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spaces, A : H1 → H2 be a bounded linear operator. For given x1 ∈ H1, and
generated iterative scheme

xk+1 = PC(xk + γA∗(PQ − I)Axk), ∀k ≥ 1,

where γ ∈ (0, 2/∥A∥2), and A∗ is the adjoint operator of A. He also proved the
weak convergence of the sequence via the above procedure to the solution of (SFP)
as well.

It is worth noting that many real-world situations, the considered closed convex
subset C, for instance as in (SFP), may be represented by a sublevel set of a given
convex continuous function f : H → R corresponding to a real constant λ. In this
case we will assume without loss of generality that C := {x ∈ H : f(x) ≤ 0}. More
recently, the (SFP), or more generally the convex feasibility problems, in this case
have been investigated by many authors, for instance [2], [3] [10], [13] and [12] and
references therein.

Even if the convex representation plays an important role in mathematical mod-
els, there are some situations in which the representing functions lack of the convex-
ity. Very recently, Censor and Reem [9] introduced a new class of functions which is
called by zero-convex. This class is very wide and rich since the functions belonging
to this class need not be convex and differentiable. They considered a convex feasi-
bility problem in the case when the considered closed convex subsets represented by
sublevel sets of given zero-convex functions. The advantage of this consideration is
that, sometimes, the metric projection onto any closed convex set may not have a
closed-form expression or the computation of such metric projection is very difficult.
However, if the such closed convex set is of the particular structure, i.e. sublevel
set of a zero-convex function, then we can use a subgradient projection instead of
the metric projection which is easier to compute than the metric projection.

In this work, motivated by these all above theoretical and practical reasons, we
will concentrate on a split feasibility problem in the case when the considered closed
convex sets are represented by the zero sublevel sets of zero-convex functions, which
we will call it by split zero-convex feasibility problem. We propose a method for
solving this considered problem. We examine some imposed assumptions utilized for
its convergence and prove that under these assumptions the sequence generated by
the proposed algorithmic method converges weakly to a solution of the considered
problem. We also discuss some related results, that is, the zero-convex feasibility
problem introduced by Censor and Reem [9] and the split common fixed point
problem considered by Wang and Xu [11].

Notations. Let H be a real Hilbert space whose inner product and norm are
denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. We denote the identity operator on H by
I. The weak convergence of a sequence {xk}∞k=1 to x ∈ H are denoted by xk ⇀ x.
For any bounded linear operator A from a Hilbert space H1 into a Hilbert space
H2, we denote its adjoint by A∗. For a subset D ⊂ H2, we denote a subset A−1(D)
of H1 by A−1(D) := {x ∈ H1 : Ax ∈ D}. Let f : H → R be a function, for each

λ ∈ R, we denote the sublevel sets of f corresponding to λ by Sf
≤,λ := {x ∈ H :

f(x) ≤ λ}. Moreover, we denote the positive part of a function f by f+, that is
f+(x) := max{f(x), 0}, for all x ∈ H.
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2. Zero-convex functions and their useful properties

In this section, we will recall a definition and some useful properties of a class of
functions introduced by Censor and Reem [9]. We also investigate a usable property
for our convergence result.

A function f : H → R is called zero-convex at a point x ∈ H if there exists t ∈ H
such that

f(x) + ⟨t, y − x⟩ ≤ 0, for all y ∈ Sf
≤,0.

The vector t is called zero-subgradient of f at x and, further, the set of all zero-
subgradient of f at x is called the zero-subdifferential of f at x and is denoted by
∂0f(x). If f is zero-convex at all point in H, then we call it by zero-convex.

It is worth noting that every convex function having at least one point of conti-
nuity on H is zero-convex. In particular, if H is finite dimensional, we can removed
the requirement that at least one of continuity holds since every convex function
is continuous. Furthermore, one can observe that if f is zero-convex, then the
zero-subdiiferential ∂0f(x) is nonempty for all x ∈ H.

The following proposition collects some useful properties from [9, Proposition 1,
Proposition 2] involving the zero-convexity.

Proposition 2.1. Let H be a real Hilbert space and f : H → R be a given function.
Then,

(i) If f is zero-convex, then its zero sublevel set Sf
≤,0 is convex.

(ii) If the zero sublevel set Sf
≤,0 is convex and closed, then f is a zero-convex

function. In fact, if x ∈ Sf
≤,0, then 0 ∈ ∂0f(x), and if x /∈ Sf

≤,0, then

there exists t ∈ ∂0f(x) with t := f(x)
∥x−m∥2 (x − m) ̸= 0 where m ∈ M is the

orthogonal projection of x onto a closed hyperplane M strictly separating x

from Sf
≤,0.

(iii) If fi : H → R is a zero-convex function at x, for all i = 1, . . . ,m, then
function f defined by f(x) := max{fi(x) : i = 1, . . . ,m} is also zero-convex
at x.

(iv) If f is zero-convex with Sf
≤,0 ̸= ∅, then for any x ∈ H such that f(x) > 0

we have any zero-subgradient t ∈ ∂0f(x) satisfies t ̸= 0.

3. Problem formulation and its convergence

In this section, we begin by proposing a split feasibility problem which we will
call it by a split zero-convex feasibility problem. We subsequently present a generic
iterative method for solving the proposed problem.

Problem 3.1. Let H1 and H2 be real Hilbert spaces, f : H1 → R, g : H2 → R be
zero-convex functions, and A : H1 → H2 be a bounded linear operator. The split
zero-convex feasibility problem (in short, SZFP) is to find

(3.1) x∗ ∈ Sf
≤,0 such that Ax∗ ∈ Sg

≤,0,

where Sf
≤,0 := {x ∈ H1 : f(x) ≤ 0} and Sg

≤,0 := {y ∈ H2 : g(y) ≤ 0}.
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Throughout this work, we may assume the consistency of Problem 3.1 so that

Sf
≤,0 ∩A−1(Sg

≤,0) is nonempty.

It is easy to see that the solution set Sf
≤,0 ∩ A−1(Sg

≤,0) is a convex set. We note

that Problem 3.1 quite includes that of Xu [12, Section 4] since a convex function
which is subdifferentiable on a zero sublevel set is a zero-convex one, see [9, Example
1].

On the other hand, by integrating ideas those of the Byrne’ s forward-backward
method for solving SFP and Censor-Reem [9, Algorithm 1]’ s sequential subgradi-
ent projections algorithm for solving the zero-convex feasibility problem, we are in
position to perform an algorithm for solving SZFP as follows.

Algorithm 3.2. Initialization: Choose {αk}∞k=1, {βk}∞k=1, {γk}∞k=1 ⊂ (0,+∞).
Take x1 ∈ H1 be arbitrary.
Iterative step: Given the current iterate xk ∈ H1, calculate zk ∈ H2 by

zk := Axk − βk
g+(Axk)

∥dk∥2
dk, where dk ∈ ∂0g(Axk) \ {0}.

Define yk ∈ H1 by

yk := xk + γkA
∗(zk −Axk),

and evaluate xk+1 ∈ H1 by

xk+1 := yk − αk
f+(yk)

∥ck∥2
ck, where ck ∈ ∂0f(yk) \ {0}.

Update k := k + 1.

Remark 3.3. Note that if there exists k0 ∈ N in which both f(xk0) and g(Axk0) are
nonpositive, then the Algorithm 3.2 terminates and the iteration xk0 subsequently
is a solution of the SZFP. So in the rest of this work, we may assume that the
Algorithm 3.2 does not terminate in any finite iteration k ≥ 1.

We will use the following control condition throughout this work.

Condition 3.4. The real sequences {αk}∞k=1, {βk}∞k=1, {γk}∞k=1 ⊂ (0,+∞) are sat-
isfying

(I) ε ≤ αk ≤ 2− ε̄ and ζ ≤ βk ≤ 1− ζ̄, with some arbitrary small positive real

numbers ε, ε̄, ζ, and ζ̄;

(II) 0 < γ := infk≥1 γk ≤ γ̄ := supk≥1 γk < 2/∥A∥2.

To investigate our convergence result, we start with an important key lemma.

Lemma 3.5. For a sequence {xk}∞k=1 generated by Algorithm 3.2, we have

∥xk+1 − q∥2 ≤ ∥xk − q∥2 − γk(2− γk∥A∥2)∥zk −Axk∥2

−αk(2− αk)
f+(yk)

2

∥ck∥2
− 2γkβk(1− βk)

g+(Axk)
2

∥dk∥2
,(3.2)

for k ≥ 1 and q ∈ Sf
≤,0 ∩A−1(Sg

≤,0).
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Proof. For q ∈ Sf
≤,0 ∩A−1(Sg

≤,0) and k ≥ 1, we observe that

⟨Axk −Aq, zk −Axk⟩ = −∥zk −Axk∥2 + ⟨zk −Aq, zk −Axk⟩

= −∥zk −Axk∥2 + β2
k

g+(Axk)
2

∥dk∥2

−βk
g+(Axk)

∥dk∥2
⟨Axk −Aq, dk⟩ .

Furthermore, for q ∈ Sf
≤,0 ∩A−1(Sg

≤,0) and k ≥ 1, we also have

∥yk − q∥2 = ∥xk − q∥2 + γ2k∥A∗(zk −Axk)∥2 + 2γk⟨xk − q,A∗(zk −Axk)⟩
≤ ∥xk − q∥2 + γ2k∥A∥2∥zk −Axk∥2 + 2γk⟨Axk −Aq, zk −Axk⟩.

By using the above equality and inequality, we get that

∥xk+1 − q∥2 = ∥yk − q∥2 + α2
k

f+(yk)
2

∥ck∥2
− 2αk

f+(yk)

∥ck∥2
⟨yk − q, ck⟩

≤ ∥xk − q∥2 + γ2k∥A∥2∥zk −Axk∥2 + 2γk⟨Axk −Aq, zk −Axk⟩

+α2
k

f+(yk)
2

∥ck∥2
− 2αk

f+(yk)

∥ck∥2
⟨yk − q, ck⟩

= ∥xk − q∥2 − γk(2− γk∥A∥2)∥zk −Axk∥2

+2γkβ
2
k

g+(Axk)
2

∥dk∥2
− 2γkβk

g+(Axk)

∥dk∥2
⟨Axk −Aq, dk⟩

+α2
k

f+(yk)
2

∥ck∥2
− 2αk

f+(yk)

∥ck∥2
⟨yk − q, ck⟩

≤ ∥xk − q∥2 − γk(2− γk∥A∥2)∥zk −Axk∥2

−αk(2− αk)
f+(yk)

2

∥ck∥2
− 2γkβk(1− βk)

g+(Axk)
2

∥dk∥2
,

which the last one holds because ck ∈ ∂0f(yk) \ {0} and dk ∈ ∂0g(Axk) \ {0},
respectively. Further, by applying Condition 3.4, we can obtain that

∥xk+1 − q∥2 ≤ ∥xk − q∥2 − γ(2− γ̄∥A∥2)∥zk −Axk∥2

−εε̄
f+(yk)

2

∥ck∥2
− 2γζζ̄

g+(Axk)
2

∥dk∥2
,(3.3)

for k ≥ 1 and q ∈ Sf
≤,0 ∩A−1(Sg

≤,0). □
For our convergence result we will assume the following assumptions.

Assumption 3.6. The representative function f and g are weakly lower semicon-
tinuous.

Assumption 3.7. The sequences of selected zero-subgradients {ck}∞k=1, {dk}∞k=1
are bounded.

Remark 3.8. (i) Notice that the sublevel sets Sf
≤,0 and Sg

≤,0 in Problem 3.1 may
lack of closedness, since the zero-convexity need not be continuous. Thus, when we
have to restrict our consideration to a special class of functions; as Assumption 3.6;
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the closedness of such sublevel sets also holds immediately. Moreover, we also get

that Sf
≤,0 ∩A−1(Sg

≤,0) is a closed set.

(ii) Recalling that to consider Assumption 3.7, Censor and Reem [9] defined the
property of bondedeness on bounded subset for the zero-subgradients as: a zero-
convex function f : H → R is said to be partial bounded on bounded sets of the
zero-subgrdients, if for any bounded subset B ⊂ H, there exists a M > 0 such
that for all x ∈ B, there exist at least one zero-subgradient t ∈ ∂0f(x) satisfying
∥t∥ ≤ M . Let us notice that if we assume further the representative functions f
and g are partial bounded on bounded sets of the zero-subgrdients and the sequence
{xk}∞k=1 is bounded, then Assumption 3.7 holds. To do so, note that, if {xk}∞k=1 is a
bounded sequence, then so is {Axk}∞k=1 and consequently implies the boundedness
of {dk}∞k=1. Further, observe that, according to the lines proof of Lemma 3.5, it
holds that

∥yk − q∥2 ≤ ∥xk − q∥2 − 2γζζ̄
g+(Axk)

2

∥dk∥2
,

for k ≥ 1 and q ∈ Sf
≤,0∩A−1(Sg

≤,0). So, we also have {yk}∞k=1 is bounded and hence

the boundedness of {ck}∞k=1 is obtained.

Next, we will ensure that a sequence generated by Algorithm 3.2 converges weakly
to a solution of SZFP as the following theorem.

Theorem 3.9. If the Condition 3.4, Assumption 3.6, and Assumption 3.7 hold,
then the sequence {xk}∞k=1 generated by Algorithm 3.2 converges weakly to a point

in Sf
≤,0 ∩A−1(Sg

≤,0).

Proof. By utilizing Lemma 3.5, we obtain that the sequence {∥xk−q∥}∞k=1 is mono-
tone decreasing and bounded form below, therefore, limk→∞ ∥xk − q∥ exists, for all

q ∈ Sf
≤,0 ∩A−1(Sg

≤,0). Subsequently, we obtain that

lim
k→∞

∥zk −Axk∥ = 0; lim
k→∞

g+(Axk) = 0; lim
k→∞

f+(yk) = 0.(3.4)

By the definition of yk and using limk→∞ ∥zk −Axk∥ = 0, we also have

lim
k→∞

∥xk − yk∥ = 0.

Since the sequence {xk}∞k=1 is bounded, there exists a subsequence {xkl}∞l=1 of
{xk}∞k=1 such that xkl ⇀ x∗ for some x∗ ∈ H1. We observe, by using the weakly
lower semicontinuity of f and g, that

f(x∗) ≤ lim
l→∞

f(ykl) = lim
l→∞

f+(ykl) = 0,

and, similarly,

g(Ax∗) ≤ lim
l→∞

g(Axkl) = lim
l→∞

g+(Axkl) = 0.

These imply that x∗ ∈ Sf
≤,0∩A−1(Sg

≤,0). Finally, it remains to show that xk ⇀ x∗ ∈
Sf
≤,0 ∩ A−1(Sg

≤,0). Suppose that there is another subsequence {xkj}∞j=1 of {xk}∞k=1
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such that xkj ⇀ v ∈ H1. Then, we also obtain that v ∈ Sf
≤,0 ∩A−1(Sg

≤,0). Suppose
to contrary that v ̸= x∗, by applying the well known Opial’s lemma, we have

lim
k→∞

∥xk − v∥ = lim
j→∞

∥xkj − v∥

< lim
j→∞

∥xkj − x∗∥

= lim
k→∞

∥xk − x∗∥

= lim
l→∞

∥xkl − x∗∥

< lim
l→∞

∥xkl − v∥

= lim
k→∞

∥xk − v∥,

which is a contradiction. Thus, v = x∗. This implies that every subsequence of

{xk}∞k=1 converges weakly to the same point in Sf
≤,0 ∩ A−1(Sg

≤,0). Therefore, the

sequence {xk}∞k=1 converges weakly to a point x∗ ∈ Sf
≤,0 ∩A−1(Sg

≤,0). This proof is
accomplished. □

The following remark gives some sufficient conditions on the convergence in norm
of the generated sequence.

Remark 3.10. Of course, the weak convergence result in Theorem 3.9 can be strong
if the considered space H1 is either finite dimensional or compact. Alternatively, the
convergence in norm of the sequence {xk}∞k=1 in Theorem 3.9 also holds whenever

the interior of Sf
≤,0∩A−1(Sg

≤,0) is nonempty, see Bauschke and Borwein [1, Theorem

2.16(iii)] for more details.

The following remark gives another technique on the boundedness of the gener-
ated sequence.

Remark 3.11. Alternatively, if a starting point x1 ∈ H1 in the Algorithm 3.2

is specifically chosen that it closes to Sf
≤,0 ∩ A−1(Sg

≤,0) ̸= ∅ enough, then we can

guarantee the boundedness of the sequence {xk}∞k=1. Indeed, let ϵ > 0 be a fixed

positive real number such that dist(x1, S
f
≤,0 ∩ A−1(Sg

≤,0)) < ϵ. We can choose

η ∈ [ϵ, 2ϵ] and there subsequently exists q′ ∈ Sf
≤,0∩A−1(Sg

≤,0) such that ∥x1−q′∥ ≤ η.

Since (3.3) holds for k ≥ 1 and q ∈ Sf
≤,0∩A−1(Sg

≤,0), we can obtain the boundedness

of the sequence {xk}∞k=1.

4. Some related results

In this section, we will discuss some implementations and related problems of the
split zero-convex feasibility problem.

4.1. Zero-convex feasibility problem. Let us consider SZFP as a following
form. Let H := H1 = H2 be a real Hilbert space and the operator A be the
identity operator, SZFP is nothing else than the two-sets zero-convex feasibility
problem of finding

(4.1) x∗ ∈ Sf
≤,0 ∩ Sg

≤,0,
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and Algorithm 3.2 reduces to the following relaxed alternating subgradient projec-
tions method : Given the current iterate xk ∈ H, compute

zk := xk − βk
g+(xk)

∥dk∥2
dk, where dk ∈ ∂0g(xk) \ {0};

yk := (1− γk)xk + γkzk;

xk+1 := yk − αk
f+(yk)

∥ck∥2
ck, where ck ∈ ∂0f(yk) \ {0},

for all k ≥ 1, where x1 is arbitrary taken in H.
By this considering we can obtain a convergence result of the relaxed alternating

subgradient projections method for the Problem (4.1).

Corollary 4.1. Assume that the sequences of selected zero-subgradients {ck}∞k=1,
{dk}∞k=1 are bounded. If the real sequences {αk}∞k=1, {βk}∞k=1, {γk}∞k=1 are satisfying
ε ≤ αk ≤ 2− ε̄ and ζ ≤ βk ≤ 1− ζ̄, with some arbitrary small positive real numbers

ε, ε̄, ζ, and ζ̄ and 0 < γ := infk≥1 γk ≤ γ̄ := supk≥1 γk < 2, then the sequence
{xk}∞k=1 generated by the relaxed alternating subgradient projections method weakly

converges to a point in Sf
≤,0 ∩ Sg

≤,0 provided that it is nonempty.

Proof. It is clearly that the two-sets zero-convex feasibility problem is SZFP and the
method (4.2) is a specialization of Algorithm 3.2. Since A is the identity operator,
we have that ∥A∥ = 1. Thanks to Theorem 3.9, we immediately obtain the required
result. □

Remark 4.2. Note that the Problem (4.1) is an exactly specialization of the zero-
convex feasibility problem introduced by Censor and Reem [9], nevertheless, this
relaxed alternating subgradient projections method does not coincide with their
sequential subgradient projection method [9, Algorithm 1].

Consider the zero-convex feasibility problem of finding

(4.2) x∗ ∈
m∩
i=1

Sfi
≤,0,

where fi : H → R is zero-convex and weakly lower semicontinuous, for all i =
1, . . . ,m, one may notice by Proposition 2.1(iii) that it is equivalent to finding a
point

(4.3) x∗ ∈ Sf
≤,0,

where f : H → R is defined by f(x) := max{fi(x) : i = 1, . . . ,m}. In this case, it
easily applies Corollary 4.1 to obtain a convergence result for Problem (4.2).

However, let us consider a network system consisting of m users. Each user i
(i ∈ {1, . . . ,m}) has, in hand, a possible constrained function fi : H → R and
can not get the explicit forms of other users possible constrained functions. This
means that it is impossible to obtain the explicit form of max1≤i≤m fi. Based on
these ideas, we present a simultaneous subgradient projections method for Problem
(4.2) as: Given x1 ∈ H arbitrary and {αk}∞k=1 ⊂ (0,+∞). For the current iterate
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xk ∈ H, calculate the next iterate xk+1 ∈ H as

xk+1 := xk − αk

m∑
i=1

ωi
(fi)+(xk)

∥ci,k∥2
ci,k,(4.4)

where ci,k ∈ ∂0fi(xk) \ {0} and {ωi}mi=1 ∈ (0, 1) with
∑m

i=1 ωi = 1.
We can perform a convergence result of this simultaneous subgradient projections

method as follows.

Theorem 4.3. Assume that the sequence of selected zero-subgradients {ci,k}∞k=1 is
bounded for all i = 1, . . . ,m. If the real sequences {αk}∞k=1 is satisfying ε ≤ αk ≤
2−ε̄, with some arbitrary small positive real numbers ε, ε̄, then the sequence {xk}∞k=1
generated by the simultaneous subgradient projections method (4.4) weakly converges

to a point in
∩m

i=1 S
fi
≤,0 provided that it is nonempty.

Proof. Let q ∈
∩m

i=1 S
fi
≤,0 be given. Taking into account Lemma 3.5 with H = H1 =

H2, g ≡ 0, viewing the term
∑m

i=1 ωi
(fi)+(xk)
∥ci,k∥2

ci,k as f+(yk)
∥ck∥2

ck, and using the convexity

of the function norm ∥ · ∥, we obtain that

∥xk+1 − q∥2 ≤ ∥xk − q∥2 − αk(2− αk)
m∑
i=1

ωi
(fi)+(xk)

∥ci,k∥
,

for k ≥ 1. Then, we have limk→∞ ∥xk − q∥2 exists, so that limk→∞
(fi)+(xk)
∥ci,k∥ = 0 for

all i = 1, . . . ,m and hence limk→∞(fi)+(xk) = 0 for all i = 1, . . . ,m. By applying
the proof of Theorem 3.9, we can obtain the remaining proof as desired. □

Remark 4.4. (i) It is worth noting that the idea of this simultaneous subgradient
projections method and Proposition 4.3 can be applied easily to the case of multiple-
set split zero-convex feasibility problem.

(ii) The problem of the form (4.3) in the finite dimensional setting and each fi is
convex was also investigated by Butnariu et al. [3] which their Algorithm 3.1 does
not required the maximum-valued function.

4.2. As a specialization of the split common fixed point problem. In this
subsection, we will show that the split zero-convex feasibility problem can be solving
by utilizing the idea of Wang-Xu [11]’ s split common fixed point problem.

Recall that, in a real Hilbert space H, the operator U : H → H with Fix(U) ̸= ∅
is called cutter if and only if it holds

⟨x− Ux, z − Ux⟩ ≤ 0

for all x ∈ H and all z ∈ Fix(U). We note that the set of all fixed points of a cutter
is closed and convex. For more details on a cutter and its properties, the reader
may consult the book of Cegieski [5].

Let f : H → R be a zero-convex function with nonempty zero sublevel set. That
is, let cx ∈ ∂0f(x) for all x ∈ H. We define an operator T : H → H by

T (x) :=

{
x− f(x)

∥cx∥2 cx if x /∈ Sf
≤,0,

x if x ∈ Sf
≤,0.
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Clearly that T is well defined by Proposition 2.1(iv). Next, we will present an
important properties of such operator T .

Proposition 4.5. Let f and T be defined as above. Then, T is a cutter with

Fix(T ) = Sf
≤,0. Furthermore, if f is weakly lower semicontinuous and partial

bounded on bounded sets of the zero-subgrdients, then T − I is demi-closed at zero,
that is, if xk ⇀ x∗ ∈ H and ∥Txk − xk∥ → 0, then Tx∗ = x∗.

Proof. We first show that Fix(T ) = Sf
≤,0. In fact, the reverse inclusion is obvious.

We may show that Fix(T ) ⊂ Sf
≤,0. Suppose that x /∈ Sf

≤,0. Thus, we have f(x) > 0

and then, by Proposition 2.1 (iv), that cx ̸= 0. That is, f(x)
∥cx∥2 cx ̸= 0 which implies

that x /∈ Fix(T ). Next, we will show that T is cutter. Let x /∈ Sf
≤,0 and z ∈

Fix(T )(= Sf
≤,0) be given. By the definition of zero-convexity, we have

⟨x− Tx, z − Tx⟩ = ⟨x− Tx, z − x⟩+ ∥x− Tx∥2

=
f(x)

∥cx∥2
⟨cx, z − x⟩+

(
f(x)

∥cx∥

)2

≤ 0.

Finally, we will show that T − I is demi-closed at 0. Let {xk}∞k=1 ⊂ H be such that
xk ⇀ x ∈ H and ∥Txk − xk∥ → 0. Then, {xk}∞k=1 is bounded and so is the selected
zero-subgradient {ck := cxk

}∞k=1. Further, we have

f+(xk)

∥ck∥
= ∥Txk − xk∥ → 0,

which implies that limk→∞ f+(xk) = 0. Therefore, by the weak lower semicontinuity
of f , we obtain that

f(x∗) ≤ lim
k→∞

f(xk) ≤ lim
k→∞

f+(xk) = 0,

and hence Tx∗ = x∗. □

Now, let us consider the Algorithm 3.2 in the case when αk ≡ βk ≡ 1 for all k ≥ 1
and define the operators T : H1 → H1 and S : H2 → H2 by

T (x) :=

{
x− f(x)

∥cx∥2 cx if x /∈ Sf
≤,0,

x if x ∈ Sf
≤,0,

and

S(y) :=

{
y − g(y)

∥dy∥2dy if y /∈ Sg
≤,0,

y if y ∈ Sg
≤,0.

Then, in this case, Algorithm 3.2 becomes

xk+1 := T (xk + γkA
∗(S(Axk)−Axk)), ∀k ≥ 1(4.5)

where {γk}∞k=1 ⊂ (0,+∞) and x1 ∈ H1 is arbitrary.
So, we can propose a convergence result of the sequence generated by (4.5) to a

solution of Problem 3.1 as the following theorem.
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Theorem 4.6. Let {xk}∞k=1 be a sequence generated by (4.5) and assume that the
functions f and g are weakly lower semicontinuous and partial bounded on bounded
sets of the zero-subgrdients. If 0 < γ := infk≥1 γk ≤ γ̄ := supk≥1 γk < 2/∥A∥2, then
the sequence {xk}∞k=1 converges weakly to a point in Sf

≤,0 ∩A−1(Sg
≤,0).

Proof. We note by Proposition 4.5 that T and S are cutter and T − I and S− I are
both demi-closed at zero. By applying Theorem 3.3 of Wang-Xu [11] in the case of
p = 1, we can obtain our convergence result. □

Remark 4.7. We can notice that the convergence result of the Algorithm 3.2
and the method (4.5) or, in general, Wang-Xu [11] iterative procedure 3.7 are not
identical. Indeed, the convergence result of Algorithm 3.2 is depended on two
stepsizes αk, βk as in Condition 3.4(I) so that αk ∈ (0, 2) and βk ∈ (0, 1), however,
the convergence of the method (4.5) is merely depended on αk ≡ βk ≡ 1.
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