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CONSTRAINT QUALIFICATIONS FOR KKT OPTIMALITY
CONDITION IN CONVEX OPTIMIZATION WITH LOCALLY
LIPSCHITZ INEQUALITY CONSTRAINTS

SHUNSUKE YAMAMOTO AND DAISHI KUROIWA

ABSTRACT. We study constraint qualifications for the Karush-Kuhn-Tucker
(KKT) optimality condition in a convex optimization problem whose constraint
functions are locally Lipschitz but not necessarily convex, which was observed by
Dutta and Lalitha in 2013. We give several constraint qualifications for the KKT
optimality condition, which are modifications of well-known constraint qualifi-
cations of convex or nonlinear optimization, the Basic constraint qualification
(BCQ), Guignard’s constraint qualification, Abadie’s constraint qualification,
Cottle’s constraint qualification and the linearly independent constraint qualifi-
cation. We discuss all relations among these constraint qualifications, especially,
we show that two of them are necessary and sufficient constraint qualifications for
the KKT optimality condition. In addition, we remark that the Slater condition
is not a constraint qualification for the optimality in this convex optimization
problem.

1. INTRODUCTION

In this paper, we consider the following convex optimization problem:

{1

st. xelbs,

where f : R" — R is a convex function and S C R" is a non-empty convex set.
Throughout this paper we assume that the feasible set S is given as

S={xeR"|gi(x)<0,iel},

where g; : R" - R, i € I = {1,...,m}, are locally Lipschitz functions, and assume
that for all z € S and i € I(z) = {i € I | gi(z) = 0}, g; are regular at x. Constraint
functions g; are usually assumed convex in the usual convex optimization, however,
g; are locally Lipschitz but not necessarily convex or differentiable in this paper.
In general, constraint qualifications are essential to solve optimization problems,
because these assures the existence of Karush-Kuhn-Tucker multipliers (KKT op-
timality condition) when an element is a solution of an optimization problem. In
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2008, it was shown that the basic constraint qualification (BCQ), which was in-
troduced in [4], is a necessary and sufficient constraint qualification for the KKT
optimality condition in a convex optimization problem, whose constraint set S is
described by the above and every constraint functions are convex, by Li, Ng and
Pong, see [7].

Recently, the KKT optimality conditions for a convex optimization problem,
whose constraint set S is described by the above but every constraint functions are
not necessarily convex, was studied. In 2010, a convex optimization problem, whose
objective function is differentiable convex and constraint functions are differentiable
but not necessarily convex, was discussed and a constraint qualification for the op-
timality condition was given by Lasserre, see [6]. In 2013, a convex optimization
problem, whose objective function is convex not necessarily differentiable and con-
straint functions are locally Lipschitz but not necessarily convex or differentiable,
was discussed, and a constraint qualification for the optimality condition was given
by Dutta and Lalitha, see [2].

In this paper, we investigate several constraint qualifications, which are modifi-
cations of well-known constraint qualifications, for the KKT optimality in condition
the convex optimization problem (P), which was discussed by Dutta and Lalitha
in [2], and compare our results and previous ones. The paper is organized as fol-
lows. In Section 2, we describe our notation and present preliminary results. In
Section 3, we propose several constraint qualifications for the KKT optimality con-
dition, which are modifications of well-known constraint qualifications of convex or
nonlinear optimization, the BCQ, Guignard’s constraint qualification, Abadie’s con-
straint qualification, Cottle’s constraint qualification and the linearly independent
constraint qualification, see [7, 10]. Also, we discuss the relations among all con-
straint qualifications which are introduced by the authors, and Dutta and Lalitha.
In addition, we remark that the Slater condition is not a constraint qualification for
the KKT optimality condition in the convex optimization problem (P). Finally, we
summarize our results in Section 4.

2. PRELIMINARIES

In this section, we describe our notation and present preliminary results. A
function g : R® — R is said to be locally Lipschitz if for each x € R", there exist
M >0 and r > 0 such that [g(y) — g(2)| < M||y — z|| for each y, z € B(x,r) where
B(z,r) = {y € R" | |ly — z|| < r}. For a locally Lipschitz function g : R — R,
the Clarke directional derivative of g at x € R™ in direction d € R", denoted by
9°(z,d), is given by

td) —
¢ (2, d) = limsup 9(y +td) — g(y)

y—x t
10

For each z € R™, the function ¢°(z,-) is a positively homogeneous convex function.
The Clarke subdifferential of g at x, denoted by 9°g(x), is defined by

0°%g(x) ={£ e R" | (£,d) < ¢°(x,d),Vd € R"}.

The set 0°g(z) is a non-empty, convex and compact subset of R™. Moreover the
Clarke directional derivative is the support function of the Clarke subdifferential,
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that is,

°(z,d) = max (&, d).
) = max (6.)

When g is convex, that is,
g(1 —a)r+ay) < (1 —a)g(x)+ ag(y) for each z,y € R™ and o € (0,1),

then g is locally Lipschitz, ¢°(z,-) = ¢/(x,-) and 9°g(x) = dg(x) for each z € R™,
where
td) —
t10 t
9g(z) = {£ €R" [ (£,d) < ¢'(2,d),Vd € R"}.

In general, a locally Lipschitz function g is said to be regular at x if g is directionally
differentiable at = in the all directions d and ¢°(z,-) = ¢'(z, -), see [1].

Let C be a set in R"™. We denote the closure, the interior, the conical hull and the

convex hull of C by clC, int C, cone C and co C, respectively. The negative polar
cone of C', denoted by C~, is defined by

C™={yeR"| (y,x) <0,Vz € C}.
It is well-known that C'~ is a closed convex cone, and
C~ ™ =(C7)” =clconecoC.
For any x € C, the tangent cone of C' at x, denoted by T¢(x), is defined by

To(z) ={y e R" | H{(z, o)} C C xRy s.t. xp — z,ap(zr — ) — y},

where Ry = [0, 4+00). The set T(Z) is a closed cone. The normal cone of C' at z,
denoted by N¢(x), is defined by N¢(z) = (To(z))”. When C is a convex set, it is
well-known that

Tc(x) = clecone (C' — x) = Neo(x)™, and
Ne(z)=(C—2)” ={£eR" | (&y—x) <0,Vy e C}.
Next the following result is used in one of our results.

Theorem 2.1. (]9]) Let f be a real-valued convex function on R™. If there exists
xo € R™ such that f(z9) < 0, then we have {z € R" | f(z) < 0} = int{z € R" |
f(z) <0}

Proof. The proof is shown by using Theorem 11 and Remark 1 in [9]. U
The following theorem is shown by Dutta and Lalitha in [2].

Theorem 2.2. ([2]) Let g; : R" — R, i € I = {1,...,m}, be locally Lipschitz
functions, and let T € S = {x € R" | g;(x) < 0,Vi € I}. Assume that S is a convex
set, all g; are reqular at T, the Slater condition holds, that is, there exists xg € R"
such that g;(xo) < 0 for each i € I, and 0 ¢ 0°g;(Z) for each i € I(Z). Then for
each real-valued convex function f on R™, the following statements are equivalent:
(i) for each x € S, f(z) < f(x),
(ii) there exists \ € Rﬁ_ such that 0 € 8f(j)+2iel Xi0°gi(Z) and for each i € I,
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Condition (ii) of this theorem is called the KKT optimality condition. In the
convex case, the basic constraint qualification (BCQ) and the Slater condition are
famous constraint qualifications which are conditions for the KKT optimality condi-
tion to be fulfilled by any convex objective function f having = as a local minimum
on the convex feasible set S, and the BCQ is a necessary and sufficient condition for
the KKT optimality condition. In the differentiable case, it is well-known that the
Guignard’s constraint qualification, the Abadie’s constraint qualification, the Cot-
tle’s constraint qualification and the linearly independent constraint qualification
are conditions for the KK'T optimality condition to be fulfilled by any differentiable
objective function f having Z as a local minimum on the feasible set S, and the
Guignard’s constraint qualification is a necessary and sufficient condition for the
KKT optimality condition. In this paper, we present several constraint qualifica-
tions which are conditions for the KKT optimality condition to be fulfilled by any
convex objective function f having = as a local minimum on the convex feasible set
S, and discuss these constraint qualifications.

3. CONSTRAINT QUALIFICATIONS FOR KKT OPTIMALITY CONDITION IN CONVEX
OPTIMIZATION UNDER LOCALLY LIPSCHITZ INEQUALITY CONSTRAINTS

In this paper, we consider the following convex optimization problem:

min f(x)
(P){ s.t. z €8,
where f is a real-valued convex function on R and S is a convex set. Throughout
this paper we assume that the feasible set S is given as

S={zxeR"|gi(x) <0,iel},
where g;, i € I = {1,...,m}, are real-valued locally Lipschitz functions on R" and
gi is regular at every x € S and every i € I(z), where I(z) = {i € I | g;(x) = 0}.
In this study, we discuss the following conditions:
) Ns(2) = coneco Uz 0°9i(Z),
) Ts(Z) = Niern)(0°9:(Z) ™) and coneco U,e (s )Oogi(_) is closed,
) there exists yo € R" such that (&;,yo) < 0foreachi € I(Z) and §; € 0°¢;(T),
) the Slater condition holds, that is, there exists o € R™ such that g;(z¢) <
for each ¢ € I, and 0 ¢ 8°gl( ), for each i € I(z),
(E) 0¢co Uie[(a‘:) 9°9i(@),
(F) int S # 0 and 0 ¢ 0°¢g;(z), i € I(T),
(G) for each y; € 90°¢;(%), i € I(Z), {yi}icr(z) is linearly independent.

(A
(B
(C
(D

At first, we provide the following lemma, which is important to show our results:
Lemma 3.1. Let £ € S. Then for each i € 1(Z), & € 0°g;(T) and x € S,
(& —7) <0.
That is, 0°9;(Z) C Ng(z) for each i € I(Z).
Proof. For each i € I(z), & € 0°gi(Z) and x € S,

<€iax _i‘> < gf(:)?",x _j)'
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From the regularity of g; at z,

(Z+tx—2)) — g (Z

(63— ) < gl(@0 - 7) — i BEF =T Z0il0)
£10 ¢

Since Z + t(x — ) € S for each t € (0,1) and i € I(Z), we have g.(Z,z —z) <0, so

Now we show a result that conditions (A) and (B) are necessary and sufficient
constraint qualifications for the optimality conditions in convex optimization prob-
lem (P).

Theorem 3.2. Let T € S. Then the following statements are equivalent:

(A) Ns(z) = coneco Usep(z) 0°9:(%),

B) Ts(Z) = Nicr) (0°9i(2)™) and coneco ez 0°9i(Z) is closed,

(O) for each real-valued convex function f on R™, the following statements are

equivalent:
(i) f(x) > f(z) for each x € S,
(ii) there exists A € R such that 0 € Of(Z) + Y ,c; 20°9i(Z) and for each
el Algz(f) =0.
Proof. First, we prove (A)<(B). It is clear that (A) holds if and only if
Ns(z) = coneco ez 0°9i(Z) and coneco ;¢ (z) 0°9i(Z) is closed. From con-
vexity of S, we have Ng(z)~ = Tg(z). Therefore, it is enough to show that
(Micrz)(0°9:(Z) 7))~ = coneco ez 0°9:(). This equality is given by the fol-
lowing property:
()(A4;7) = (A4~ for any 4; CR"(i € I).
iel iel
Next, we prove (A)=-(0). Let f be a real-valued convex function on R". The proof
that (ii) implies (i) is easy and omitted. Conversely, assume (i). For each x € S,
since T + a(x — ) € S for each a € (0,1),
£@) < J(a + ale — ),

that is,

0< f(z,2— %)= max (£, —T).
<@ -7)= max (€2 -7

Therefore 0 < infyesmaxecys(z) (€, — 7). According to Sion’s minimax theorem

(see e.g. [8, 5]), we can invert the infimum and the maximum, and we get 0 <
maXeeyf(z) infres (€, — 7). Then there exists n € 9f(z) such that

(—m,z — x) <0 for each z € S.

Thus, —n € Ng(@). From (A), —n € coneco J;cy(z) 0°9i(Z). Then there exist
i = 0 and & € 0°¢i(%), @ € I(Z), such that —n =3¢z pi&i- Put

=0 i iel\I(®),
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for each i € I. Then it is clear that \;g;(Z) = 0 for each i € I. Moreover,
=Y A& =D NG ED Nd°gi()
i€l(Z) i€l i€l
Hence, 0 = n + (—n) € 0f(Z) + > ;c; Mi0°gi(7). Finally, we prove (O)=(A),
coneco (J;epz) 0°9i(2) © Ns(Z) is shown by using Lemma 3.1. Conversely, let
n € Ng(z). Then
(—n,z) < (—n,x) for each x € S.
Put f = (—n,-), then f is a convex function, and (i) of (O) holds. So, (ii) of (O)
holds. Hence, there exists \ € Ri such that

Aigi(z) = 0 for each i € I.

From 0f(Z) = {-n} and 0 € 0f(Z) + > ;c;0°9:(Z), n € Y ;c; Ai0°gi(T). Since
Aigi(z) = 0 for each i € I, we have

Z/\ 0°9: (T Z Ai0°gi(Z) C coneco U 0°9i(x).
el 1€I(Z) 1€I(ZT)

Thus, 1 € coneco J;e (z) 0°9i(Z). This completes the proof. O

Remark 3.3. (1) We remark that Theorem 3.2 holds even if the index set I is
infinite. In this case, (ii) of (O) is as follows: there exist a finite subset J C I(Z)
and A € RY such that 0 € 9f(Z) + Y,c; }0°¢i(Z) and for each i € I, X;g;(Z) = 0.
(2) When all g; are convex, then condition (A),
Ng(z) = coneco U 0gi(z),
i€1(x)
is called basic constraint qualification (BCQ).

(3) When all g; are continuously differentiable at & and S is not necessarily
convex, then condition (A),

Ns(z) = coneco | | {Vgi(z)},
1€1(z)
which is equivalent to
clcoTs(z) = {x € R" | (Vgi(z),z) <0,Vie I(z)},
is called Guignard’s constraint qualification, and condition (B),
Ts(z) = {x € R" | (Vgi(z),x) <0,Vie I(z)},

is called Abadie’s constraint qualification, see [10]. In this case, both Guignard’s
and Abadie’s constraint qualifications are necessary and sufficient constraint quali-
fications for optimality condition of (P).

Next we show a result that condition (C) is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). When all g; are
continuously differentiable at Z, condition (C), that is,

there exists yg € R"™ such that (Vg;(Z),y0) < 0 for each i € I(x),
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is called Cottle’s constraint qualification, see [10]. To show the result, we give the
following lemma:

Lemma 3.4. Let A be an index set, and let Ay C R™, A € A, be non-empty convex
sets. If (yea int Ax # 0, then cl (ycp int Ay = Nyep cl 4.

Proof. The equality cl ((ycp Ax = [yen ¢l Ay is shown straightforwardly and omit-
ted. Since clint Ay = cl Ay for each A € A, the equality of this lemma holds. O

Theorem 3.5. Let z € S. Then (C) implies (B).
Proof. Assume (C). There exists yp € R™ such that (&, yo) < 0 for each i € I(Z)
and & € 0°¢;(z). That is, for each i € I(Z),

2(Z, = max (&, < 0.
g ( ?/0) £c0°g:(T) <£ y0>

Since ¢9(Z,-) is a real-valued convex function on R™ and g7 (Z,y0) < 0, by using
Theorem 2.1,

int {y € R" [ g7 (Z,y) <0} = {y € R" [ gj(z,y) < 0}.

Also, it is clear that 0°¢;(z)” = {y € R" | ¢7(Z,y) < 0}. Thus,
(3.1) int §°g;(7)” = {y € R" [ ¢;(2,y) < 0} 3 yo.
Consequently, we have (;¢/(z) int (0°g:(Z) ") # (). By using Lemma 3.4, we have
(3.2) () int(2°gi(x)7) = (] d@@u@ )= [) (0°g5@)).

iel(z) icl(z) iel(z)

Next, we show

(3.3) () int (8°9:(z)") C Ts(x).
iel(z)

Let y € Nic(z int (0°¢i(z)7). For each i € I(z), from (3.1) and the regularity of
gi at T, we have g/(Z,y) < 0. Then, there exists ¢; > 0 such that ¢;(Z + ty) < 0
for each t € (0,t;]. Moreover, for each i € I\ I(Z), from the continuity of g; and

9i(Z) < 0, there exists t; > 0 such that ¢;(z + ty) < 0 for each t € (0,¢;]. Put
to = min{t; | i € I}, for each t € (0,tp)

(3.4) for each i € I, g;(T + ty) < 0.

Then z +ty € S for each t € (0,ty]. For each k € N, put z, = Z + %y and oy = %.

Then {ax(zr — )} C cone (S — z) and ax(xy — T) — vy, that is, y € Ts(z). Thus
(3.3) holds. By using (3.2) and (3.3), we have
() (@°g:(@)7) C Ts(@).
iel(z)
The converse inclusion T's(Z) C (V;c/(z)(0°¢i(Z)~) holds from Lemma 3.1.
Finally, we prove that coneco | J,. 1(7) 0°gi(Z) is closed, that is,

cl cone co U 9°gi(Z) C cone co U 0°9i(x).
i€l (z) 1€1(Z)
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We may assume that I(z) # 0. Let y € clconeco U;g (s 0°9i(Z). There exists
{yr} € coneco U;cp(z) 9°9i(Z) such that y, — y. For each k € N, there exist
M= (M)ier@) € Ri@) and o = (a¥);c1z) € [Lici(z) 0°9i() such that y;, =
Yiel(@) Arxk. From (C), there exists yo € R” such that 97 (Z,y0) < 0 for each
i € I(Z). Put r = max;cr(z) 95 (Z,90). For each i € I(7), (xF,y0) < r < 0. Thus,
(Yrsy0) < 72 ier@y Af- Since (i, y0) = (¥, y0),

<3/,y0> -1< <yk7y0> <r Z )‘f
1€l ()

hold for sufficiently large k, that is,

V< Y0 < I g,
iel(z)
Therefore, {(\*¥,2¥)} C 1 B(0,K) x [Liciz) 0°9i(Z). From the compactness of
clB(0,K) x [licrz 0°9i(Z), there exist (A,2) = (Xi,Zi)icrzy € clB(0,K)x
[Tic1(z) 9°9i(%) and a subsequence {(NE3, 2%3)} of {(AF,2%)} such that (\F9, 2Fi) —
(A, @). Moreover, we have A; > 0, z; € 0°¢i(Z), i € I(Z), and y = > ¢y (z) Aici-
Thus, y € cone co Uiel(@ 0°gi(z). This completes the proof. O

Remark 3.6. (1) The converse of Theorem 3.5 is not true in general, see Exam-
ple 3.7.

(2) From (3.4), (C) implies the Slater condition. However, the converse is not
true in general, see Example 3.8.

(3) In Example 3.8, the Slater condition does not imply (A). Therefore, the Slater
condition is not a constraint qualification for the optimality conditions in convex
optimization problem (P).

Example 3.7. Let g : R — R be a function defined by

g(z) = |z|.
Then S = {0}, T5(0) = {0} and 0°¢g(0) = [-1,1]. So that, 9°¢(0 )_ = {0} and
0°¢g(0) is closed. Thus (B) holds. On the other hand for each y € R € 0°g(0)
and \+1y > 0, and then (C) does not hold.

’ Iy\+1
ly
Example 3.8. Let g : R? = R be a function defined by

1+ 2 if 21 >0,222>0,
|(x1,22)|| + 22 if x1 > 0,29 <0,
|(z1,22)|| + 21 if 21 <0,29 >0,
—X1T2 if 1 < 0, T < 0.

g(x1,72) =

Then S = —R%, S is convex, g is regular at (0,0) and the Slater condition holds.
On the other hand, Ng(0,0) = R% and cone§°g(0,0) = {(0,0)} Uint RZ. Hence,
(A) does not hold. Thus (C) does not hold.

Next we consider the relationship of (C), (D), (E) and (F). From Theorem 2.2,
condition (D), given by Dutta and Lalitha, is a sufficient constraint qualification for
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the optimality conditions in convex optimization problem (P). Conditions (E) and
(F) are motivated by (C) and (D), respectively.
We show the relationship of (C), (D), (E) and (F) as follows:

Theorem 3.9. Let & € S. Then (C), (D), (E) and (F) are equivalent.

Proof. First, we prove (C) implies (D). Assume (C). There exists yo € R™ such that
(&,y0) < 0 for each i € I(z) and &; € 0°g;(z). It is clear that 0 ¢ 0°¢;(Z) for each
i € I(z). In addition, the Slater condition holds from (2) of Remark 3.6. Thus (D)
holds.

Next, we prove (D) implies (F). Assume (D). Then 0 ¢ 0°¢;(z) for each i € I(z),
and it is easy to show that int S is non-empty from the Slater condition and the
continuity of all g;. Thus (F) holds.

Next, we prove (F) implies (E). Assume that (E) dos not hold. Then, there exist
Ai € Ry and & € 0°¢9;(2), i € I(Z), such that

{ Zzel(f) Ai =1,
Z’LEI ))\61_0

From (F), we have & # 0 for each i € I(Z). Also from (F), there exists xy € R™ and
r > 0 such that B(xg,7) C S. For each i € I(Z), since xg + m&- € B(zg,7) C S,
then for each ¢ € I(Z), 0°gi(z) C Ng(z) from Lemma 3.1, that is, § € Ng(Z). So

for each i € I(z),
=T _ e T ez
Therefore,
5 D Millal = (Cierw Méimo—7) + 3 Z Ml < o.
zG] (z) ZGI

From Zie[(i) Ai =1 and & # 0 for each i € I(Z),

0<3 Z Ail|&ll-

ZGI (z)

This is a contradiction.

Finally, we prove (E) implies (C). Assume (E). Since co ;¢ (z) 9°9i(Z) is non-
empty, convex and closed and 0 ¢ co ;¢ y(z) 9°9i(Z) from (E), the point 0 can be
strongly separated from co |J;¢ () 0°gi(Z), that is there exists yp € R™ such that
(€ 90) < 0 for each & € co Ujey(z) 9°9i(@). Thus, (&, y0) < 0 for each i € I(z) and
& € 0°g;(x). Therefore (C) holds. This completes the proof. O

Finally, we consider the relationship of (E) and (G). When all g; are continuously
differentiable at z, condition (G), that is

{V4i(Z)}icr(z) is linearly independent,
is called the linearly independent constraint qualification, see [3, 10].

Theorem 3.10. Let z € S. Then (G) implies (E).
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Proof. Assume that (E) does not hold. Then, there exist \; € Ry and z; € 0°¢;(%),

i € 1(Z), such that
{ Zie[(a‘c) Ai =1,
Zie[(i«) Aizi = 0.
Thus (G) does not hold. O

The converse of Theorem 3.10 is not true in general. See the following example:

Example 3.11. Let g1, 92 : R — R be functions as follows:

01(x) = (@~ Dz +1),92() = (&~ Dz +1).

Then S = [—1,1], int S # 0, I(1) = {1,2}, 9°g1(1) = {2} and 9°¢2(1) = {1}. Thus
(F) holds. On the other hand, it is clear that {2,1} is not linearly independent.
Hence (G) does not hold.

4. CONCLUSION

In this paper, we have presented constraint qualifications for KK'T optimality con-
dition in a convex optimization problem under locally Lipschitz constraints which
was discuss by Dutta and Lalitha in [2], and compared our results to previous ones.
First, we introduced two necessary and sufficient constraint qualifications for KKT
optimality condition. Moreover we proposed constraint qualifications, and discussed
the relationship of these constraint qualifications. On the other hand, it was shown
that the Slater condition was not a constraint qualification in this optimization.
The following figure shows the relationship of the constraint qualifications, which
were introduced in this paper, for optimality conditions:

(E) D) (A)

(S}

® © (B)

Slater /\<
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