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The iterative scheme (1.1) is Halpern algorithm [9] when αn ≡ 0 and it is Mann
algorithm [15] when βn ≡ 0; they are often used to approximate a fixed point of a
nonexpansive mapping. Hu [10] presented some convergence theorems of the iter-
ation (1.1) in Banach spaces which have a uniformly Gâteaux differentiable norm,
where {βn} satisfies (1.2) and {αn} satisfies 0 < a ≤ αn ≤ b < 1 or limn→∞ αn = 0.
It is worth emphasizing that Wang [21] found a counterexample to illustrate the
failure of the strong convergence of {xn} defined by (1.1) when limn→∞ αn = 1.
Cuntavepanit and Panyanak [6] extended Kim-Xu’s result to CAT(0) spaces (see
Section 2 for the definition). It is known that the fixed point set of a nonexpansive
mapping defined on a CAT(0) space is closed and convex.

An important class of CAT(0) spaces is given by Hadamard manifolds. A CAT(0)
space is not a manifold, in general; it can be a tree, for example. In [14] Li et al.
present analogs of Halpern and Mann algorithms for approximating fixed points of
nonexpansive mappings in Hadamard manifolds.

A mapping f : X → X is a contraction if there exists k ∈ [0, 1) such that

d(f(x), f(y)) ≤ kd(x, y), ∀x, y ∈ X;

it is a φ-weak contraction, due to Alber and Guerre-Delabriere [2], if

d(f(x), f(y)) ≤ d(x, y)− φ(d(x, y)), ∀x, y ∈ X,(1.3)

where φ : [0,∞) → [0,∞) is a continuous and nondecreasing function with φ(t) = 0
if and only if t = 0. It is seen that a φ-weak contraction is a k-contraction by
taking φ(t) = (1 − k)t in (1.3). The well-known Banach contraction principle [4]
guarantees the existence and uniqueness of fixed points of contractions on a complete
metric space. The validity of Banach contraction principle for weak contractions in
complete metric spaces was proved by Rhoades [17]. We state this result as follows.

Theorem 1.1 (Rhoades [17]). Let (X, d) be a complete metric space and f a weak
contraction on X. Then f has a unique fixed point.

Moudafi [16] introduced the following viscosity approximation with a contraction
f and generalized Halpern’s theorems in another direction: let x1 ∈ X and define
{xn} by

xn+1 = αnf(xn) + (1− αn)Txn, n ∈ N.
Recently, Huang [11] obtains some convergence theorems by Moudafi viscosity ap-
proximations with a weak contraction for a sequence of nonexpansive mappings in
a CAT(0) space.

The iterative schemes we consider here are modified Mann iterations of Halpern
type and Moudafi type, respectively, in a Hadamard manifold. The natural question
then arises: under what conditions on the control coefficients may the convergence
of the iterative methods of Halpern type be proved? In addition, it is of great
importance to know whether these convergence theorems can be extended to those
of Moudafi type without imposing other extra conditions on control coefficients.
It is customary to derive the results for the case of Moudafi type straightforward;
nevertheless, it is very difficult to prove. Accordingly, the plan is to pass from
Halpern type cases to Moudafi type cases with an effective approach. To accomplish
this, preliminary facts about complete Riemannian manifolds are needed. Section 2
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presents some basic concepts and fundamental theorems in Riemannian Geometry.
In Section 3, the approximation of Mann iteration of Halpern type with a weak
contraction on Hadamard manifolds is first discussed in two cases; see Theorems
3.1 and 3.2. Then we adapt the technique as shown in [11, Proposition 3.5] so that
it applies to the more general case; see Theorems 3.3 and 3.4.

2. Preliminaries

Let M be a differentiable manifold with finite dimension n, TxM the tangent
space of M at x (TxM is a linear space and has the same dimension of M) and
TM =

∪
x∈M TxM the tangent bundle of M . Because we restrict ourselves to real

manifolds, TxM is isomorphic to Rn. WhenM is endowed with a Riemannian metric
g and the corresponding norm denoted by ∥ · ∥, M is a Riemannian manifold. The
inner product of two vectors u, v ∈ TxM is written as ⟨u, v⟩x = gx(u, v), where gx is

the metric at a point x. The norm of a vector v ∈ TxM is set by ∥v∥x =
√

⟨v, v⟩x and
the angle ∠x(u, v) between u, v ∈ TxM (u, v ̸= 0) by cos∠x(u, v) = ⟨u, v⟩x/∥u∥∥v∥.
If there is no confusion, we denote ⟨·, ·⟩ = ⟨·, ·⟩x, ∥ ·∥ = ∥ ·∥x and ∠(u, v) = ∠x(u, v).
The metrics can be used to define the length of a piecewise smooth curve γ : [a, b] →
M joining γ(a) = x to γ(b) = y through

L(γ) =

∫ b

a
∥γ′(t)∥γ(t)dt.

Minimizing this length functional over the set of all such curves, we obtain a Rie-
mannian distance d(x, y) which induces the original topology on M ; see [7, Propo-
sition 2.6, p.146].

Let ∇ be a Levi-Civita connection associated to (M, ⟨·, ·⟩). This connection
defines a unique covariant derivative D/dt, where for each vector field V , along
a smooth curve γ : [a, b] → M , another vector field DV/dt is obtained, called the
covariant derivative of V along γ. A curve γ : [a, b] → M is called a geodesic if
Dγ′/dt = 0 and in this case ∥γ′∥ is constant. When ∥γ′∥ = 1, then γ is said to be
normalized. A geodesic joining x and y in M is said to be minimizing if its length is
equal to d(x, y). A Riemannian manifold is complete if its geodesics are defined for
any value of t ∈ R. Hopf-Rinow Theorem [7, Theorem 2.8, p.146] asserts that if M
is complete, then any pair of points in M can be joined by a minimal geodesic (the
exponential map is an essential tool for this understanding), and every bounded
closed subset of M is compact.

Let M be a complete Riemannian manifold and x ∈ M . The exponential map
expx : TxM → M is defined as expx v = γv(1, x), where γ(·) = γv(·, x) is the geodesic
starting at x with velocity v. Then, for any value of t, we have expx tv = γv(t, x).

The following well-known result, as an application of Hopf-Rinow Theorem, can
be found in [7, Theorem 3.1, p.149] and [18, Theorem 4.1, p.221].

Theorem 2.1. Let M be a Hadamard manifold. Then M is diffeomorphic to the
Euclidian space Rn, where n = dimM ; more precisely, at any point x ∈ M , the
exponential map mapping expx : TxM → M is a diffeomorphism. Moreover, for
any two points x, y ∈ M there exists a unique normalized geodesic joining x to y,
which is, in fact, a minimal geodesic.
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Proposition 2.2 ( [5, II.2.2] and [18]). If M is a Hadamard manifold, then the
distance function d : M ×M → R is convex with respect to the product Riemannian
metric, that is, for any pair of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M we
have

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)), ∀t ∈ [0, 1].

In particular, for each p ∈ M , the function d(·, p) : M → R is a convex function.

A geodesic triangle in a Riemannian manifold M is a set formed by three mini-
mizing normalized geodesics γi : [0, ℓi] → M (the sides) such that γi(ℓi) = γi+1(0),
indices taken modulo 3. The points pi = γi+2(0) are called the vertices of the tri-
angle and αi = ∠(−γ′i+1(ℓi+1), γ

′
i+2(0)) the corresponding angles. Let us denote by

△(p1, p2, p3) this geodesic triangle.
One of the most important characterizations of Hadamard manifolds is described

in the following proposition; see [7, Lemma 3.1, p.259] and [18, Proposition 4.5,
p.223].

Proposition 2.3. Let △(p1, p2, p3) be a geodesic triangle in a Hadamard manifold
and αi the corresponding angles at the vertices pi, i = 1, 2, 3. Then

(i) α1 + α2 + α3 ≤ π,
(ii) d(p1, p2)

2 + d(p1, p3)
2 − 2⟨exp−1

p1 p2, exp
−1
p1 p3⟩ ≤ d(p2, p3)

2.

The following relation between geodesic triangles in Riemannian manifolds and
triangles in R2 can be referred to [5, I.2.14].

Lemma 2.4. Let △(p1, p2, p3) be a geodesic triangle in a Hadamard manifold. Then
there exists a triangle △(p̄1, p̄2, p̄3) ⊂ R2 for △(p1, p2, p3) such that d(pi, pi+1) =
∥p̄i − p̄i+1∥, indices taken modulo 3; it is unique up to an isometry of R2.

The triangle △(p̄1, p̄2, p̄3) in Lemma 2.4 is said to be a comparison triangle for
△(p1, p2, p3). The geodesic side from x to y will be denoted [x, y]. A point x̄ ∈
[p̄1, p̄2] is called a comparison point for x ∈ [p1, p2] if ∥x̄ − p̄1∥ = d(x, p1). The
interior angle of △(p̄1, p̄2, p̄3) at p̄1 is called the comparison angle between p̄2 and p̄3
at p̄1 and is denoted ∠p̄1(p̄2, p̄3). With all notation as in the statement of Proposition
2.3, according to the law of cosines, Condition (ii) is valid if and only if

⟨p̄2 − p̄1, p̄3 − p̄1⟩R2 ≤ ⟨exp−1
p1 p2, exp

−1
p1 p3⟩(2.1)

or,

α1 ≤ ∠p̄1(p̄2, p̄3),

or, equivalently, △(p1, p2, p3) satisfies the CAT(0) inequality (see [5, II.1.7(5) and
II.1.9(2)]), that is, if, given a comparison triangle △ ⊂ R2 for △(p1, p2, p3), for all
x, y ∈ △(p1, p2, p3),

d(x, y) ≤ ∥x̄− ȳ∥,
where x̄, ȳ ∈ △ are the respective comparison points of x, y.

A geodesic space X is a CAT(0) space if all geodesic triangles in X satisfy the
CAT(0) inequality. It turns out that a complete Riemannian manifold is CAT(0) if
and only if it is a Hadamard manifold; see also [5, II.1.5, II.1A.8, and II.4.1(2)].
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A set C is convex in a Hadamard manifoldM if it includes the geodesic joining any
pair of its points, that is, for any x, y ∈ C, if γ : [a, b] → M is a geodesic joining x to
y, then γ(t) ∈ C for all t ∈ [a, b]. In particular, if C is a closed convex subset of M ,
then there exists a unique point PCx ∈ C such that d(x, PCx) = inf{d(x, y) : y ∈ C}.
Therefore PC defines a mapping of M onto C, called the metric projection of M
onto C (see [5, II.2.4]), which is a nonexpansive retraction from M onto C; see [8,
Proposition 3.5].

Lemma 2.5 ([20]). Let C be a closed convex subset of a Hadamard manifold M
and x ∈ M . Then ⟨

exp−1
PCx x, exp

−1
PCx y

⟩
≤ 0, for all y ∈ C.

The following result is an analog of the Banach space version of Suzuki’s Lemma
[19, Lemma 2.2] in Hadamard manifolds.

Lemma 2.6. Let {zn} and {wn} be bounded sequences in a Hadamard manifold
and let {αn} be a sequence in [0, 1] with 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
Suppose that

zn+1 = expwn
(1− αn) exp

−1
wn

zn, n ∈ N,
and

lim sup
n→∞

[d(wn+1, wn)− d(zn+1, zn)] ≤ 0.

Then limn→∞ d(wn, zn) = 0.

Proof. Just apply Lemma 2.2 in [19] for Banach spaces to the Euclidean spaces. Fix
any n ∈ N. Consider a geodesic triangle△(zn, wn, wn+1) and its comparison triangle
△(z̄n, w̄n, w̄n+1) in R2 so that d(wn, wn+1) = ∥w̄n−w̄n+1∥, d(zn, zn+1) = ∥z̄n−z̄n+1∥
and

z̄n+1 = αnw̄n + (1− αn)z̄n.

Lemma 2.2 in [19] assures that limn→∞ d(wn, zn) = limn→∞ ∥w̄n − z̄n∥ = 0. □

The following two technical lemmas are crucial to the study of our problem.

Lemma 2.7 ( [3, Lemma 2.3]). Let {λn}, {αn} and {ζn} be three sequences of
nonnegative numbers and {ξn} a sequence of real numbers such that {αn} ⊂ [0, 1]
with

∑∞
n=1 αn = ∞,

∑∞
n=1 ζn < ∞ and lim supn→∞ ξn ≤ 0. Suppose that

λn+1 ≤ (1− αn)λn + αnξn + ζn, n ∈ N.

Then limn→∞ λn = 0.

Lemma 2.8 ( [1]). Let {λn} and {ηn} be two sequences of nonnegative numbers and
{αn} a sequence of positive numbers such that

∑∞
n=1 αn=∞ and lim supn→∞ ηn/αn=

0. Suppose that

λn+1 ≤ λn − αnϕ(λn) + ηn, n ∈ N,

where ϕ : [0,∞) → [0,∞) is a continuous and strictly increasing function with
ϕ(0) = 0. Then limn→∞ λn = 0.
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3. Modified Halpern Iteration

This section contains four convergence theorems in a Hadamard manifold. We
first consider an iterative scheme of Halpern type with a weak contraction and
carry out our discussions in two cases. Recall that for x, y ∈ R2 (in fact, any
Hilbert space),

∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2, ∀t ∈ [0, 1].

Theorem 3.1. Let C be a closed convex subset of a Hadamard manifold M , T :
C → C a nonexpansive mapping with F(T ) ̸= ∅, and {αn}, {βn} two sequences in
(0, 1) satisfying

(C1) lim
n→∞

αn = 0,

(C2)

∞∑
n=1

αn = ∞,

(D1) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Let u, x1 ∈ C and define a sequence {xn} by

yn = expu(1− αn) exp
−1
u Txn,

xn+1 = expxn
(1− βn) exp

−1
xn

yn.
(3.1)

Then {xn} converges strongly to the point q = PF(T )u.

Proof. This proof consists primarily of the verification of a collection of four claims.
Claim 1: {xn} is bounded. To prove this, choose any p ∈ F(T ) and fix n ∈ N.

Let γ1n and γ2n be two respective geodesics joining from u to Txn, and from xn to
yn. Then

d(yn, p) = d(γ1n(1− αn), p)

≤ αnd(u, p) + (1− αn)d(Txn, p)

≤ αnd(u, p) + (1− αn)d(xn, p)

and

d(xn+1, p) = d(γ2n(1− βn), p)

≤ βnd(xn, p) + (1− βn)d(yn, p)

≤ αn(1− βn)d(u, p) + [1− αn(1− βn)]d(xn, p).

We use induction on n to the two inequalities above and get

d(yn, p) ≤ max{d(u, p), d(x1, p)}, for all n ∈ N,
d(xn+1, p) ≤ max{d(u, p), d(x1, p)}, for all n ∈ N.

Hence {xn} and {yn} are bounded, and so is {Txn}.
Claim 2: limn→∞ d(xn, yn) = 0. Recall that

xn+1 = expyn βn exp
−1
yn xn.
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First we have

d(yn+1, yn) = d(γ1n+1(1− αn+1), γ
1
n(1− αn))

≤ d(γ1n+1(1− αn+1), γ
1
n(1− αn+1)) + d(γ1n(1− αn+1), γ

1
n(1− αn))

≤ (1− αn+1)d(Txn+1, Txn) + |αn+1 − αn|d(u, Txn)
≤ (1− αn+1)d(xn+1, xn) + |αn+1 − αn|d(u, Txn)(3.2)

which implies that

d(yn+1, yn)− d(xn+1, xn) ≤ |αn+1 − αn|d(u, Txn)− αn+1d(xn+1, xn).

This shows that

lim sup
n→∞

[d(yn+1, yn)− d(xn+1, xn)] ≤ 0.

Therefore by Condition (D1), Lemma 2.6 asserts that limn→∞ d(xn, yn) = 0.
Claim 3: Observe that

lim sup
n→∞

⟨
exp−1

q u, exp−1
q Txn

⟩
≤ 0.(3.3)

First, from (3.1) and Condition (C1), we obtain

d(yn, Txn) = αnd(u, Txn) → 0 as n → ∞.

It follows that

d(xn, Txn) ≤ d(xn, yn) + d(yn, Txn) → 0 as n → ∞.

Next, since the sequence
{⟨

exp−1
q u, exp−1

q Txn
⟩}

is bounded, there exists a subse-
quence {xnk

} of {xn} such that

lim sup
n→∞

⟨
exp−1

q u, exp−1
q Txn

⟩
= lim

k→∞

⟨
exp−1

q u, exp−1
q Txnk

⟩
.

By passing to a subsequence it may be assumed that {xnk
} converges to some

x0 ∈ M . We then derive that

d(x0, Tx0) ≤ d(x0, xnk
) + d(xnk

, Txnk
) + d(Txnk

, Tx0) → 0 as n → ∞.

That is, x0 ∈ F(T ). Lemma 2.5 guarantees that

lim
k→∞

⟨
exp−1

q u, expq Txnk

⟩
=

⟨
exp−1

q u, exp−1
q x0

⟩
≤ 0,

which proves Claim 3.
Claim 4: limn→∞ d(xn, q) = 0. To prove this, fix any n ∈ N. For a geodesic

triangle △(u, q, Txn) ⊂ M , let △(ū, q̄, Txn) ⊂ R2 be a comparison triangle for
△(u, q, Txn). We then have

ȳn = αnū+ (1− αn)Txn.

Proposition 2.3 and (2.1) show that

⟨ū− q̄, Txn − q̄⟩R2 ≤
⟨
exp−1

q u, exp−1
q Txn

⟩
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which implies that

d(yn, q)
2 ≤ ∥ȳn − q̄∥2

= α2
n∥ū− q̄∥2 + (1− αn)

2∥Txn − q̄∥2

+ 2αn(1− αn)⟨ū− q̄, Txn − q̄⟩R2

≤ α2
nd(u, q)

2 + (1− αn)d(xn, q)
2 + 2αn

⟨
exp−1

q u, exp−1
q Txn

⟩
.(3.4)

Again, consider a geodesic triangle △(q, xn, yn) in M and let △(q̄, x̄n, ȳn) ⊂ R2 be
the corresponding comparison triangle. Then d(xn, q) = ∥x̄n−q̄∥, d(yn, q) = ∥ȳn−q̄∥
and

x̄n+1 = βnx̄n + (1− βn)ȳn

and hence by (3.4) we get

d(xn+1, q)
2 ≤ ∥x̄n+1 − q̄∥2

≤ βn∥x̄n − q̄∥2 + (1− βn)∥ȳn − q̄∥2

= βnd(xn, q)
2 + (1− βn)d(yn, q)

2

≤ [1− αn(1− βn)]d(xn, q)
2 + α2

n(1− βn)d(u, q)
2

+ 2αn(1− βn)
⟨
exp−1

q u, , exp−1
q Txn

⟩
≤ [1− αn(1− βn)]λn + αn(1− βn)ξn,

where λn = d(xn, q)
2 and

ξn = αnd(u, q)
2 + 2

⟨
exp−1

q u, , exp−1
q Txn

⟩
.

We then apply (3.3) and Lemma 2.7 to conclude that

lim
n→∞

d(xn, q) = 0,

as desired. This finishes the proof. □

Theorem 3.2. Let C be a closed convex subset of a Hadamard manifold M , T :
C → C a nonexpansive mapping with F(T ) ̸= ∅, and {αn}, {βn} two sequences in
(0, 1) such that {αn} satisfies (C1), (C2) and

(C3) either
∑∞

n=1 |αn+1 − αn| < ∞ or limn→∞ αn/αn+1 = 1,

and {βn} satisfies

(D2) limn→∞ βn = 0,
(D3)

∑∞
n=1 |βn+1 − βn| < ∞.

Let u, x1 ∈ C and define a sequence {xn} by (3.1). Then {xn} converges strongly to
the point q = PF(T )u.

Proof. With all notations as in the proof of Theorem 3.1, it follows that {xn}, {yn}
and {Txn} are all bounded.

Observe that limn→∞ d(xn+1, xn) = 0. In fact, from (3.2) we get

d(yn, yn−1) ≤ (1− αn)d(xn, xn−1) + |αn − αn−1|d(u, Txn−1)
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and therefore

d(xn+1, xn) ≤ d(γ2n(1− βn), γ
2
n−1(1− βn)) + d(γ2n−1(1− βn), γ

2
n−1(1− βn−1))

≤ βnd(xn, xn−1) + (1− βn)d(yn, yn−1) + |βn − βn−1|d(xn−1, yn−1)

≤ βnd(xn, xn−1) + (1− αn)(1− βn)d(xn, xn−1)

+ |αn − αn−1|(1− βn)d(u, Txn−1) + |βn − βn−1|d(xn−1, yn−1)

≤ [1− αn(1− βn)]d(xn, xn−1) +K(1− βn)|αn − αn−1|
+K|βn − βn−1|

= [1− αn(1− βn)]d(xn, xn−1) +Kαn(1− βn)

∣∣∣∣1− αn−1

αn

∣∣∣∣
+K|βn − βn−1|,

where K is a constant such that K > sup{d(u, Txn), d(xn, yn) : n ∈ N}. According
to Conditions (C2), (C3) and (D3), Lemma 2.7 assures that

lim
n→∞

d(xn+1, xn) = 0.

This yields that

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, yn) + d(yn, Txn)

= d(xn, xn+1) + βnd(xn, yn) + αnd(u, Txn) → 0 as n → ∞

by Conditions (C1) and (D2). Now, using an argument similar to that of Claims 3
and 4 in the preceding theorem, we have limn→∞ xn = q, as required. □

We next study an iterative method of viscosity type with a weak contraction.
The approaches are similar to that of [11, Proposition 3.5].

Let C be a closed convex subset of a Hadamard manifold M , T a nonexpansive
mapping on C and f a φ-weak contraction on C. Then T ◦f is a φ-weak contraction
on C which follows from the following inequality:

d(T ◦ fx, T ◦ fy) ≤ d(f(x), f(y)) ≤ d(x, y)− φ(d(x, y)), ∀x, y ∈ C.

Theorem 3.3. Let M , C, T , {αn} and {βn} be as in Theorem 3.1. Suppose that f
is a φ-weak contraction on C, where φ is strictly increasing. Let x1 ∈ C and define
a sequence {xn} by

yn = expf(xn)(1− αn) exp
−1
f(xn)

Txn,

xn+1 = expxn
(1− βn) exp

−1
xn

yn.
(3.5)

Then {xn} converges strongly to the unique point q ∈ C such that q = PF(T )f(q).

Proof. Since the metric projection PF(T ) is nonexpansive, the existence and the
uniqueness of q is guaranteed by Theorem 1.1. Define a sequence {zn} by

wn = expf(q)(1− αn) exp
−1
f(q) Tzn,

zn+1 = expzn(1− βn) exp
−1
zn wn.
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An appeal to Theorem 3.1 establishes the strong convergence of {zn} with limit
PF(T )f(q) = q. For n ∈ N, we have

d(xn+1, zn+1) ≤ βnd(xn, zn) + (1− βn)d(yn, wn)

≤ βnd(xn, zn) + (1− βn)[αnd(f(xn), f(q)) + (1− αn)d(xn, zn)]

≤ βnd(xn, zn) + αn(1− βn)[d(f(xn), f(zn) + d(f(zn), f(q))]

+ (1− αn)(1− βn)d(xn, zn)

≤ d(xn, zn)− αn(1− βn)φ(d(xn, zn)) + αn(1− βn)d(zn, q).

Apply Lemma 2.8 by setting λn = d(xn, zn) and ηn = αn(1− βn)d(zn, q) to get

lim
n→∞

d(xn, zn) = 0.

Consequently, this shows that {xn} converges strongly to q. □

Using the same argument as that of Theorem 3.3 (so the proof is omitted), we
obtain the following result as an extension of Theorem 3.2.

Theorem 3.4. Let M , C, T , {αn} and {βn} be as in Theorem 3.2. Suppose that f
is a φ-weak contraction on C, where φ is strictly increasing. Let x1 ∈ C and define
a sequence {xn} by (3.5). Then {xn} converges strongly to the unique point q ∈ C
such that q = PF(T )f(q).

Remark 3.5. The sequence {xn} defined by (3.1) is

xn+1 = expxn
(1− βn) exp

−1
xn

[expu(1− αn) exp
−1
u Txn].

In contrast to the analog of this iteration in a Hilbert space, it is given by two
formulations:

xn+1 = βnxn + (1− βn)[αnu+ (1− αn)Txn]

= αn(1− βn)u

+ [1− αn(1− βn)]

[
βn

1− αn(1− βn)
xn +

(1− αn)(1− βn)

1− αn(1− βn)
Txn

]
;

so we ask whether (3.1) in a Hadamard manifold M can be rewritten as follows:

expu[1− αn(1− βn)] exp
−1
u

[
expxn

(1− αn)(1− βn)

1− αn(1− βn)
exp−1

xn
Txn

]
.

The following observation makes clear the answer to this problem. Let x, y ∈
M . Then the unique minimal geodesic joining x and y is defined by γ(t) =
expx t exp

−1
x y, t ∈ [0, 1]. For any z ∈ M , is the curve γ̃(t) = expz[(1− t) exp−1

z x+
t exp−1

z y], t ∈ [0, 1], still a minimal geodesic joining x and y? If this were true,
then the formula above is a reformulation of (3.1). Unfortunately, γ̃ may not be a
minimal geodesic joining x and y; see [13, Example 1.1 and Theorem 2.1].
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[14] C. Li, G. López and V. Mart́ın-Márquez, Iterative algorithms for nonexpansive mappings on
hadamard manifolds, Taiwanese J. Math. 14 (2010), 541–559.

[15] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[16] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl.

241 (2000), 46–55.
[17] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Meth-

ods & Applications 47 (2001), 2683–2693.
[18] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, American

Mathematical Society, Providence, RI, 1996.
[19] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in gen-

eral Banach spaces, Fixed Point Theory and Applications 2005 (2005), 103–123.
[20] R. Walter, On the metric projection onto convex sets in Riemannian spaces, Archiv der Math-

ematik 25 (1974), 91–98.
[21] S. Wang, A note on strong convergence of a modified Halpern’s iteration for nonexpansive

mappings, Fixed Point Theory and Applications 2010(1), Article ID 805326, 2010.

Manuscript received 27 August 2015
revised 23 December 2015



328 SHUECHIN HUANG

Shuechin Huang
Department of Applied Mathematics, National Dong Hwa University, Hualien 97401, Taiwan

E-mail address: shuang@mail.ndhu.edu.tw


