1— 5,/(1 — k) for n € N. Then {b,} is a sequence in (0,1). Note that
1—b,=p,/(1—k)€(0,d] and b, € [1 —d, 1) hold for n € N. We easily see that

0<

an <1—k>< an 71—k%
(1_bn)bn_ 5n (l_d)_l_dﬁn

By lim,, o, /3, = 0, we have lim,, a,,/b,(1 — b,) = 0. Thus {a,} and {b,} satisfy
the conditions in Theorem 6.9. On the other hand, it is easy to see that

Bo=(1—b))(1—k), (1—Bp)=bp+(1—by)k for neN.

0< for n € N.

Let w1 = y1. Then consider the iteration in Theorem 6.9, in the setting as above.
Recall ¢ = k. Then it is easy to see that the iteration becomes as follows:
(1 —an)Unun
= (1 — an)(bpun + (1 — by)Suy)
= (1 — an)(bpun + (1 — by) (kup + (1 — k)Tuy))
= (1 —an)((1 = Bp)un + BnTuy) for ne N.

Un41 =

So, this iteration corresponds to (6.12). By Theorem 6.9, {y,} converges strongly
to v = Pp(7)0. Since lim,, a;, = 0 and [|yn 41| = (1 — )|z ll, {zn} is bounded. By
|Zn — Ynt1ll = anllzn|l, {zn} also converges strongly to v = Pgp)0. O

Remark 6.11. From our point of view, iterations in Theorems 6.8, 6.9 and 6.10
are a kind of Halpern type iteration in structure. It is obvious that Theorem 6.10
is closely connected with Maingé and Maruster’s theorem. In the argument on
Theorem 4.1 [19], their accounts of the sequence {a,} is not helpful. They do
not refer to the case that {«,} has a null constant subsequence. Furthermore, it
seems that the part of their proof connected with Lemma 4.3 [19] contains a circular
argument as a matter of form.

7. CONVERGENCE THEOREMS III

We begin this section with presenting the following theorem due to Ishikawa [9].
The iterative procedure in the theorem is called Ishikawa iteration.

Theorem 7.1. Let {a,} and {b,} be sequences in [0, 1] such that

(1) ap <bp, (2) limpb, =0, (3) Z""_l nby = 00.
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Let C be a compact and convex subset of a Hilbert space H and T be a Lipschitzian
pseudo-contractive self-mapping on C. Let {u,} be the sequence defined by u; € C
and

U = bpTup + (1 = by)uy,
Unt1 = anTvp + (1 — ap)uy, for n € N.

Then {uy} converges strongly to some fized point of T

Ishikawa [9] made an impact on the study of pseudo-contractions. By studying [9],
we can easily verify that his proof is also effective for Lipschitzian hemi—contractive
mappings. Furthermore, we can have Lemma 7.3. From now on, we replace the
form al + (1 — a)T by Ishikawa’s form b7 + (1 — b)I, where b = (1 — a).

Before proving Lemma 7.3, we prepare the following trivial lemma.

Lemma 7.2. Let L be a positive real number and s be the positive solution of the
equation 1 — 2x — (Lz)? = 0. Let b € (0,s), ¢ € (0,b] and d =1 —2b— (bL)?. Let
C be a convex subset of a Hilbert space H and T be an L-Lipschitzian self-mapping
on C. Let S be the mapping defined by Sz = (¢I'+ (1 — ¢)I)x for x € C. Then
bL,d € (0,1) and the following holds:

| TSx —Tz| < cL||Tzx —z|| for xe€C.

Proof. We know ¢ > 0 and s =1/(v/L?+ 1+ 1). Then we have
1 1
L <
VL2 +1+1 L+1
By d=1-2b— (bL)? and b € (0, s), it is obvious that
0=1-2s—(sL)?<1—-2b— (bL)> =d < 1.

0< el <bL <sL =

1
L<-L=1
Sz

It is easy to see that, for x € C,
| TSx — Tz| < L||(cTx 4+ (1 — ¢)x) — x| = cL||Tx — x|
O

Lemma 7.3. Let L be a positive real number and s = 1/(v/L? +1+1). Let a and b
be positive real numbers satisfying a,b € (0,s) and a < b. Setd =1—2b— (bL)?. Let
C be a convex subset of a Hilbert space H and T be an L-Lipschitzian self-mapping
on C. Define mappings S and U by

Se=0Tx+ (1—-0bxz, Uzr=alSx+ (1—a)x for zeC.
Then there are k € (0,1) and K € (0,00) such that
E|Tz — x| < ||T'Sx — ||, Uz —z|| < K||Tx — || for zeC.

Furthermore, suppose @ # F(T') C «d(T). Then the followings hold:
(1) | Uz —v||? < ||z —v||? — dab|| Tz — z||? for ze€C andve A(T),

(2) F(T) = F(S) = F(TS) = F(U) = 4(T) N C = A(U) N C,
di_o(TS)NC = AU)NC.
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Proof. We show the first assertion. Let x € C. By Lemma 7.2, we have
Tz —z|| < || TSz — Tx|| + || TSz — z|| < bL||Tz — z| + || TSz — z||.
By |Uz — x| = ||[(aT Sz + (1 — a)z) — z||, we also have
|Ux — x| = a|| TSz — ||
<a(|T(bTz+ (1 —b)x) — Tx| + || Tz — z||)
<a(bL+1)||Tx — x||.

By setting k =1 —bL € (0,1) and K = a(bL + 1) € (0,00), we have the result.
We prove (1). By our assumptions, we know d, dab € (0,1) and ¢ # F(T) C A(T).
Let v € 4(T) and = € C. Recall T is L-Lipschitzian and S = bT + (1 — b)I.
Then, by a < b and Lemmas 7.2, 4.10 and 3.2, we have the followings:

ITSz = v]]2 < 1Sz — v]]? + | TSz — Sz,
155 = ]2 < |l — 0|2 + b2 Tz — a2,
| TSz — Sz||? = ||TSx — (bVTx + (1 —b)x)|?
= b||TSx — Tz||> + (1 — b)| TSz — z||* — b(1 — b)||Tx — z|?
<bL)Y| Tz — 2> + (1 — a)| TSz — z||* — b(1 — b)|| Tz — x|
Recall U = aT'S + (1 — a)I and set N = ||[Ux — v||?. Then we have
N =a|TSz —v|> + (1 —a)||z — v||* — a(1 — a)|| TSz — z|?
< a(lo — |2 + BT —
LTz — 22 + (1 — )| TSz — 2|2 — b(1 — b)|[Tz — z|?)
+(1 -0z —vl]? - a(1 — @) | TSz — 3|
= [lz —v]|* + ab(b + (bL)* — (1 — b))|| Tz — 2|
= ||z — v||? — dab||Tx — z||>.
Thus we have ||[Ux —v||? < ||z — v||? — dab||Tz — x||? for v € A(T) and z € C.

We prove (2). By (1) and Lemma 4.4, we have o (T) C A(U) = d1_4(T5).
Then, by Theorem 3.3 (4), we have

(7.2) 0 #F(T)CA(T)NC CAI_o(TS)NC =AU)NC C F(U).
By the definitions of S and U, it is obvious that

(7.3) F(T)=F(S)C F(TS)=F(U).
Let u e F(U) C C and v € «(T). By (1), we have
lu = ol* = [Uw = vl|* < flu — vl|* — dab]| Tu — u]]*.

Then, by dab > 0, we have || Tu —u|| = 0. Thus F(U) C F(T'). Hence, by (7.2) and
(7.3), we have

F(T) = F(S) = F(TS) = F(U) = d(T) N C = sd1_o(T'S) N C = A(U) N C.
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Remark 7.4. Techniques in the proof of Lemma 7.3 are essentially prepared by
Ishikawa [9]. For mappings in Lemma 7.3 (1) and (2), we know F(T) = F(U) =
A(U)NC and F(T) = F(TS) = d1-4(T'S)NC. That is, U is a quasi-nonexpansive
mapping with F(T) = F(U) and T'S is a (1 — a)-demi—contractive mapping with
F(T)=F(TS).

The following is a version of Theorem 7.1.

Theorem 7.5. Let L be a positive real number and s = 1/(vV/L? +1+1). Let b be a
real number satisfying b € (0,s). Let {a,} and {b,} be sequences in [0,b] such that

o
(1) an <bn, (2 anl by = 0.
Let C be a compact and convexr subset of a Hilbert space H and T be an L-
Lipschitzian self-mapping on C satisfying F(T) C «(T). For each n € N, define
mappings Sy and U, by
Spx =by,Tx 4+ (1 —by)x, Upx=a,TSpzx+ (1 —ap)z for zeC.
Let {uy} be the sequence defined by u; € C and
Upy1 = Upu, for n € N.

Then {u,} converges strongly to some u € F(T).

Proof. By Shauder’s theorem, we have ¢ # F(T) C o (T). Set d = 1 — 2b — (bL)?
and d,, = 1 — 2b,, — (b,L)? for n € N. Then 0 < d < d,, forn € N.
Let v € A(T). By a, < by, it is obvious that u,+; = Upuy, = u, if ayb, = 0.
Then, by Lemma 7.3 (1), we have that, for n € N,
[ unt1 — UH2 = [|[Unun — UH2 < lun — UH2 — danby || Tuy — un||2
This implies that {||u, — v||?} converges. Furthermore, we have that, for n € N,

n
>, dabil Tui — wil® < Jlur —o]* = fJungs = l|* < flug — o],

Then we have > 50, da;b;|Tu; — u;||> < oo. By 322, dajb; = oo, we have
liminf, [|[Tu, — un|®* = 0. We know that there is a subsequence {un;} of {u,}
satisfying lim; ||Tupn, — un, || = liminf, |Tup, — up||* = 0. Since C is compact,
{un, } has a subsequence converging strongly to some u € C. Without loss of gener-
ality, we can assume that {u,,} converges strongly to u € C. Since T' is continuous,
we have || Tu—ul/* = lim; [| Tun; —un, ||* = 0. Then u € F(T) C ¢4(T). This implies
that {[|u, —ul/*} converges. Since {[|un; — ul[*} converges to 0, {||u, — u||*} itself
converges to 0. Thus {u,} converges strongly to u € F(T). O

By theoretical interest, we present the following theorem.

Theorem 7.6. Let a,b,c € (0,1). Let C be a compact and conver subset of a
Hilbert space H and T be a continuous self-mapping on C. Define mappings S and
U by

Sz =bTr+ (1 -b)x, Uzr=alSx+ (1—a)x for zeC.
Assume F(U) C A(U). Let {u,} be the sequence defined by u; € C' and
Unt1 = cUup + (1 — c)u, for n € N.
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Suppose there are k € (0,1) and a subsequence {un,} of {un} which satisfy either
of the following conditions:

(L1) E|Tun, — un,|| < ||TSun, — un,|| for se N,
(L2) E|Tun, — un, || < ||TTSun, — Tuy,|| for se N.

Then {un} converges strongly to some u € F(T).
Proof. By Shauder’s theorem, we have ¢ # F(T'), that is,
0# F(T)=F(S)C F(TS)=F({U) Cc AU).
Let v € A(U). Then, by Lemma 4.10, we have that, for n € N,
1 = 0[* = [(Uun + (1= Jun) = v[|* < [Jun = v]|* = e(1 = ) [Uun — unl|*.
By this inequality, {||u, — v||?} converges. Furthermore, we have that, for n € N,
c(1 = Utn = unll® < [lun —v[* = [funs1 — v]*.

By ¢ € (0,1), we have lim, |[Uu, — u,||> = 0. Since C is compact, there is a
subsequence {uy,} of {u,} which converges strongly to some v € C. Since U is
continuous, we have ||[Uu — ul|* = lim; |[Uuy, — un, ||> = 0. Thus u € F(U) C A(U).
Hence, {||un —ul|*} converges. Since {||un; —ul[*} converges to 0, {||u, —ul|*} itself
converges to 0. Thus {u,} converges strongly to u € F(U).

We show u € F(T). Recall F(U) = F(TS). By our assumptions, there are
k € (0,1) and a subsequence {uy, } of {u,} which satisfy (L1) or (L2).

Assume that k and {u,, } satisfy (L1). Note that 7'S and T are continuous. Since
{un,} converges strongly to u € F(T'S), we have

limg || 7Sun, — un,|| = |TSu — ul|| = ||u —ul| = 0.
Then we have
k|| Tu — ul| = klimg ||Tup, — tn, || < limg ||T'Suy, — un, || = 0.

By k € (0,1), we have ||[Tu — u|| = 0.
Assume that k£ € (0,1) and {u,,} satisfy (L2). We know that T7'S and T are
continuous. Since {uy,} converges strongly to v € F(T'S), we have

limg || TT Supn, — Tun,|| = | T(T'S)u — Tul| = || Tu — Tul| = 0.
Then we have
E|Tu — u|| = klimg | Tupn, — tn,|| < limg [|[TTSup, — Tup,|| = 0.
By k € (0,1), we have ||Tu — u|| = 0. Thus, in both cases, we have v € F(T). O

Remark 7.7. For simplicity’s sake, we chose simple control sequences in Theo-
rem 7.6. In the theorem, let T" be an L-Lipschitzian hemi-contractive mapping and
assume that a,b satisfy conditions in Lemma 7.3. Then U satisfies F(U) C A(U).
Since T is L-Lipschitzian, there is k € (0,1) such that k£ and {u, } satisfy condition
(L1) by Lemma 7.3. So, Theorem 7.6 is slightly wider than Theorem 7.5.

To see relations between Theorem 7.5 and Theorem 7.6, we give an example.
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Example 7.8. Let C = [—1,1] C R and T be the self-mapping on C' defined by
Te=2* if <0, Te=—z if z>0.

Then C' is compact and convex. It is obvious that 7' is a strictly decreasing con-
tinuous self-mapping on C. One can easily see F(T) = A(T) N C = {0} and
A(T) N C = . For convenience, we set u = 0. We show some properties of T. By
F(T)=4d(T)NC = {0}, T is hemi-contractive. Let x,y € C with x,y > 0. Then
we can easily see that 7" is not Lipschitzian by the following:

[Tz =Tyl = | =V~ (VB = Ve = Vil =

Note F(T) = 4(T)NC = {u} = {0}. Let k € [0,1) and = € (0, 1]. Then we have
Tz — ul? = (—/7)? = 2 and
|z —ul> + k|Tx — z|? = 2% 4+ k(z + Vz)? = (1 + k)2® + 2kav/x + ka.

Thus we have

|z —yl.

|z — ul? + k|Tz — z|?
|Tx — ul?
This implies that T is not k—demi—contractive.
We consider a sequence {u,} generated by the iteration in Theorem 7.6. For
simplicity’s sake, we consider mappings S = (T'+1)/2 and U = (T'S + I)/2. That
is, a = b = 1/2. Note that F(T'S) Cc A(TS) implies F(U) ¢ A(U). In our
setting, we can easily see that F'(T) = F(T'S) and F(T'S) is singleton. Furthermore,
F(TS) = {0} and TS(—1) = TS(0) = TS(1) = 0. Then, to see F(T'S) C A(TS),
we may assume u; € (—1,0) U (0,1).
Let z € (0,1) and y € (—1,0). Set z = —y € (0,1). We confirm that F(T'S) C
A(TS) holds. We can easily have the following calculation results:

=k<1

lim1¢0

0<TSx:w<(—\/5)2:x, 0<TSy:W<(—z)2<|y\.

That is, |[T'Sx — 0| < |z — 0] for x € (0,1) and |T'Sy — 0] < |y — 0| for y € (—1,0).
We can also have the followings:

TTSx—Tx:—(\/E;@+ﬁ:W;@:;|Tx_x|’

2 2 1 1
TSy—y—(Z42)+z>z>2(22+z)—2]Ty—y\.

Then {u,} must have a subsequence {u,,} such that 1/2 and {u,,} satisfy (L1) or
(L2). Thus {u,} converges strongly to 0 € F(T') by Theorem 7.6.

Motivated by [19], we show the following theorem for Lipschitzian hemi-contractive
mappings. In an easily understood manner, we choose simple control sequences.

Theorem 7.9. Let L be a positive real number and s = 1/(v/L? +1+1). Let a and
b be real numbers satisfying a,b € (0,s) and a < b. Let C be a closed and convex
subset of a Hilbert space H with 0 € C'. Let T be an L—Lipschitzian self-mapping on
C with o # F(T) C A(T). Assume that I — T is demiclosed at 0. Define mappings
S and U by

Sz =bTr+ (1 -b)x, Uzr=alSx+ (1—a)x for zeC.
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Let {a,} be a sequence in (0,1) satisfying lim,, (1 —a,) =0 and Yo7 (1 —a,) = co.
Let {uy} be the sequence defined by u; € C and

Up+1 = apUuy, for ne€ N.
Then {u,} converges strongly to the point of F(T) nearest to 0.

Proof. It is easy to see that S, T'S and U are self-mappings on C. By 0 € C,
each a,U is also a self-mapping on C. Then {u,} is well-defined. By Lemma 7.3
and Theorem 3.3, U is quasi-nonexpansive, F(T) = F(U) = A(U)NC, and F(T)
is closed and convex. Then we can set v = Pp(1)0, where Pp(r) is the metric
projection of H onto F(T). Set D ={z € C : ||z —v|| < |lu1 —v|| + ||v||}. Then we
can easily see that 0,v,u; € D and D is bounded, closed and convex. It is obvious
that, for a € [0,1] and x € D,
Uz — vl <[l — v < flur =l +lv]],
laUz — vl < al|lUz —v|| + (1 — a)|fv|
< a(llur — ol + [Joll) + (1 = a)|v]
< [Jur = v[[ + [Jo].
Then U and each a,U are self-mappings on D. We confirmed that {u, } and {Uu,}
are sequences in the weakly compact set D.
Set Ny, = ||tns1—v||? forn € N. Then, by v € F(T) C «4(T) and Lemma 7.3 (1),
we have that, for n € N,
No = |lan(Unyp —v) — (1 — ap)v]|?
< an||Utn — 0| + (1 = an)?||v))* = 2an(1 — an) (Uuy, — v,v)
< an([Jun = v||* = dab|| Ty, — un|?)

+(1- an)QHvHZ + 2a,(1 — ap)(Uu, — v, —v),

(7.4)

where d = 1 — 2b — (bL)? € (0,1). For each n € N, we set y,, = Uu,, and

(7.5) K, =— apdab||Tuy, —un||2—i— (1 —an)HUHQ—i—Qan(yn — v, —v).

1—ay
Then we can rewrite (7.4) as follows:

(7.6) ltns1 —v||? < anllun —v||> + (1 = an)K, for ne€N.

By (7.5) and a,, € (0,1), it is obvious that, for n € N,

(7.7) K < (1= an)[[0]* + 2an(yn — v, —v) < [[0]* +2]lyn — o[l Jv]]-

Then, since D is weakly compact, we have limsup,, K, < 0.
We show limsup,, K, < 0. Arguing by contradiction, assume 0 < limsup,, K.
Then there is a subsequence {n;} of {n} such that

0 < limsup,, K, = lim; Kp,.

Let {u,,} be the subsequence of {u,} corresponding to {n;}. Since D is weakly
compact, {uy, } has a subsequence which converges weakly to some u € D. Without
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loss of generality, we can assume that {uy,; } converges weakly tou € D. It is obvious
that 0 < K, for sufficiently large j. By (7.5), we can rewrite 0 < K, as follows:

1
n;dabl|Tup; — un, 1?2 < (1- anj)HUH2 + 2an, (Yn; — v, —).

1fanj

Then, since D is bounded and lim;(1 — a,,) = 0, there is K > 0 such that

dab 1—ay,.
D | Py, — | < L)

L —an, nj

[l + 2llyn, —vlllloll < K

for sufficiently large j. That is, for sufficiently large j, the following holds:
1—ay,
2 n
By lim;(1 — an,;) = 0 and Lemma 7.3, we have
[&

lim; [[Tup, — un,||* =0, limy ||Uup, — un, ||? = lim; ||y, — un,||* = 0.

Since I — T is demiclosed at 0, we have v € F(T). It is obvious that {y,,} also
converges weakly to u. Confirm that lim;(1 — an;) = 0, v = Pp(0, and {yy,}
converges weakly to u € F(T'). Then, by (7.7), we have

lim; K, < limj (1= an,)||v]|* + 2an, (yn, — v, —v)) = 2(u —v,0 — v) < 0.

Thus we have 0 < limsup,, K;, = lim; K, < 0. This is a contradiction.
We know limsup,, K, < 0. Thus, by > 2 (1 — a,) = oo, (7.6), and Lemma 4.2,
we have limy, [|u, — v||? = 0. That is, {u,} converges strongly to v = Ppr)0. O

We present procedures finding a common fixed point of two Lipschitzian hemi—
contractive mappings. For simplicity’s sake, we choose simple control sequences.

Theorem 7.10. Let L be a positive real number and s = 1/(v/L? +1+1). Let a be
a real number satisfying a € (0,s). Let C be a closed and convex subset of a Hilbert
space H. For j € {1,2}, let T; be an L-Lipschitzian self-mapping on C satisfying
F(T;) C A(T;). Assume that each I — T} is demiclosed at 0 and ﬂ?le(Tj) # 0.
For j € {1,2}, define mappings S; and U; by

Six =aTjx+ (1 —a)x, Ujz=aljSjz+ (1 —-a)x for zeC.

Generate sequences {u,} and {wyp} in C by the following iterations, respectively.

(a) Let u; € C and define a sequence {u,} in C by
Upt+1 = UaUruy for n e N.

(b) Let wy € C and define a sequence {wy,} in C by
1 2
W1 = 3 ijl Ujwy, for n e N.

Then {uy,} and {w,} converge weakly to some u,w € ﬂ?le(Tj), respectively.
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Proof. Fix v € ﬂ?le(Tj) arbitrarily. Set D,y = {z € C : |lz — v|| < [Jus — v}
Then v € ﬂ?le(Tj) C Q?ZIW(TJ-) and u1,v € D(g). It is obvious that D, is
bounded, closed and convex. By Lemma 7.3 (2), F(T;) = F(U;) = A(U;) N C for
J € {1,2}. That is, for each j, U; is a self-mapping on D(,). Then Uzl is also a
self-mapping on D(,). Thus we can generate {u,} in D).

Set Dy ={z € C: ||z —v|| < |lw1 —v[[}. Then wy,v € D). We also know that
D) is bounded, closed and convex. In the same way as above, for each j, Uj is a
self-mapping on D). Then % 2321 Uj is also a self-mapping on D). Thus we can
generate {wy,} in D). Furthermore, we have

0 < 2sup{||wy, —v||:ne N} +1<2w; —v||+1< 0.

We show that {uy} converges weakly to a point of ﬂ?le(Tj). By v e ﬂ?zld(Tj)
and Lemma 7.3 (1), we have

[uns1 = ol* = [|UaUrup — ]2
(7.8) < || Urup — v||? = da?|| ToUrtty, — Uy ||

< |Jup — 1)”2 — daZHTlun — unH2 — daQHTgUlun — U1UnH2

for n € N, where d = 1 — 2a — (aL)? € (0,1). Then {|ju, — v||?} and {|ju, —v||}
converge. We confirmed that {||u, — v||} converges for each v € ﬂ?le(Tj).
By (7.8), we also have that, for n € N,

da® (|| Tvun — un|® + | ToUrun — Urtn||*) < lun = olf* = a1 — o]

By da? > 0, we have lim, |T1u, — u,|[*> = 0 and lim,, || ToUu, — Uru,||*> = 0.
Since {u,} is bounded, {u,} has a weakly convergent subsequence. Let {u,,} be
a subsequence which converges weakly to some u € H. Since C is weakly closed,
we know u € C. Furthermore, since I — 77 is demiclosed at 0, v € F(T1). By
limy, | Thun — uy)|> = 0 and Lemma 7.3, we have limy, |[Uju, — uy,|/? = 0. Then
{Uyuyp,} also converges weakly to u. We know limy ||ToUyup, — Uruy, ||* = 0. Since
I — T is demiclosed at 0, we have u € F(T2). Then we have u € D?ZIF(Tj). We
confirmed that every weakly convergent subsequence of {u,} converges weakly to a
point of ﬂ?le (T;). Thus, by Lemma 4.9, every weakly convergent subsequence of
{un} converges weakly to u. That is, {u,} converges weakly to u € ﬂ?le(Tj).

We show that {w,} converges weakly to a point of ﬂ?le(Tj). Bywv e 03221,91 (T3)
and Lemma 7.3 (1), we know that, for each j,

(7.9) 1Ujwn = vl|* < flwn = v]|* = da®| Tjwn — wnl|?

for n € N, where d = 1 — 2a — (aL)? € (0,1). Set K = 2||w; — v|| + 1. We need not
know the value of K. We know ||Ujw, —v| < ||w, —v|| < ||lwi —v]| for n € N. For
positive real numbers s,t, ¢, k, ke? < s2 —t? and kc? < (s —t)(s +t) are equivalent.
Then, for each j, it follows from (7.9) that, for n € N,

da?
|

1Ujwn = vl < llwn = vll = <= | Tjwn — wa*.
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This inequality holds even if w,, = v. We can easily have

1 2
lwntr = vl < 5 ijl |Ujwn — v
1 2 da?
(710 <3370 (wn — ol = S ITjon = wall)
da? 2
= flwn = ol = 55 370 ITywn = wal?

for n € N. Then {||lw, — v|} converges. We confirmed that {||w, — v|} converges
for each v € ﬂ?le(Tj). By (7.10), we also have that, for n € N, j € {1,2},
2 2
Ty —wnll? < 5%
By (da?)/(2K) > 0, this implies lim, | Tjw, — w,|? = 0 for j € {1,2}. Since
{wy} is bounded, {w,} has a weakly convergent subsequence. Let {wy,} be a
subsequence which converges weakly to some w € C. Since I — T} is demiclosed
at 0 for j € {1,2}, we have w € ﬂjzle (T3). We also confirmed that every weakly
convergent subsequence of {w,} converges weakly to a point of ﬂ?le(Tj). Thus,
by Lemma 4.9, every weakly convergent subsequence of {w,} converges weakly to
w. That is, {wy} itself converges weakly to w € ﬂ?le (T5). O

2
I Tiwn — wn||* < Jlwn = 0] = [lwnsr =]

We show a strong convergence theorem corresponding to Theorem 7.10.

Theorem 7.11. Let L be a positive real number and s = 1/(vVL?>+1+1). Let
a be a real number satisfying a € (0,s). Let C be a compact and convex subset of
a Hilbert space H. For j € {1,2}, let T; be an L-Lipschitzian self-mapping on C
satisfying F(Tj) C A(T};). Assume ﬂ?le(Tj) # ¢. For j € {1,2}, define mappings
S; and U; by

Six = aljz+ (1 —a)r, Ujz=adljSjz+ (1 —a)x for zeC.
Generate sequences {u,} and {wyp} in C by the following iterations, respectively.

(a) Let uy € C and define a sequence {uy} in C by
Upt1 = UsUyuy, for n e N.

(b) Let wy € C and define a sequence {wy,} in C by
1 2
Wnp41 = 5 Zj: ijn for n e N.

Then {u,} and {w,} converge strongly to some u,w € ﬂ?le(Tj), respectively.

Proof. Refer to the proof of Theorem 7.10 to have the results.

We already know that we can generate {u,} and {w,}. We show that {u,}
converges strongly to a point of ﬂjz:lF (Tj). In the same way as in the proof
of Theorem 7.10, we have that {||u, — v||} converges for each v € ﬁjz»:lF(Tj),
limy, |Thun — unl|? = 0 and limy, |ToUu, — Uru,|* = 0. Since C is compact,
{u,} has a subsequence {uy,} which converges strongly to some u € C. Since
Ty and ToU; are continuous, we have ||Thu — u|? = lim, ||Thu, — us|/?> = 0 and
|ToUru — Uyul]? = limy, | TaUru, — Uyug||? = 0. We already know F(Up) = F(Ty).
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Then we have | Tou — ul|> = 0. Thus we have u € ﬁ?le(Tj). This implies that
{|Jun — u||} converges. Since {||un, —ul|} converges to 0, {|lu, —ul|} itself converges
to 0. Thus {u,} converges strongly to u € H?ZIF(TJ’).

We show that {w,} converges strongly to a point of O?ZIF(Tj). In the same
way as in the proof of Theorem 7.10, we have that {||w, — v|} converges for each
vE ﬂ?le(Tj) and lim,, | Tjw, —wy||? = 0 for j € {1,2}. Since C is compact, {wy,}
has a subsequence {wy, } which converges strongly to some w € C. Since each T}
is continuous, | Tjw — w||* = limy | Tjwn, — wy,||> = 0 for j € {1,2}. That is, w €
ﬁ?le(Tj). So, {||wy,—w]|} converges. Since {||w,, —w||} converges to 0, {||w,—w||}
itself converges to 0. Thus {w,} converges strongly to w € ﬁ?le (T5). g
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