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2008, it was shown that the basic constraint qualification (BCQ), which was in-
troduced in [4], is a necessary and sufficient constraint qualification for the KKT
optimality condition in a convex optimization problem, whose constraint set S is
described by the above and every constraint functions are convex, by Li, Ng and
Pong, see [7].

Recently, the KKT optimality conditions for a convex optimization problem,
whose constraint set S is described by the above but every constraint functions are
not necessarily convex, was studied. In 2010, a convex optimization problem, whose
objective function is differentiable convex and constraint functions are differentiable
but not necessarily convex, was discussed and a constraint qualification for the op-
timality condition was given by Lasserre, see [6]. In 2013, a convex optimization
problem, whose objective function is convex not necessarily differentiable and con-
straint functions are locally Lipschitz but not necessarily convex or differentiable,
was discussed, and a constraint qualification for the optimality condition was given
by Dutta and Lalitha, see [2].

In this paper, we investigate several constraint qualifications, which are modifi-
cations of well-known constraint qualifications, for the KKT optimality in condition
the convex optimization problem (P), which was discussed by Dutta and Lalitha
in [2], and compare our results and previous ones. The paper is organized as fol-
lows. In Section 2, we describe our notation and present preliminary results. In
Section 3, we propose several constraint qualifications for the KKT optimality con-
dition, which are modifications of well-known constraint qualifications of convex or
nonlinear optimization, the BCQ, Guignard’s constraint qualification, Abadie’s con-
straint qualification, Cottle’s constraint qualification and the linearly independent
constraint qualification, see [7, 10]. Also, we discuss the relations among all con-
straint qualifications which are introduced by the authors, and Dutta and Lalitha.
In addition, we remark that the Slater condition is not a constraint qualification for
the KKT optimality condition in the convex optimization problem (P). Finally, we
summarize our results in Section 4.

2. Preliminaries

In this section, we describe our notation and present preliminary results. A
function g : Rn → R is said to be locally Lipschitz if for each x ∈ Rn, there exist
M > 0 and r > 0 such that |g(y)− g(z)| ≤ M∥y − z∥ for each y, z ∈ B(x, r) where
B(x, r) = {y ∈ Rn | ∥y − x∥ < r}. For a locally Lipschitz function g : Rn → R,
the Clarke directional derivative of g at x ∈ Rn in direction d ∈ Rn, denoted by
g◦(x, d), is given by

g◦(x, d) = lim sup
y→x

t↓0

g(y + td)− g(y)

t
.

For each x ∈ Rn, the function g◦(x, ·) is a positively homogeneous convex function.
The Clarke subdifferential of g at x, denoted by ∂◦g(x), is defined by

∂◦g(x) = {ξ ∈ Rn | ⟨ξ, d⟩ ≤ g◦(x, d), ∀d ∈ Rn}.
The set ∂◦g(x) is a non-empty, convex and compact subset of Rn. Moreover the
Clarke directional derivative is the support function of the Clarke subdifferential,
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that is,

g◦(x, d) = max
ξ∈∂◦g(x)

⟨ξ, d⟩.

When g is convex, that is,

g((1− α)x+ αy) ≤ (1− α)g(x) + αg(y) for each x, y ∈ Rn and α ∈ (0, 1),

then g is locally Lipschitz, g◦(x, ·) = g′(x, ·) and ∂◦g(x) = ∂g(x) for each x ∈ Rn,
where

g′(x, d) = lim
t↓0

g(x+ td)− g(x)

t
,

∂g(x) = {ξ ∈ Rn | ⟨ξ, d⟩ ≤ g′(x, d), ∀d ∈ Rn}.
In general, a locally Lipschitz function g is said to be regular at x if g is directionally
differentiable at x in the all directions d and g◦(x, ·) = g′(x, ·), see [1].

Let C be a set in Rn. We denote the closure, the interior, the conical hull and the
convex hull of C by clC, intC, coneC and coC, respectively. The negative polar
cone of C, denoted by C−, is defined by

C− = {y ∈ Rn | ⟨y, x⟩ ≤ 0, ∀x ∈ C}.

It is well-known that C− is a closed convex cone, and

C−− = (C−)− = cl cone coC.

For any x ∈ C, the tangent cone of C at x, denoted by TC(x), is defined by

TC(x) = {y ∈ Rn | ∃{(xk, αk)} ⊆ C × R+ s.t. xk → x, αk(xk − x) → y},

where R+ = [0,+∞). The set TC(x̄) is a closed cone. The normal cone of C at x,
denoted by NC(x), is defined by NC(x) = (TC(x))

−. When C is a convex set, it is
well-known that

TC(x) = cl cone (C − x) = NC(x)
−, and

NC(x) = (C − x)− = {ξ ∈ Rn | ⟨ξ, y − x⟩ ≤ 0, ∀y ∈ C}.
Next the following result is used in one of our results.

Theorem 2.1. ([9]) Let f be a real-valued convex function on Rn. If there exists
x0 ∈ Rn such that f(x0) < 0, then we have {x ∈ Rn | f(x) < 0} = int {x ∈ Rn |
f(x) ≤ 0}.

Proof. The proof is shown by using Theorem 11 and Remark 1 in [9]. □

The following theorem is shown by Dutta and Lalitha in [2].

Theorem 2.2. ([2]) Let gi : Rn → R, i ∈ I = {1, . . . ,m}, be locally Lipschitz
functions, and let x̄ ∈ S = {x ∈ Rn | gi(x) ≤ 0, ∀i ∈ I}. Assume that S is a convex
set, all gi are regular at x̄, the Slater condition holds, that is, there exists x0 ∈ Rn

such that gi(x0) < 0 for each i ∈ I, and 0 /∈ ∂◦gi(x̄) for each i ∈ I(x̄). Then for
each real-valued convex function f on Rn, the following statements are equivalent:

(i) for each x ∈ S, f(x̄) ≤ f(x),
(ii) there exists λ ∈ RI

+ such that 0 ∈ ∂f(x̄)+
∑

i∈I λi∂
◦gi(x̄) and for each i ∈ I,

λigi(x̄) = 0.
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Condition (ii) of this theorem is called the KKT optimality condition. In the
convex case, the basic constraint qualification (BCQ) and the Slater condition are
famous constraint qualifications which are conditions for the KKT optimality condi-
tion to be fulfilled by any convex objective function f having x̄ as a local minimum
on the convex feasible set S, and the BCQ is a necessary and sufficient condition for
the KKT optimality condition. In the differentiable case, it is well-known that the
Guignard’s constraint qualification, the Abadie’s constraint qualification, the Cot-
tle’s constraint qualification and the linearly independent constraint qualification
are conditions for the KKT optimality condition to be fulfilled by any differentiable
objective function f having x̄ as a local minimum on the feasible set S, and the
Guignard’s constraint qualification is a necessary and sufficient condition for the
KKT optimality condition. In this paper, we present several constraint qualifica-
tions which are conditions for the KKT optimality condition to be fulfilled by any
convex objective function f having x̄ as a local minimum on the convex feasible set
S, and discuss these constraint qualifications.

3. Constraint qualifications for KKT optimality condition in convex
optimization under locally Lipschitz inequality constraints

In this paper, we consider the following convex optimization problem:

(P )

{
min f(x)
s.t. x ∈ S,

where f is a real-valued convex function on Rn and S is a convex set. Throughout
this paper we assume that the feasible set S is given as

S = {x ∈ Rn | gi(x) ≤ 0, i ∈ I},

where gi, i ∈ I = {1, . . . ,m}, are real-valued locally Lipschitz functions on Rn and
gi is regular at every x ∈ S and every i ∈ I(x), where I(x) = {i ∈ I | gi(x) = 0}.

In this study, we discuss the following conditions:

(A) NS(x̄) = cone co
∪

i∈I(x̄) ∂
◦gi(x̄),

(B) TS(x̄) =
∩

i∈I(x̄)(∂
◦gi(x̄)

−) and cone co
∪

i∈I(x̄) ∂
◦gi(x̄) is closed,

(C) there exists y0 ∈ Rn such that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈ ∂◦gi(x̄),
(D) the Slater condition holds, that is, there exists x0 ∈ Rn such that gi(x0) < 0

for each i ∈ I, and 0 /∈ ∂◦gi(x̄), for each i ∈ I(x̄),
(E) 0 /∈ co

∪
i∈I(x̄) ∂

◦gi(x̄),

(F) intS ̸= ∅ and 0 /∈ ∂◦gi(x̄), i ∈ I(x̄),
(G) for each yi ∈ ∂◦gi(x̄), i ∈ I(x̄), {yi}i∈I(x̄) is linearly independent.

At first, we provide the following lemma, which is important to show our results:

Lemma 3.1. Let x̄ ∈ S. Then for each i ∈ I(x̄), ξi ∈ ∂◦gi(x̄) and x ∈ S,

⟨ξi, x− x̄⟩ ≤ 0.

That is, ∂◦gi(x̄) ⊆ NS(x̄) for each i ∈ I(x̄).

Proof. For each i ∈ I(x̄), ξi ∈ ∂◦gi(x̄) and x ∈ S,

⟨ξi, x− x̄⟩ ≤ g◦i (x̄, x− x̄).
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From the regularity of gi at x̄,

⟨ξi, x− x̄⟩ ≤ g′i(x̄, x− x̄) = lim
t↓0

gi(x̄+ t(x− x̄))− gi(x̄)

t
.

Since x̄+ t(x− x̄) ∈ S for each t ∈ (0, 1) and i ∈ I(x̄), we have g′i(x̄, x− x̄) ≤ 0, so
⟨ξi, x− x̄⟩ ≤ 0. □

Now we show a result that conditions (A) and (B) are necessary and sufficient
constraint qualifications for the optimality conditions in convex optimization prob-
lem (P).

Theorem 3.2. Let x̄ ∈ S. Then the following statements are equivalent:

(A) NS(x̄) = cone co
∪

i∈I(x̄) ∂
◦gi(x̄),

(B) TS(x̄) =
∩

i∈I(x̄) (∂
◦gi(x̄)

−) and cone co
∪

i∈I(x̄) ∂
◦gi(x̄) is closed,

(O) for each real-valued convex function f on Rn, the following statements are
equivalent:
(i) f(x) ≥ f(x̄) for each x ∈ S,
(ii) there exists λ ∈ RI

+ such that 0 ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄) and for each

i ∈ I, λigi(x̄) = 0.

Proof. First, we prove (A)⇔(B). It is clear that (A) holds if and only if
NS(x̄) = cone co

∪
i∈I(x̄) ∂

◦gi(x̄) and cone co
∪

i∈I(x̄) ∂
◦gi(x̄) is closed. From con-

vexity of S, we have NS(x̄)
− = TS(x̄). Therefore, it is enough to show that

(
∩

i∈I(x̄)(∂
◦gi(x̄)

−))− = cone co
∪

i∈I(x̄) ∂
◦gi(x̄). This equality is given by the fol-

lowing property: ∩
i∈I

(A−
i ) = (

∪
i∈I

Ai)
− for any Ai ⊆ Rn(i ∈ I).

Next, we prove (A)⇒(O). Let f be a real-valued convex function on Rn. The proof
that (ii) implies (i) is easy and omitted. Conversely, assume (i). For each x ∈ S,
since x̄+ α(x− x̄) ∈ S for each α ∈ (0, 1),

f(x̄) ≤ f(x̄+ α(x− x̄)),

that is,

0 ≤ f ′(x̄, x− x̄) = max
ξ∈∂f(x̄)

⟨ξ, x− x̄⟩.

Therefore 0 ≤ infx∈S maxξ∈∂f(x̄) ⟨ξ, x− x̄⟩. According to Sion’s minimax theorem
(see e.g. [8, 5]), we can invert the infimum and the maximum, and we get 0 ≤
maxξ∈∂f(x̄) infx∈S ⟨ξ, x− x̄⟩. Then there exists η ∈ ∂f(x̄) such that

⟨−η, x− x̄⟩ ≤ 0 for each x ∈ S.

Thus, −η ∈ NS(x̄). From (A), −η ∈ cone co
∪

i∈I(x̄) ∂
◦gi(x̄). Then there exist

µi ≥ 0 and ξi ∈ ∂◦gi(x̄), i ∈ I(x̄), such that −η =
∑

i∈I(x̄) µiξi. Put

λi =

{
µi if i ∈ I(x̄),
0 if i ∈ I \ I(x̄),



106 S. YAMAMOTO AND D. KUROIWA

for each i ∈ I. Then it is clear that λigi(x̄) = 0 for each i ∈ I. Moreover,

−η =
∑

i∈I(x̄)

λiξi =
∑
i∈I

λiξi ∈
∑
i∈I

λi∂
◦gi(x̄).

Hence, 0 = η + (−η) ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄). Finally, we prove (O)⇒(A),

cone co
∪

i∈I(x̄) ∂
◦gi(x̄) ⊆ NS(x̄) is shown by using Lemma 3.1. Conversely, let

η ∈ NS(x̄). Then
⟨−η, x̄⟩ ≤ ⟨−η, x⟩ for each x ∈ S.

Put f = ⟨−η, ·⟩, then f is a convex function, and (i) of (O) holds. So, (ii) of (O)
holds. Hence, there exists λ ∈ RI

+ such that{
0 ∈ ∂f(x̄) +

∑
i∈I λi∂

◦gi(x̄),
λigi(x̄) = 0 for each i ∈ I.

From ∂f(x̄) = {−η} and 0 ∈ ∂f(x̄) +
∑

i∈I ∂
◦gi(x̄), η ∈

∑
i∈I λi∂

◦gi(x̄). Since
λigi(x̄) = 0 for each i ∈ I, we have∑

i∈I
λi∂

◦gi(x̄) =
∑

i∈I(x̄)

λi∂
◦gi(x̄) ⊆ cone co

∪
i∈I(x̄)

∂◦gi(x̄).

Thus, η ∈ cone co
∪

i∈I(x̄) ∂
◦gi(x̄). This completes the proof. □

Remark 3.3. (1) We remark that Theorem 3.2 holds even if the index set I is
infinite. In this case, (ii) of (O) is as follows: there exist a finite subset J ⊆ I(x̄)
and λ ∈ RJ

+ such that 0 ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄) and for each i ∈ I, λigi(x̄) = 0.

(2) When all gi are convex, then condition (A),

NS(x̄) = cone co
∪

i∈I(x̄)

∂gi(x̄),

is called basic constraint qualification (BCQ).
(3) When all gi are continuously differentiable at x̄ and S is not necessarily

convex, then condition (A),

NS(x̄) = cone co
∪

i∈I(x̄)

{∇gi(x̄)},

which is equivalent to

cl coTS(x̄) = {x ∈ Rn | ⟨∇gi(x̄), x⟩ ≤ 0, ∀i ∈ I(x̄)},
is called Guignard’s constraint qualification, and condition (B),

TS(x̄) = {x ∈ Rn | ⟨∇gi(x̄), x⟩ ≤ 0, ∀i ∈ I(x̄)},
is called Abadie’s constraint qualification, see [10]. In this case, both Guignard’s
and Abadie’s constraint qualifications are necessary and sufficient constraint quali-
fications for optimality condition of (P).

Next we show a result that condition (C) is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). When all gi are
continuously differentiable at x̄, condition (C), that is,

there exists y0 ∈ Rn such that ⟨∇gi(x̄), y0⟩ < 0 for each i ∈ I(x̄),
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is called Cottle’s constraint qualification, see [10]. To show the result, we give the
following lemma:

Lemma 3.4. Let Λ be an index set, and let Aλ ⊆ Rn, λ ∈ Λ, be non-empty convex
sets. If

∩
λ∈Λ intAλ ̸= ∅, then cl

∩
λ∈Λ intAλ =

∩
λ∈Λ clAλ.

Proof. The equality cl
∩

λ∈ΛAλ =
∩

λ∈Λ clAλ is shown straightforwardly and omit-
ted. Since cl intAλ = clAλ for each λ ∈ Λ, the equality of this lemma holds. □
Theorem 3.5. Let x̄ ∈ S. Then (C) implies (B).

Proof. Assume (C). There exists y0 ∈ Rn such that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄)
and ξi ∈ ∂◦gi(x̄). That is, for each i ∈ I(x̄),

g◦i (x̄, y0) = max
ξ∈∂◦gi(x̄)

⟨ξi, y0⟩ < 0.

Since g◦i (x̄, ·) is a real-valued convex function on Rn and g◦i (x̄, y0) < 0, by using
Theorem 2.1,

int {y ∈ Rn | g◦i (x̄, y) ≤ 0} = {y ∈ Rn | g◦i (x̄, y) < 0}.
Also, it is clear that ∂◦gi(x̄)

− = {y ∈ Rn | g◦i (x̄, y) ≤ 0}. Thus,

(3.1) int ∂◦gi(x̄)
− = {y ∈ Rn | g◦i (x̄, y) < 0} ∋ y0.

Consequently, we have
∩

i∈I(x̄) int (∂
◦gi(x̄)

−) ̸= ∅. By using Lemma 3.4, we have

(3.2) cl
∩

i∈I(x̄)

int (∂◦gi(x̄)
−) =

∩
i∈I(x̄)

cl (∂◦gi(x̄)
−) =

∩
i∈I(x̄)

(∂◦gi(x̄)
−).

Next, we show

(3.3)
∩

i∈I(x̄)

int (∂◦gi(x̄)
−) ⊆ TS(x̄).

Let y ∈
∩

i∈I(x̄) int (∂
◦gi(x̄)

−). For each i ∈ I(x̄), from (3.1) and the regularity of

gi at x̄, we have g′i(x̄, y) < 0. Then, there exists ti > 0 such that gi(x̄ + ty) < 0
for each t ∈ (0, ti]. Moreover, for each i ∈ I \ I(x̄), from the continuity of gi and
gi(x̄) < 0, there exists ti > 0 such that gi(x̄ + ty) < 0 for each t ∈ (0, ti]. Put
t0 = min{ti | i ∈ I}, for each t ∈ (0, t0)

(3.4) for each i ∈ I, gi(x̄+ ty) < 0.

Then x̄+ ty ∈ S for each t ∈ (0, t0]. For each k ∈ N, put xk = x̄+ t0
k y and αk = k

t0
.

Then {αk(xk − x̄)} ⊆ cone (S − x̄) and αk(xk − x̄) → y, that is, y ∈ TS(x̄). Thus
(3.3) holds. By using (3.2) and (3.3), we have∩

i∈I(x̄)

(∂◦gi(x̄)
−) ⊆ TS(x̄).

The converse inclusion TS(x̄) ⊆
∩

i∈I(x̄)(∂
◦gi(x̄)

−) holds from Lemma 3.1.

Finally, we prove that cone co
∪

i∈I(x̄) ∂
◦gi(x̄) is closed, that is,

cl cone co
∪

i∈I(x̄)

∂◦gi(x̄) ⊆ cone co
∪

i∈I(x̄)

∂◦gi(x̄).
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We may assume that I(x̄) ̸= ∅. Let y ∈ cl cone co
∪

i∈I(x̄) ∂
◦gi(x̄). There exists

{yk} ⊆ cone co
∪

i∈I(x̄) ∂
◦gi(x̄) such that yk → y. For each k ∈ N , there exist

λk = (λk
i )i∈I(x̄) ∈ RI(x̄)

+ and xk = (xki )i∈I(x̄) ∈
∏

i∈I(x̄) ∂
◦gi(x̄) such that yk =∑

i∈I(x̄) λ
k
i x

k
i . From (C), there exists y0 ∈ Rn such that g◦i (x̄, y0) < 0 for each

i ∈ I(x̄). Put r = maxi∈I(x̄) g
◦
i (x̄, y0). For each i ∈ I(x̄),

⟨
xki , y0

⟩
≤ r < 0. Thus,

⟨yk, y0⟩ ≤ r
∑

i∈I(x̄) λ
k
i . Since ⟨yk, y0⟩ → ⟨y, y0⟩,

⟨y, y0⟩ − 1 < ⟨yk, y0⟩ ≤ r
∑

i∈I(x̄)

λk
i

hold for sufficiently large k, that is,

∥λk∥ ≤
∑

i∈I(x̄)

λk
i ≤ ⟨y, y0⟩ − 1

r
(=: K).

Therefore, {(λk, xk)} ⊆ clB(0,K) ×
∏

i∈I(x̄) ∂
◦gi(x̄). From the compactness of

clB(0,K) ×
∏

i∈I(x̄) ∂
◦gi(x̄), there exist (λ, x) = (λi, xi)i∈I(x̄) ∈ clB(0,K)×∏

i∈I(x̄) ∂
◦gi(x̄) and a subsequence {(λkj , xkj )} of {(λk, xk)} such that (λkj , xkj ) →

(λ, x). Moreover, we have λi ≥ 0, xi ∈ ∂◦gi(x̄), i ∈ I(x̄), and y =
∑

i∈I(x̄) λixi.

Thus, y ∈ cone co
∪

i∈I(x̄) ∂
◦gi(x̄). This completes the proof. □

Remark 3.6. (1) The converse of Theorem 3.5 is not true in general, see Exam-
ple 3.7.

(2) From (3.4), (C) implies the Slater condition. However, the converse is not
true in general, see Example 3.8.

(3) In Example 3.8, the Slater condition does not imply (A). Therefore, the Slater
condition is not a constraint qualification for the optimality conditions in convex
optimization problem (P).

Example 3.7. Let g : R → R be a function defined by

g(x) = |x|.
Then S = {0}, TS(0) = {0} and ∂◦g(0) = [−1, 1]. So that, ∂◦g(0)− = {0} and
∂◦g(0) is closed. Thus (B) holds. On the other hand, for each y ∈ R, y

|y|+1 ∈ ∂◦g(0)

and y
|y|+1y ≥ 0, and then (C) does not hold.

Example 3.8. Let g : R2 → R be a function defined by

g(x1, x2) =


x1 + x2 if x1 ≥ 0, x2 ≥ 0,
∥(x1, x2)∥+ x2 if x1 ≥ 0, x2 < 0,
∥(x1, x2)∥+ x1 if x1 < 0, x2 ≥ 0,
−x1x2 if x1 < 0, x2 < 0.

Then S = −R2
+, S is convex, g is regular at (0, 0) and the Slater condition holds.

On the other hand, NS(0, 0) = R2
+ and cone ∂◦g(0, 0) = {(0, 0)} ∪ intR2

+. Hence,
(A) does not hold. Thus (C) does not hold.

Next we consider the relationship of (C), (D), (E) and (F). From Theorem 2.2,
condition (D), given by Dutta and Lalitha, is a sufficient constraint qualification for
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the optimality conditions in convex optimization problem (P). Conditions (E) and
(F) are motivated by (C) and (D), respectively.

We show the relationship of (C), (D), (E) and (F) as follows:

Theorem 3.9. Let x̄ ∈ S. Then (C), (D), (E) and (F) are equivalent.

Proof. First, we prove (C) implies (D). Assume (C). There exists y0 ∈ Rn such that
⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈ ∂◦gi(x̄). It is clear that 0 /∈ ∂◦gi(x̄) for each
i ∈ I(x̄). In addition, the Slater condition holds from (2) of Remark 3.6. Thus (D)
holds.

Next, we prove (D) implies (F). Assume (D). Then 0 /∈ ∂◦gi(x̄) for each i ∈ I(x̄),
and it is easy to show that intS is non-empty from the Slater condition and the
continuity of all gi. Thus (F) holds.

Next, we prove (F) implies (E). Assume that (E) dos not hold. Then, there exist
λi ∈ R+ and ξi ∈ ∂◦gi(x̄), i ∈ I(x̄), such that{ ∑

i∈I(x̄) λi = 1,∑
i∈I(x̄) λiξi = 0.

From (F), we have ξi ̸= 0 for each i ∈ I(x̄). Also from (F), there exists x0 ∈ Rn and
r > 0 such that B(x0, r) ⊆ S. For each i ∈ I(x̄), since x0 +

r
2∥ξi∥ξi ∈ B(x0, r) ⊆ S,

then for each i ∈ I(x̄), ∂◦gi(x̄) ⊆ NS(x̄) from Lemma 3.1, that is, ξi ∈ NS(x̄). So
for each i ∈ I(x̄),

⟨ξi, x0 − x̄⟩+ r

2
∥ξi∥ =

⟨
ξi, x0 +

r
2∥ξi∥ξi − x̄

⟩
≤ 0.

Therefore,

r

2

∑
i∈I(x̄)

λi∥ξi∥ =
⟨∑

i∈I(x̄) λiξi, x0 − x̄
⟩
+

r

2

∑
i∈I(x̄)

λi∥ξi∥ ≤ 0.

From
∑

i∈I(x̄) λi = 1 and ξi ̸= 0 for each i ∈ I(x̄),

0 <
r

2

∑
i∈I(x̄)

λi∥ξi∥.

This is a contradiction.
Finally, we prove (E) implies (C). Assume (E). Since co

∪
i∈I(x̄) ∂

◦gi(x̄) is non-

empty, convex and closed and 0 /∈ co
∪

i∈I(x̄) ∂
◦gi(x̄) from (E), the point 0 can be

strongly separated from co
∪

i∈I(x̄) ∂
◦gi(x̄), that is there exists y0 ∈ Rn such that

⟨ξ, y0⟩ < 0 for each ξ ∈ co
∪

i∈I(x̄) ∂
◦gi(x̄). Thus, ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and

ξi ∈ ∂◦gi(x̄). Therefore (C) holds. This completes the proof. □

Finally, we consider the relationship of (E) and (G). When all gi are continuously
differentiable at x̄, condition (G), that is

{∇gi(x̄)}i∈I(x̄) is linearly independent,

is called the linearly independent constraint qualification, see [3, 10].

Theorem 3.10. Let x̄ ∈ S. Then (G) implies (E).
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Proof. Assume that (E) does not hold. Then, there exist λi ∈ R+ and xi ∈ ∂◦gi(x̄),
i ∈ I(x̄), such that { ∑

i∈I(x̄) λi = 1,∑
i∈I(x̄) λixi = 0.

Thus (G) does not hold. □
The converse of Theorem 3.10 is not true in general. See the following example:

Example 3.11. Let g1, g2 : R → R be functions as follows:

g1(x) = (x− 1)(x+ 1), g2(x) =
1

2
(x− 1)(x+ 1).

Then S = [−1, 1], intS ̸= ∅, I(1) = {1, 2}, ∂◦g1(1) = {2} and ∂◦g2(1) = {1}. Thus
(F) holds. On the other hand, it is clear that {2, 1} is not linearly independent.
Hence (G) does not hold.

4. Conclusion

In this paper, we have presented constraint qualifications for KKT optimality con-
dition in a convex optimization problem under locally Lipschitz constraints which
was discuss by Dutta and Lalitha in [2], and compared our results to previous ones.
First, we introduced two necessary and sufficient constraint qualifications for KKT
optimality condition. Moreover we proposed constraint qualifications, and discussed
the relationship of these constraint qualifications. On the other hand, it was shown
that the Slater condition was not a constraint qualification in this optimization.
The following figure shows the relationship of the constraint qualifications, which
were introduced in this paper, for optimality conditions:
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