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APPROXIMATIONS WITH WEAK CONTRACTIONS IN
HADAMARD MANIFOLDS

SHUECHIN HUANG

ABSTRACT. This article is devoted to constructing the Mann iterative method of
Moudafi type, a convex combination of the Mann and viscosity iterations, with a
weak contraction in a Hadamard manifold. This type of iterative methods include
the class of Halpern type of iterations. We first deal with strong convergence
theorems for Mann iterations of Halpern type and then generalize them to those
of Moudafi type with an effective approach.

1. INTRODUCTION

A wide variety of problems can be solved by finding a fixed point of a particular
operator, and algorithms for finding such points play a prominent role in a number
of applications. In this paper we show how to construct an iterative method for fixed
point approximation problems with a weak contraction in a Hadamard manifold,
which is complete simply connected Riemannian manifold with nonpositive sectional
curvature. The spaces of nonpositive curvature such as hyperbolic spaces play
a significant role in many areas: Lie group theory, combinatorial and geometric
group theory, dynamical system, geometric topology, Kleinian group theory and
Teichmiiller theory.

Let (X,d) be a metric space. Suppose that 7' : X — X is a nonexpansive
mapping, i.e., d(Tz,Ty) < d(x,y), for all z,y € X. We shall denote §(T") the fixed
point set of 7. Kim and Xu [12] proposed the following modified Halpern iteration
in a uniformly smooth Banach space X. Let C' be a closed convex subset of X,
T : C — C a nonexpansive mapping and {a,} and {5,} twe sequences in [0, 1].
Given u,z; € C and define a sequence {x,} by

(1.1) Tpt1 = Bpu+ (1 = Bp)[anxn + (1 — ap)Txy], neN.

The strong convergence of {x,} is established [12, Theorem 1] under certain condi-
tions on {«,} and {3,}, in addition to assuming

(1.2) nh_)rgo Brn =0, z_:lﬁn = 00.
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The iterative scheme (1.1) is Halpern algorithm [9] when «,, = 0 and it is Mann
algorithm [15] when f3,, = 0; they are often used to approximate a fixed point of a
nonexpansive mapping. Hu [10] presented some convergence theorems of the iter-
ation (1.1) in Banach spaces which have a uniformly Gateaux differentiable norm,
where {f3,,} satisfies (1.2) and {a,} satisfies 0 < a < ay, < b < 1 or limy, 00 a, = 0.
It is worth emphasizing that Wang [21] found a counterexample to illustrate the
failure of the strong convergence of {z,} defined by (1.1) when lim, o o, = 1.
Cuntavepanit and Panyanak [6] extended Kim-Xu’s result to CAT(0) spaces (see
Section 2 for the definition). It is known that the fixed point set of a nonexpansive
mapping defined on a CAT(0) space is closed and convex.

An important class of CAT(0) spaces is given by Hadamard manifolds. A CAT(0)
space is not a manifold, in general; it can be a tree, for example. In [14] Li et al.
present analogs of Halpern and Mann algorithms for approximating fixed points of
nonexpansive mappings in Hadamard manifolds.

A mapping f: X — X is a contraction if there exists k € [0,1) such that

d(f(z), f(y)) < kd(z,y), Vr,yeX;

it is a p-weak contraction, due to Alber and Guerre-Delabriere [2], if

(1.3) d(f(z), f(y) < d(z,y) — p(d(z,y)), Yz,y€ X,

where ¢ : [0,00) — [0, 00) is a continuous and nondecreasing function with ¢(t) = 0
if and only if ¢ = 0. It is seen that a p-weak contraction is a k-contraction by
taking ¢(t) = (1 — k)t in (1.3). The well-known Banach contraction principle [4]
guarantees the existence and uniqueness of fixed points of contractions on a complete
metric space. The validity of Banach contraction principle for weak contractions in
complete metric spaces was proved by Rhoades [17]. We state this result as follows.

Theorem 1.1 (Rhoades [17]). Let (X, d) be a complete metric space and f a weak
contraction on X. Then f has a unique fixed point.

Moudafi [16] introduced the following viscosity approximation with a contraction
f and generalized Halpern’s theorems in another direction: let 1 € X and define
{an} by

Tyl = Qnf(xn) + (1 —ap)Tz,, neN.
Recently, Huang [11] obtains some convergence theorems by Moudafi viscosity ap-
proximations with a weak contraction for a sequence of nonexpansive mappings in
a CAT(0) space.

The iterative schemes we consider here are modified Mann iterations of Halpern
type and Moudafi type, respectively, in a Hadamard manifold. The natural question
then arises: under what conditions on the control coefficients may the convergence
of the iterative methods of Halpern type be proved? In addition, it is of great
importance to know whether these convergence theorems can be extended to those
of Moudafi type without imposing other extra conditions on control coefficients.
It is customary to derive the results for the case of Moudafi type straightforward;
nevertheless, it is very difficult to prove. Accordingly, the plan is to pass from
Halpern type cases to Moudafi type cases with an effective approach. To accomplish
this, preliminary facts about complete Riemannian manifolds are needed. Section 2
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presents some basic concepts and fundamental theorems in Riemannian Geometry.
In Section 3, the approximation of Mann iteration of Halpern type with a weak
contraction on Hadamard manifolds is first discussed in two cases; see Theorems
3.1 and 3.2. Then we adapt the technique as shown in [11, Proposition 3.5] so that
it applies to the more general case; see Theorems 3.3 and 3.4.

2. PRELIMINARIES

Let M be a differentiable manifold with finite dimension n, T, M the tangent
space of M at z (T,M is a linear space and has the same dimension of M) and
TM = Jycps TeM the tangent bundle of M. Because we restrict ourselves to real
manifolds, T, M is isomorphic to R”. When M is endowed with a Riemannian metric
g and the corresponding norm denoted by || - ||, M is a Riemannian manifold. The
inner product of two vectors u,v € T, M is written as (u,v), = g(u,v), where g, is
the metric at a point x. The norm of a vector v € T,,M is set by ||v||» = \/(v,v), and
the angle Z;(u,v) between u,v € T, M (u,v # 0) by cos Z(u,v) = (u,v),/||ul|||v].
If there is no confusion, we denote (-,-) = (-, )z, || || = || - ||l and ZL(u,v) = Zz(u,v).
The metrics can be used to define the length of a piecewise smooth curve v : [a,b] —
M joining v(a) = x to y(b) = y through

b
L(y) = / I/ ()l oyt

Minimizing this length functional over the set of all such curves, we obtain a Rie-
mannian distance d(x,y) which induces the original topology on M; see [7, Propo-
sition 2.6, p.146].

Let V be a Levi-Civita connection associated to (M, (-,-)). This connection
defines a unique covariant derivative D/dt, where for each vector field V, along
a smooth curve v : [a,b] — M, another vector field DV/dt is obtained, called the
covariant derivative of V' along . A curve v : [a,b] — M is called a geodesic if
D~'/dt = 0 and in this case ||| is constant. When ||7/|| = 1, then ~ is said to be
normalized. A geodesic joining x and y in M is said to be minimizing if its length is
equal to d(z,y). A Riemannian manifold is complete if its geodesics are defined for
any value of ¢t € R. Hopf-Rinow Theorem [7, Theorem 2.8, p.146] asserts that if M
is complete, then any pair of points in M can be joined by a minimal geodesic (the
exponential map is an essential tool for this understanding), and every bounded
closed subset of M is compact.

Let M be a complete Riemannian manifold and x € M. The exponential map
exp, : TpyM — M is defined as exp,, v = 7, (1, ), where y(:) = 7, (-, ) is the geodesic
starting at « with velocity v. Then, for any value of ¢, we have exp, tv = 7, (¢, x).

The following well-known result, as an application of Hopf-Rinow Theorem, can
be found in [7, Theorem 3.1, p.149] and [18, Theorem 4.1, p.221].

Theorem 2.1. Let M be a Hadamard manifold. Then M is diffeomorphic to the
Euclidian space R™, where n = dim M; more precisely, at any point x € M, the
exponential map mapping exp, : T,M — M is a diffeomorphism. Moreover, for
any two points x,y € M there exists a unique normalized geodesic joining x to y,
which is, in fact, a minimal geodesic.
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Proposition 2.2 ([5, 11.2.2] and [18]). If M is a Hadamard manifold, then the
distance function d : M x M — R is convex with respect to the product Riemannian
metric, that is, for any pair of geodesics y1 : [0,1] — M and 72 : [0,1] = M we
have

d(71(t),72(t)) < (1 = )d(71(0),72(0)) + td(71(1),72(1)), vt € [0,1].
In particular, for each p € M, the function d(-,p) : M — R is a convex function.

A geodesic triangle in a Riemannian manifold M is a set formed by three mini-
mizing normalized geodesics ; : [0,¢;] — M (the sides) such that ~;(¢;) = vi+1(0),
indices taken modulo 3. The points p; = 7;4+2(0) are called the wvertices of the tri-
angle and a; = Z(—7j(lix1),7i42(0)) the corresponding angles. Let us denote by
A(p1,p2,ps) this geodesic triangle.

One of the most important characterizations of Hadamard manifolds is described
in the following proposition; see [7, Lemma 3.1, p.259] and [18, Proposition 4.5,
p.223].

Proposition 2.3. Let A(p1,p2,p3) be a geodesic triangle in a Hadamard manifold
and o; the corresponding angles at the vertices p;, i = 1,2,3. Then

(i) o1 +ag +asz <,
(i) d(p1,p2)? + d(p1,p3)? — 2(exp,, p2, expy,! p3) < d(pa,p3)*.

The following relation between geodesic triangles in Riemannian manifolds and
triangles in R? can be referred to [5, 1.2.14].

Lemma 2.4. Let A(p1,p2, ps3) be a geodesic triangle in a Hadamard manifold. Then
there erists a triangle /\(py,p2,p3) C R? for A(p1,p2,p3) such that d(p;,piy1) =
P — Pit1l, indices taken modulo 3; it is unique up to an isometry of R2.

The triangle A(p1, p2, p3) in Lemma 2.4 is said to be a comparison triangle for
A(p1,p2,p3). The geodesic side from x to y will be denoted [x,y]. A point Z €
[P1,D2] is called a comparison point for x € [p1,p2] if ||z — pi|| = d(z,p1). The
interior angle of A(py, P2, p3) at py is called the comparison angle between ps and ps
at p1 and is denoted Zp, (P2, p3). With all notation as in the statement of Proposition
2.3, according to the law of cosines, Condition (ii) is valid if and only if

(2.1) (P2 — P1, D3 — P1)re < (exp,, p2,exp,,’ p3)
or,

a1 < 4171 (ﬁ?v ﬁ3)7

or, equivalently, A(p1, p2, p3) satisfies the CAT(0) inequality (see [5, II.1.7(5) and
11.1.9(2)]), that is, if, given a comparison triangle A C R? for A(py,pa,p3), for all
T,y € A(p, p2, p3),
d(z,y) < |z —yll,

where Z,§ € A are the respective comparison points of x, .

A geodesic space X is a CAT(0) space if all geodesic triangles in X satisfy the
CAT(0) inequality. It turns out that a complete Riemannian manifold is CAT(0) if
and only if it is a Hadamard manifold; see also [5, I1.1.5, I1.1A.8, and 11.4.1(2)].
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A set C'is converin a Hadamard manifold M if it includes the geodesic joining any
pair of its points, that is, for any z,y € C, if v : [a,b] — M is a geodesic joining z to
y, then y(¢t) € C for all t € [a,b]. In particular, if C'is a closed convex subset of M,
then there exists a unique point Pox € C such that d(z, Pox) = inf{d(z,y) : y € C}.
Therefore Po defines a mapping of M onto C, called the metric projection of M
onto C' (see [5, 11.2.4]), which is a nonexpansive retraction from M onto C; see [8,
Proposition 3.5].

Lemma 2.5 ([20]). Let C be a closed convex subset of a Hadamard manifold M
and x € M. Then

<exp1§éx T, exp;éx y> <0, forallyeC.

The following result is an analog of the Banach space version of Suzuki’s Lemma
[19, Lemma 2.2] in Hadamard manifolds.

Lemma 2.6. Let {z,} and {w,} be bounded sequences in a Hadamard manifold
and let {a,} be a sequence in [0,1] with 0 < liminf,,_,o oy, < limsup,, ., an < 1.
Suppose that

-1
Zny1 = €xpy, (1 —ap)exp, zn, neEN,
and

lim sup[d(wn 11, wn) — d(2n11, 20)] < 0.
n—00

Then limy, o0 d(Wn, 2,) = 0.

Proof. Just apply Lemma 2.2 in [19] for Banach spaces to the Euclidean spaces. Fix
any n € N. Consider a geodesic triangle A(z,, wy,, wy+1) and its comparison triangle
A(Z’w W, wn—‘rl) in R? so that d(wna wn+1) = Hwn_wn—l—lua d<zn7 Zn—l—l) = Hzn_zn—‘rl H
and

Znt+1 = Qpp + (1 — ) Zp.

Lemma 2.2 in [19] assures that lim, o d(wp, z5,) = limy, 0 |0, — Z,|| = 0. O
The following two technical lemmas are crucial to the study of our problem.

Lemma 2.7 ([3, Lemma 2.3]). Let {\,}, {an} and {(,} be three sequences of
nonnegative numbers and {&,} a sequence of real numbers such that {a,} C [0,1]
with Y 02 1 oy =00, > .07 Cp < 00 and limsup,,_, o &, < 0. Suppose that

At < (1 —ap) Ay + anén + ¢, neN
Then lim,, oo Ap = 0.

Lemma 2.8 ([1]). Let {\,} and {n,} be two sequences of nonnegative numbers and
{an} a sequence of positive numbers such that > | ap, =00 and imsup,, . Nn/on =
0. Suppose that

An—l—l S )\n - an(b()\n) + Tins n c N7

where ¢ : [0,00) — [0,00) is a continuous and strictly increasing function with

#(0) =0. Then lim, 00 Ay = 0.
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3. MODIFIED HALPERN ITERATION

This section contains four convergence theorems in a Hadamard manifold. We
first consider an iterative scheme of Halpern type with a weak contraction and
carry out our discussions in two cases. Recall that for z,y € R? (in fact, any
Hilbert space),

[tz + (1 = )y[|* = tllz[* + (1 = O)llyl* — (1 = t)l|l= —yl*, vt e[0,1].

Theorem 3.1. Let C' be a closed convexr subset of a Hadamard manifold M, T :
C — C a nonexpansive mapping with F(T) # 0, and {an}, {Bn} two sequences in
(0,1) satisfying

(Cl) lim o, =0,

n—0o0

(C2) Z ap, = 00,
n=1
(D1) 0 <liminfj, <limsup S, < 1.
n—00 n—o00

Let u,xy € C and define a sequence {z,} by

(3.1) Yn = exp, (1 — o) expy ! Tz,

Tni1 = expy,, (1= Bn) expy, Yn-

Then {zy} converges strongly to the point ¢ = Pyryu.

Proof. This proof consists primarily of the verification of a collection of four claims.
Claim 1: {x,} is bounded. To prove this, choose any p € F(T') and fix n € N.

Let 7! and 72 be two respective geodesics joining from u to T'z,, and from x,, to

Yn. Then

d(yn, ) = d(7,(1 = @), p)
< apd(u,p) + (1 — apn)d(Txy, p)
< and(u, p) + (1 — an)d(zn, p)
and
d(zp+1.p) = d(v3(1 — Bp), p)
< Bnd(xn, p) + (1 = Bn)d(yn, p)
< an(1 = Bu)d(u, p) + [1 — an(1 = Bn)]d(zn, p).
We use induction on n to the two inequalities above and get

d(yn,p) < max{d(u,p),d(z1,p)}, foralln €N,
d(xn-l-hp) < max{d(u,p),d(wl,p)}, for all n € N.

Hence {x,} and {y,} are bounded, and so is {1z, }.
Claim 2: lim,, oo d(2y, yn) = 0. Recall that

-1
Tpy1 = €Xpy, On €xXp,~ Tn.
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First we have

d(Yn+1,Yn) = d(%lzﬂ(l - an+1),’y,11(1 —ay))
< d( Y1 (1= ang1), 1 (1 = ang1)) + d(3 (1 = angr), v (1 — an))
< (1 - an+1) (Txn—l—l,Txn) + ‘an—i-l - an’d(u7Txn)
< (

(3:2) 1= any1)d(Tnt1, an) + |omsr — amld(u, Ten)
which implies that

d(Yn+1,Yn) — Ad(@Tnt1,Tn) < |ony1 — anld(u, Ton) — app1d(Tng1, Tn).
This shows that
lim sup[d(yn+1, yn) - d(xn+17 xn)] <0.

n—o0

Therefore by Condition (D1), Lemma 2.6 asserts that lim,—,o d(2p, yn) = 0.
Claim 3: Observe that

(3.3) lim sup <eXp;1 u, equ_1 T."L‘n> <0.

n—oo

First, from (3.1) and Condition (C1), we obtain
d(yn, Txy) = apd(u, Tx,) — 0 as n — oo.
It follows that
d(xp, Txy) < d(Tn,Yn) + d(Yyn, Tzn) -0 asn — co.

Next, since the sequence {<equ_1 u, exp;1 Ta:n>} is bounded, there exists a subse-
quence {zp, } of {x,} such that

lim sup <equ U, €Xp, —1 T:Cn> = hm <equ U, exXpgy —1 Txnk>
n—oo

By passing to a subsequence it may be assumed that {z,, } converges to some
xo € M. We then derive that

d(zo, Txo) < d(x0, Tn,) + d(Tn,,, TTn,) + d(Tzp,, Txo) - 0 asn — oco.
That is, g € §(T'). Lemma 2.5 guarantees that

. —1 _ -1 -1
klggo <equ U, €Xp, T:Unk> = <equ U, €xp, x0> <0,

which proves Claim 3.

Claim 4: lim,, o, d(x,,q) = 0. To prove this, fix any n € N. For a geodesic
triangle A(u,q,Tx,) C M, let A(4,q,Tx,) C R? be a comparison triangle for
A(u,q, Tzy,). We then have

Un = ant + (1 — an)Tzy,.
Proposition 2.3 and (2.1) show that

(u—q,Try, — Qre < <equ u, exp, 1T$n>



324 SHUECHIN HUANG

which implies that
d(Yn,9)* < |90 — all®
= anlla—ql* + (1 - an)?| Tz, — gl
+ 20, (1 — ap) (i — @, Ty, — Qg2
(3.4) < a2d(u,q)? + (1 — an)d(zn, q)? + 200, <equ_1 u, equ_1 Txn> .
Again, consider a geodesic triangle A(q, Z,,y,) in M and let A(q, Zn, §n) C R? be

the corresponding comparison triangle. Then d(x,, q) = ||Zn—ql|, d(Yn, q) = ||Un—7|
and

Tn+1 = Pnn + (1 — Bn)in
and hence by (3.4) we get
d(@n+1,9)* < |21 — alf?
< Bull T — all* + (1 = Ba)ll7n — al®
= Bud(xn,0)° + (1 = Ba)d(yn, ¢)°
<1 = an(1 = B)ld(xn, 0)* + ap (1 = Bn)d(u, q)?
+ 20, (1 = Bp) <equ_1 Uu, , equ_1 Txn>
<1 —an(l = Bn)]An + an(l — Bn)én,
where \, = d(zn,q)? and
& = and(u, q)* + 2 <equ_1 u,, equ_1 Txn> )
We then apply (3.3) and Lemma 2.7 to conclude that
nh_)IIolo d(xn,q) =0,
as desired. This finishes the proof. O

Theorem 3.2. Let C be a closed conver subset of a Hadamard manifold M, T :
C — C a nonezpansive mapping with F(T) # 0, and {an}, {Bn} two sequences in
(0,1) such that {ay,} satisfies (C1), (C2) and

(C3) either > 07 | |oant1 — ap| < 00 or limy o0 0t /Qpg1 = 1,
and {Bn} satisfies

(D2) limy, 00 B = 0,

(D3) 22021 [Bnt1 — Bl < oo.

Let u,x1 € C and define a sequence {x,} by (3.1). Then {x,} converges strongly to
the point ¢ = Py(1yu.

Proof. With all notations as in the proof of Theorem 3.1, it follows that {z,}, {yn}
and {T'z,} are all bounded.
Observe that limy,eo d(Zp41,2,) = 0. In fact, from (3.2) we get

d(yru Yn— 1) (1 - O‘n)d(ZCna xnfl) + |an - O‘n71|d(ua Txnfl)
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and therefore

d(@ni1,20) < d(ya(1 = Bn)s Va1 (1= Ba)) + d(vi_y (1 = Bn), va—1 (1 = Bu1))
< Bnd(n, n-1) + (1 = Br)d(Yns Yn—1) + [Bn — Ba—1|d(@n—1,Yn—1)
< Bnd(xp, xn—1) + (1 — o) (1 = Bn)d(zn, 2p—1)
+ lan — an—1|(1 = Bn)d(u, Tzn-1) + [Bn — Ba-1ld(Tn—1,Yn-1)
< [1—an(l—B)ld(@n, zn-1) + K(1 = Bn)|an — an—1|

+ Kwn - 5n71|
_ [1 _ an(l _ Bn)]d@nw"?nfl) + KOén(l — ﬁn) 1— a;z—l
—{—K’,Bn _ﬁn—l|7

where K is a constant such that K > sup{d(u,Txzy),d(zn,ys) : n € N}. According
to Conditions (C2), (C3) and (D3), Lemma 2.7 assures that

nll)ngo d(xpy1,2n) = 0.
This yields that
d(wn, Try) < d(Tn, Tnt1) + d(@ny1, Yn) + d(Yn, Ton)
=d(xn, Tni1) + Bnd(Tn, yn) + and(u, Tx,) -0 asn — oo

by Conditions (C1) and (D2). Now, using an argument similar to that of Claims 3
and 4 in the preceding theorem, we have lim,,_,, x, = q, as required. O

We next study an iterative method of viscosity type with a weak contraction.
The approaches are similar to that of [11, Proposition 3.5].

Let C be a closed convex subset of a Hadamard manifold M, T" a nonexpansive
mapping on C and f a ¢-weak contraction on C. Then T'o f is a ¢-weak contraction
on C' which follows from the following inequality:

d(T o fz,T o fy) < d(f(x), f(y)) < d(z,y) — ¢(d(x,y)), V,yeC.

Theorem 3.3. Let M, C, T, {a,} and {B} be as in Theorem 3.1. Suppose that f
is a p-weak contraction on C, where ¢ s strictly increasing. Let x1 € C' and define
a sequence {x,} by

55) Yn = €XP(g,) (1 — an) exp;(lzn) Tx,,
Tpy1 = exp,, (1= Bn) exp;il Yn-
Then {xn} converges strongly to the unique point q € C' such that ¢ = Py(r)f(q)-

Proof. Since the metric projection Py is nonexpansive, the existence and the
uniqueness of ¢ is guaranteed by Theorem 1.1. Define a sequence {z,} by

wy, = expyg) (1 — an) exp;(lq) Tz,

Zny1 = exp, (1 — ) (—:-sz_n1 W,
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An appeal to Theorem 3.1 establishes the strong convergence of {z,} with limit
Py f(q) = q. For n € N, we have
d(Tn11, 2n41) < Bnd(Tn, 20) + (1 = Br)d(Yn, wn)
< Bud(wn, 2n) + (1 = Bu)and(f(zn), f(q)) + (1 — an)d(wn, 2,)]
< Bnd(n, 2n) + an(1 = B)[d(f(xn), f(2n) + d(f(zn), f(q))]
+ (1 = an) (1 = Br)d(n; 2n)
< d(Tn, 2n) — an(1 = Bn)p(d(n, 2n)) + an(l — Bn)d(zn, q).

Apply Lemma 2.8 by setting A\, = d(zy, z,) and 0, = o, (1 — B)d(zn, q) to get

lim d(zy,z,) = 0.

n—oo

Consequently, this shows that {x,} converges strongly to g. O

Using the same argument as that of Theorem 3.3 (so the proof is omitted), we
obtain the following result as an extension of Theorem 3.2.

Theorem 3.4. Let M, C, T, {a,} and {B,} be as in Theorem 3.2. Suppose that f
is a p-weak contraction on C, where ¢ s strictly increasing. Let x1 € C' and define
a sequence {x,} by (3.5). Then {x,} converges strongly to the unique point q € C
such that ¢ = Py f(q)-

Remark 3.5. The sequence {z,} defined by (3.1) is
Tpy1 = exp,, (1 — Bn) exp;n1 [exp, (1 — ap) exp;1 Txy).

In contrast to the analog of this iteration in a Hilbert space, it is given by two
formulations:

Tn+1 = BTy + (1 - /Bn)[anu + (1 - an)Tﬂjn]
=an(l— Bp)u

= an -6 |

Bn (1 —an)(1 = fn) :
1= (1= fn) " 1= an(l—f) Txn} 7

so we ask whether (3.1) in a Hadamard manifold M can be rewritten as follows:

(1 —an)(1—5n)
1—an(l—75n)

The following observation makes clear the answer to this problem. Let z,y €
M. Then the unique minimal geodesic joining z and y is defined by ~(t) =
exp,texp,ly, t €[0,1]. For any z € M, is the curve §(t) = exp,[(1 — t)exp; l o +
texp;ly], t € [0,1], still a minimal geodesic joining = and y? If this were true,
then the formula above is a reformulation of (3.1). Unfortunately, ¥ may not be a
minimal geodesic joining z and y; see [13, Example 1.1 and Theorem 2.1].

expy[l — an(1 — B,)] exp, [expxn exp;n1 T:L‘n:| .
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