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Recently, by using the ideas of [12, 13, 15], Takahashi [20] obtained the following
result for the split common null point problem in Banach spaces; see also [19].

Theorem 1.1 ([20]). Let E and F be uniformly convex and smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A and B
be maximal monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅

and B−10 ̸= ∅, respectively. Let Qµ be the metric resolvent of B for µ > 0. Let
T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the adjoint
operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ E and let {xn} be a
sequence generated by

zn = xn − µnJ
−1
E T ∗JF (Txn −QµnTxn),

Cn = {z ∈ A−10 : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Qn = {z ∈ A−10 : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where {µn} ⊂ (0,∞) satisfies that for some a, b ∈ R,

0 < a ≤ µn ≤ b <
1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ A−10∩T−1(B−10), where
z0 = PA−10∩T−1(B−10)x1.

In this paper, we consider the split common fixed point problem in Banach spaces.
Using the hybrid method in mathematical programming, we prove a strong conver-
gence theorem for finding a solution of the split common fixed point problem in
Banach spaces. Using this result, we get well-known and new results which are con-
nected with the split feasibility problem and the split common null point problem
in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and
norm ∥ · ∥, respectively. For x, y ∈ H and λ ∈ R, we have from [18] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [16].
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Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, that is, xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [8, 14].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [16] and [17]. We know the
following result:

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping on
E. Then, ⟨x− y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly convex
and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.

Lemma 2.2 ([16]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent

(1) z = PCx1;
(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let A be a mapping of E into 2E
∗
. The effective

domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax ̸= ∅}. A
multi-valued mapping A on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all
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x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [3]; see also [17, Theorem
3.5.4].

Theorem 2.3 ([3]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into
2E

∗
. Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rAxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A−10 = {z ∈ E : 0 ∈ Az}. We know that A−10 is closed and convex; see [17].

Let E be a smooth, strictly convex and reflexive Banach space and let η be a real
number with η ∈ (−∞, 1). Then a mapping U : E → E with F (U) ̸= ∅ is called
η-demimetric [21] if, for any x ∈ E and q ∈ F (U),

⟨x− q, J(x− Ux)⟩ ≥ 1− η

2
∥x− Ux∥2,

where F (U) is the set of fixed points of U .

Examples. We know examples of η-demimetric mappings from [21].

(1) Let H be a Hilbert space and let k be a real number with 0 ≤ k < 1. Let
U be a strict pseud-contraction [4] of H into itself such that F (U) ̸= ∅. Then U is
k-demimetric.

(2) Let E be a strictly convex, reflexive and smooth Banach space and let C be
a nonempty, closed and convex subset of E. Let PC be the metric projection of E
onto C. Then PC is (−1)-demimetric.

(3) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B−10 ̸= ∅. Let λ > 0. Then the metric resolvent
Jλ is (−1)-demimetric.

Furthermore, we know an important result for demimetric mappings in a smooth,
strictly convex and reflexive Banach space.

Lemma 2.4 ([21]). Let E be a smooth, strictly convex and reflexive Banach space
and let η be a real number with η ∈ (−∞, 1). Let U be an η-demimetric mapping of
E into itself. Then F (U) is closed and convex.
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3. Main result

Let E be a Banach space and let C be a nonempty, closed and convex subset of
E. A mapping U : C → E is called demiclosed if, for a sequence {xn} in C such
that xn ⇀ p and xn−Uxn → 0, p = Up holds. In this section, using the demimetric
operators, we prove a strong convergence theorem for finding a solution of the split
common fixed point problem in Banach spaces.

Theorem 3.1. Let H be a Hilbert space and let F be a smooth, strictly convex
and reflexive Banach space. Let JF be the duality mapping on F and let η be a
real number with η ∈ (−∞, 1). Let T : H → H be a nonexpansive mapping and
let U : F → F be an η-demimetric and demiclosed mapping with F (U) ̸= ∅. Let
A : H → F be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint
operator of A. Suppose that F (T ) ∩ A−1F (U) ̸= ∅. Let x1 ∈ H and let {xn} be a
sequence generated by

zn = T
(
xn − λnA

∗JF (Axn − UAxn)
)
,

yn = αnxn + (1− αn)zn,

Cn = {z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥},
Dn = {z ∈ H : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Dnx1, ∀n ∈ N,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) satisfy the conditions such that

0 ≤ αn ≤ a < 1, and 0 < b ≤ λn∥A∥2 ≤ c < (1− η)

for some a, b, c ∈ R. Then {xn} converges strongly to a point z0 ∈ F (T )∩A−1F (U),
where z0 = PF (T )∩A−1F (U)x1.

Proof. Since

∥yn − z∥2 ≤ ∥xn − z∥2

⇐⇒∥yn∥2 − ∥xn∥2 − 2⟨yn − xn, z⟩ ≤ 0,

it follows that Cn is closed and convex for all n ∈ N. It is obvious that Dn is closed
and convex. Then Cn ∩ Dn is closed and convex for all n ∈ N. Let us show that
F (T ) ∩ A−1F (U) ⊂ Cn for all n ∈ N. Let z ∈ F (T ) ∩ A−1F (U). Then z = Tz and
Az = UAz. Since T is nonexpansive, we have that for z ∈ F (T ) ∩A−1F (U),

∥zn − z∥2 = ∥T
(
xn − λnA

∗JF (Axn − UAxn)
)
− Tz∥2

≤ ∥xn − λnA
∗JF (Axn − UAxn)− z∥2

= ∥xn − z − λnA
∗JF (Axn − UAxn)∥2

= ∥xn − z∥2 − 2⟨xn − z, λnA
∗JF (Axn − UAxn)⟩

+ ∥λnA
∗JF (Axn − UAxn)∥2(3.1)

≤ ∥xn − z∥2 − 2λn⟨Axn −Az, JF (Axn − UAxn)⟩
+ λ2

n∥A∥2∥JF (Axn − UAxn)∥2

≤ ∥xn − z∥2 − λn(1− η)∥Axn − UAxn∥2
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+ λ2
n∥A∥2∥Axn − UAxn∥2

= ∥xn − z∥2 + λn(λn∥A∥2 − (1− η))∥Axn − UAxn∥2

≤ ∥xn − z∥2

and hence

∥yn − z∥ = ∥αnxn + (1− αn)zn − z∥
≤ αn∥xn − z∥+ (1− αn)∥zn − z∥
≤ αn∥xn − z∥+ (1− αn)∥xn − z∥
≤ ∥xn − z∥.

Then we have that F (T ) ∩ A−1F (U) ⊂ Cn for all n ∈ N. We show that F (T ) ∩
A−1F (U) ⊂ Dn for all n ∈ N. It is obvious that F (T ) ∩ A−1F (U) ⊂ D1. Suppose
that F (T ) ∩ A−1F (U) ⊂ Dk for some k ∈ N. Then F (T ) ∩ A−1F (U) ⊂ Ck ∩ Dk.
From xk+1 = PCk∩Dk

x1, we have that

⟨xk+1 − z, x1 − xk+1⟩ ≥ 0, ∀z ∈ Ck ∩Dk

and hence

⟨xk+1 − z, x1 − xk+1⟩ ≥ 0, ∀z ∈ F (T ) ∩A−1F (U).

Then, F (T )∩A−1F (U) ⊂ Dk+1. By mathematical induction, we have that F (T )∩
A−1F (U) ⊂ Qn for all n ∈ N. Thus, we have that F (T )∩A−1F (U)) ⊂ Cn ∩Dn for
all n ∈ N. This implies that {xn} is well defined.

Since F (T )∩A−1F (U) is a nonempty, closed and convex subset of H, there exists
z0 ∈ F (T ) ∩ A−1F (U) such that z0 = PF (T )∩A−1F (U)x1. From xn+1 = PCn∩Dnx1,
we have that

∥x1 − xn+1∥ ≤ ∥x1 − y∥
for all y ∈ Cn ∩Dn. Since z0 ∈ F (T ) ∩A−1F (U) ⊂ Cn ∩Dn, we have that

(3.2) ∥x1 − xn+1∥ ≤ ∥x1 − z0∥.

This means that {xn} is bounded.
Next we show that limn→∞ ∥xn−xn+1∥ = 0. From the definition of Dn, we have

that xn = PDnx1. From xn+1 = PCn∩Dnx1 we have xn+1 ∈ Dn. Thus

∥xn − x1∥ ≤ ∥xn+1 − x1∥

for all n ∈ N. This implies that {∥x1 − xn∥} is bounded and nondecreasing. Then
there exists the limit of {∥x1 − xn∥}. From xn+1 ∈ Dn we have that

⟨xn − xn+1, x1 − xn⟩ ≥ 0.

This implies from (2.3) that

0 ≤ ∥xn+1 − x1∥2 − ∥xn − x1∥2 − ∥xn+1 − xn∥2

and hence

∥xn+1 − xn∥2 ≤ ∥xn+1 − x1∥2 − ∥xn − x1∥2.
Since there exists the limit of {∥x1 − xn∥}, we have that

(3.3) lim
n→∞

∥xn − xn+1∥ = 0.
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We have from xn+1 ∈ Cn and the definition of Cn that

∥yn − xn+1∥ ≤ ∥xn − xn+1∥.
From limn→∞ ∥xn − xn+1∥ = 0 we have that limn→∞ ∥yn − xn+1∥ = 0. Using this,
we have that

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(3.4)

We have from (3.1) that for any z ∈ F (T ) ∩A−1F (U),

∥yn − z∥2 = ∥αnxn + (1− αn)zn − z∥2

≤ αn ∥xn − z∥2 + (1− αn) ∥zn − z∥2

≤ αn ∥xn − z∥2 + (1− αn) ∥xn − z∥2

+ (1− αn)λn(λn ∥A∥2 − (1− η))∥Axn − UAxn∥2

≤ ∥xn − z∥2 + (1− αn)λn(λn ∥A∥2 − (1− η))∥Axn − UAxn∥2.
Thus we have that

(1− αn)λn(1− η−λn ∥A∥2)∥Axn − UAxn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

= (∥xn − z∥+ ∥yn − z∥)(∥xn − z∥ − ∥yn − z∥)
≤ (∥xn − z∥+ ∥yn − z∥) ∥xn − yn∥ .

From ∥yn − xn∥ → 0, 0 ≤ αn ≤ a < 1 and 0 < b ≤ λn∥A∥2 ≤ c < (1− η), we have
that

(3.5) lim
n→∞

∥Axn − UAxn∥2 = 0.

We also have that ∥yn−xn∥ = ∥αnxn+(1−αn)zn−xn∥ = (1−αn)∥zn−xn∥. From
∥yn − xn∥ → 0 and 0 ≤ αn ≤ a < 1, we have that

(3.6) lim
n→∞

∥xn − zn∥ = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging weakly
to w. Since A is bounded and linear, we also have that {Axni} converges weakly
to Aw. Since limn→∞ ∥Axn − UAxn∥2 = 0 and U is demiclosed, we have that
Aw ∈ F (U). We also have that

∥xn − Txn∥ = ∥xn − zn + zn − Txn∥

= ∥xn − zn + T
(
xn − λnA

∗JF (Axn − UAxn)
)
− Txn∥

≤ ∥xn − zn∥+ ∥xn − λnA
∗JF (Axn − UAxn)− xn∥

= ∥xn − zn∥+ λn∥A∗JF (Axn − UAxn)∥ → 0.

Since xni ⇀ w and a nonexpansive mapping T is demiclosed [18], we have w = Tw.
This implies that w ∈ F (T ) ∩A−1F (U).

From z0 = PF (T )∩A−1F (U)x1 and w ∈ F (T ) ∩A−1F (U), we have from (3.2) that

∥x1 − z0∥ ≤ ∥x1 − w∥ ≤ lim inf
i→∞

∥x1 − xni∥

≤ lim sup
i→∞

∥x1 − xni∥ ≤ ∥x1 − z0∥.
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Then we get that

lim
i→∞

∥x1 − xni∥ = ∥x1 − w∥ = ∥x1 − z0∥.

Since H satisfies the Kadec-Klee property, we have that x1 − xni → x1 − w and
hence

xni → w = z0.

Therefore, we have xn → w = z0. This completes the proof. □

4. Applications

In this section, using Theorem 3.1, we get well-known and new strong convergence
theorems which are connected with the split common fixed point problems in Banach
spaces. We know the following result obtained by Marino and Xu [9]; see also [23].

Lemma 4.1 ([9]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k be a real number with 0 ≤ k < 1 and U : C → H be a
k-strict pseudo-contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

Theorem 4.2. Let H1 and H2 be Hilbert spaces. Let k be a real number with
k ∈ [0, 1). Let T : H1 → H1 be a nonexpansive mapping and let U : H2 → H2 be
a k-strict pseud-contraction such that F (U) ̸= ∅. Let A : H1 → H2 be a bounded
linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A. Suppose
that F (T ) ∩A−1F (U) ̸= ∅. Let x1 ∈ H and let {xn} be a sequence generated by

zn = T
(
xn − λnA

∗(Axn − UAxn)
)
,

yn = αnxn + (1− αn)zn,

Cn = {z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥},
Dn = {z ∈ H : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Dnx1, ∀n ∈ N,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) satisfy the conditions such that

0 ≤ αn ≤ a < 1, and 0 < b ≤ λn∥A∥2 ≤ c < (1− k)

for some a, b, c ∈ R. Then {xn} converges strongly to a point z0 ∈ F (T )∩A−1F (U),
where z0 = PF (T )∩A−1F (U)x1.

Proof. Since U be a k-strict pseud-contraction of H2 into itself such that F (U) ̸= ∅,
from (1) in Examples, U is k-demimetric. Furthermore, from Lemma 4.1, U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. □

Theorem 4.3. Let H be a Hilbert space and let F be a smooth, strictly convex
and reflexive Banach space. Let JF be the duality mapping on F . Let C and D be
nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be
the metric projections of H onto C and F onto D, respectively. Let T : H → H
be a nonexpansive mapping, let A : H → F be a bounded linear operator such that
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A ̸= 0 and let A∗ be the adjoint operator of A. Suppose that C ∩ A−1D ̸= ∅. Let
x1 ∈ H and let {xn} be a sequence generated by

zn = PC

(
xn − λnA

∗JF (Axn − PDAxn)
)
,

yn = αnxn + (1− αn)zn,

Cn = {z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥},
Dn = {z ∈ H : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Dnx1, ∀n ∈ N,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) satisfy the conditions such that

0 ≤ αn ≤ a < 1, and 0 < b ≤ λn∥A∥2 ≤ c < 2

for some a, b, c ∈ R. Then the sequence {xn} converges strongly to a point z0 ∈
C ∩A−1D, where z0 = PC∩A−1Dx1.

Proof. Since PC is the metric projection of H onto C, PC is nonexpansive. Further-
more, since PD is the metric projection of F onto D, from (2) in Examples, PD is
(−1)-demimetric. We also have that if {xn} is a sequence in F such that xn ⇀ p and
xn − PDxn → 0, then p = PDp. In fact, assume that xn ⇀ p and xn − PDxn → 0.
It is clear that PDxn ⇀ p and ∥JF (xn − PDxn)∥ = ∥xn − PDxn∥ → 0. Since PD is
the metric projection of F onto D, we have that

⟨PDxn − PDp, JF (xn − PDxn)− JF (p− PDp)⟩ ≥ 0.

Therefore, −∥p − PDp∥2 = ⟨p − PDp,−JF (p − PDp)⟩ ≥ 0 and hence p = PDp.
Therefore, we have the desired result from Theorem 3.1. □

Theorem 4.4. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let A and B be
maximal monotone operators of H into H and F into F ∗, respectively. Let Jλ be
the resolvent of A for λ > 0 and let Qµ be the metric resolvent of B for µ > 0,
respectively. Let T : H → F be a bounded linear operator such that T ̸= 0 and let
T ∗ be the adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ H
and let {xn} be a sequence generated by

zn = Jλ

(
xn − λnT

∗JF (Txn −QµTxn)
)
,

yn = αnxn + (1− αn)zn,

Cn = {z ∈ H : ∥yn − z∥ ≤ ∥xn − z∥},
Dn = {z ∈ H : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Dnx1, ∀n ∈ N,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) satisfy the conditions such that

0 ≤ αn ≤ a < 1, and 0 < b ≤ λn∥T∥2 ≤ c < 2

for some a, b, c ∈ R. Then the sequence {xn} converges strongly to a point z0 ∈
A−10 ∩ T−1(B−10), where z0 = PA−10∩T−1(B−10)x1.



314 M. HOJO AND W. TAKAHASHI

Proof. Since Jλ is the resolvent of A on H, Jλ is nonexpansive. Furthemore, since
Qµ is the metric resolvent of B on F , from (3) in Examples, Qµ is (−1)-demimetric.
We also have that if {xn} is a sequence in F such that xn ⇀ p and xn−Qµxn → 0,
then p = Qµp. In fact, assume that xn ⇀ p and xn − Qµxn → 0. It is clear that
Qµxn ⇀ p and ∥JF (xn − Qµxn)∥ = ∥xn − Qµxn∥ → 0. Since Qµ is the metric
resolvent of B, we have from [2] that

⟨Qµxn −Qµp, JF (xn −Qµxn)− JF (p−Qµp)⟩ ≥ 0.

Therefore, −∥p − Qµp∥2 = ⟨p − Qµp,−JF (p − Qµp)⟩ ≥ 0 and hence p = Qµp.
Therefore, we have the desired result from Theorem 3.1. □
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