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THE SPLIT COMMON NULL POINT PROBLEM AND
THE SHRINKING PROJECTION METHOD
IN TWO BANACH SPACES

SATORU TAKAHASHI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split common null point problem with
metric resolvents of maximal monotone operators in two Banach spaces. Then
using the shrinking projection method, we prove a strong convergence theorem
for finding a solution of the split common null point problem in two Banach
spaces.

1. INTRODUCTION

Let Hy and Hy be two real Hilbert spaces. Let D and ) be nonempty, closed
and convex subsets of H; and Hs, respectively. Let T : Hy — Hs be a bounded
linear operator. Then the split feasibility problem [5] is to find z € H; such that
z € DNT'Q. Byrne, Censor, Gibali and Reich [4] also considered the following
problem: Given set-valued mappings A : H; — 271 B : Hy — 2H2 and a bounded
linear operator T : Hy — Ha, the split common null point problem [4] is to find a
point z € H; such that

ze AlonT(B710),
where A7'0 and B~'0 are null point sets of A and B, respectively. Defining U =
T*(I—Pg)T in the split feasibility problem, we have that U : H; — H; is an inverse
strongly monotone operator [1], where 7™ is the adjoint operator of T' and Py is
the metric projection of Hy onto Q. Furthermore, if D N T~1Q is nonempty, then
2 € DNT~'Q is equivalent to

(1.1) 2= Pp(I — AT*(I — P)T)z,

where A > 0 and Pp is the metric projection of H; onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem and the split common null point problem; see, for instance,
[1,4,6,8,19].

Recently, using the shrinking projection method introdued by Takahashi, Takeuchi
and Kubota [18], Takahashi and Takahashi [12] proved the following theorem; see
also [17].
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Theorem 1.1. Let E and F be uniformly conver and smooth Banach spaces and
let Jg and Jp be the duality mappings on E and F, respectively. Let A and B be
mazimal monotone operators of E into 2F" and F into 2F" such that A='0 # ()
and B~10 # 0, respectively. Let Q. be the metric resolvent of B for p > 0. Let
T:FE — F be a bounded linear operator such that T # 0 and let T* be the adjoint
operator of T. Suppose that A~*0NT~1(B~10) # 0. Let z1 € E and let C; = A~10.
Let {z,} be a sequence generated by

2n = Tn — Mg T Tp(Tn — Qpu, Ty,
Cnt1=12€Cy : (zn — 2, Jp(xn — 2)) > 0},
Tptl = PCn+1 1, Vn € N,

where {\n}, {in} C (0,00) satisfy the conditions such that for some a,b,c € R,
0<a<\|T|?<b<land0<c¢<p, VneN

Then the sequence {x,} converges strongly to a point zg € A~*0NT~1(B710), where
zZ0 — PAfl()ﬁTfl(Bfl[))wl-

In this paper, motivated by Takahashi and Takahashi’s theorem (Theorem 1.1),
we consider the split common null point problem with metric resolvents of maximal
monotone operators in two Banach spaces. Then using the shrinking projection
method, we prove a strong convergence theorem for finding a solution of the split
common null point problem in two Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {z,} is a sequence
in E, we denote the strong convergence of {z,,} to x € FE by z,, — x and the weak
convergence by x,, — x. The modulus ¢ of convexity of F is defined by

o(e) = inf{l - H:c;—y\l

for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every € > 0. A uniformly convex Banach space is strictly convex and
reflexive. We also know that a uniformly convex Banach space has the Kadec-Klee
property, that is, z, — u and ||z,| — Hu|| imply z, — u.

The duality mapping J from E into 2F" is defined by

Jr={z* € B*: (z,2%) = [l«|* = [l2"||*}
for every x € E. Let U = {z € E : ||z|]| = 1}. The norm of F is said to be Géateaux
differentiable if for each =,y € U, the limit

ety ]
t—0 t

el < Ll < L le - yll }

(2.1)

exists. In the case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
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a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J. on E*. For more details, see [13] and [14]. We know the
following result:

Lemma 2.1 ([13]). Let E be a smooth Banach space and let J be the duality
mapping on E. Then, (x —y,Jx — Jy) > 0 for all z,y € E. Furthermore, if E is
strictly convex and (x —y, Jx — Jy) =0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any « € E, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call Po the
metric projection of E onto C.

Lemma 2.2 ([13]). Let E be a smooth, strictly conver and reflexive Banach space.
Let C' be a nonempty, closed and convex subset of E and let x1 € E and z € C.
Then, the following conditions are equivalent:

(1) z = Poxy;

(2) (z—y,J(z1—2)) 20, VyeC.

Let E be a Banach space and let A be a mapping of F into 2&". The effective
domain of A is denoted by dom(A), that is, dom(A) = {z € F : Az # 0}. A
multi-valued mapping A on F is said to be monotone if (x — y, u* — v*) > 0 for all
x,y € dom(A), u* € Az, and v* € Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [3]; see also [14, Theorem
3.5.4].

Theorem 2.3 ([3]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let A be a monotone operator of E into
2E"  Then A is mazimal if and only if for any r > 0,

R(J+rA)=FE",
where R(J + rA) is the range of J +rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let A be a maximal monotone operator of E into 28", For all z € E and r > 0,
we consider the following equation

0€ J(zy —x) +rAz,.

This equation has a unique solution x,. We define J, by =, = J.x. Such J.,r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A0 ={2z€ E:0¢€ Az}. We know that A~10 is closed and convex; see [14].

For a sequence {C),} of nonempty, closed and convex subsets of a Banach space
E, define s-Li,, C}, and w-Ls, C, as follows: x € s-Li,, C}, if and only if there exists
{z,} C E such that {x,} converges strongly to x and z, € C, for all n € N.
Similarly, y € w-Ls,, C), if and only if there exist a subsequence {C,,} of {C),,} and
a sequence {y;} C F such that {y;} converges weakly to y and y; € C,, for all i € N.
If Cy satisfies

(2.2) Co = s-LiC,, = w-LsCy,
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it is said that {C,} converges to Cj in the sense of Mosco [7] and we write Cy =
M-lim;, 00 Cp,. It is easy to show that if {C),} is nonincreasing with respect to
inclusion, then {C},} converges to ()~ Cy in the sense of Mosco. For more details,
see [7]. The following lemma was proved by Tsukada [20].

Lemma 2.4 ([20]). Let E be a uniformly convex Banach space. Let {C,} be a
sequence of nonempty, closed and convex subsets of E. If Cy =M-lim,,_,~ C,, exists
and nonempty, then for each x € E, {Pc, x} converges strongly to Pc,x, where Pc,,
and Pc, are the mertic projections of E onto Cy, and Cy, respectively.

3. MAIN RESULT

In this section, using the shrinking projection method, we prove a strong conver-
gence theorem for finding a solution of the split common null point problem in two
Banach spaces. We follow [12,16] for the proof.

Theorem 3.1. Let E and F be uniformly conver and smooth Banach spaces and
let Jg and Jp be the duality mappings on E and F, respectively. Let A and B be
mazximal monotone operators of E into 2F" and F into 2" such that A='0 # 0 and
B710 # 0, respectively. Let Jy and Q,, be the metric resolvents of A for A >0 and
B for u > 0, respectively. Let T : E — F be a bounded linear operator such that
T # 0 and let T* be the adjoint operator of T. Suppose that A~10NT~1(B~10) # 0.
Let x1 € E and let Cy = E. Let {z,,} be a sequence generated by

(zn =z, — nnngT*JF(Txn — Qu,Tzy),
Yn = JIx, 2n,
Cni1=1{2€Cy:(zn— 2z, Jp(xy — 2n)) >0
and  (yn — 2z, Jp(zn — yn)) > 0},

| Znt1 = Fo, 71, Vn € N,

where {nn}, {\n}, {pn} C (0,00) satisfy the following conditions such that for some
a,b,c e R,

0<a§77nHT||2§b<1and0<c§)\n,un, Vn € N.

Then the sequence {x,} converges strongly to a point wy € A~0 N T~ (B~10),
where w1 = Pp-19n7-1(B-10)%1-

Proof. Tt is obvious that C,, are closed and convex for all n € N. We show that
ATt oNnT-Y(B710) c C, for all n € N. It is easy that A~'0NT-Y(B~10) C C.
Suppose that A~10NT~1(B~10) C C}, for some k € N. Using this, let us show that
(zk— 2, Jp(rr—21)) > 0 and (yp — 2, Jp(zk —yx)) > 0 for all z € A~toNnT~1(B~10).
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In fact, we have that for all z € A~10NT~1(B~10),
(zk — 2z, Jp(xr — 21)) = {2k — 2 + 2k — 2, JE(x) — 21))
= (—md 5 T* Jp(Tay — Qp, Txy)
+ x5 — 2, JE(nnglT*JF(Txk - QuTxy)))
= (= J g T*Jp(Txy — Qu,Tay) + ap — 2, T Jp(Tag — Qu Tay))
= =il T* Jp (T — QuTaw)|I” + (ox — z,m T Jp(Tay — QuTax))
(3.1) = el T*Tr(Tag — Qu.Ti)||* + me(Tay — Tz, Jp(Tay, — QuTxy))
=~ T Ip (T — Qu,Tax)|?
+ i (Txy, — QuTry + QuTrr — Tz, Jp(Tay — Qu.Txr))
=~ | T* Tp(Txx — QuTay)|?
+ il T2y, — Qu Tarll + m{Qu Ty — Tz, Jp(Tay — Qu,Tay))
> — i TIPITxy, — Quy Tl + mel| Tak — Qpu T
= (1 = | TP | Ty — Quy T
> 0.
Furthermore, we have that for all z € A~'0NT~1(B~10),
(3.2) (ye — 2, I (2K — yk)) = (Ia, 26 — 2, JE (21 — I 26)) > 0.

Then, A~'0NT~1(B~10) C Ck,1. By mathematical induction, we have that A=10N
T-1(B710) C C, for all n € N. This implies that {x,} is well defined.

Since A710 N T~1(B~10) is a nonempty, closed and convex subset of E, there
exists w; € A710NT~1(B~10) such that wy = Pa-19qr-1(B-10)71. We have from
xn = Po, 1 that

21 = 2|l < flz1 =y

for all y € C,. Since wy € A~'0NT~Y(B~10) C C,,, we have that
(3.3) 21 — 2nll < flzr —w-

Let Cp = (o2, Cp. Since Cyp D A0 N T7HB710) # 0, we have that Cy
is nonempty. Since Cyp = M-lim, o C, and x, = Pg,x1 for every n € N, by
Lemma 2.4 we have that

(3.4) Tyn = 20 = Poy1.
We have from z,,41 € Cy41 that
<Zn — Tn+1, JE(xn - Zn)> >0
and hence
<Zn — XTp+ Tn — Tn+1, JE(«TTL - Zn)> > 0.
This implies that
(Tn — Tnt1, JE(Tn — 20)) > |20 — an2

Since ||z, — zp41]| — 0 from (3.4), we get that x,, — z, — 0.
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On the other hand, we know that
|20 — znll = IJE(zn — 20)|| = 1T TP (T — Qu, Txn) |-

Since 0 < a < ,||T||? < b < 1for all n € N and lim,, o0 |2, — 2s|| = 0, we have
that limy, o0 |T*Jp(Txy, — Qu,Txy)|| = 0. Then we get from (3.1) that

(3.5) nh_>r20 | Txy — Qu, Tyl = 0.
Furthermore, we have from x,,41 € C,41 that

<yn — Tn+41, JE(Zn - yn)> >0
and hence

(Yn — 20 + 20 — Tp + Tn — Tnt1, JE (20 — Yn)) 2 0.
This implies that

<Zn — Tn + Tn — Tpyl, JE(ZTL - yn)> > ||Zn - yn||2

From ||z, — xp41]| = 0 and ||z, — z,|| — 0, we have that lim, oo [|yn — 2n|| = 0.
Then we get that
(3.6) lim |z, — Jx,2n| = 0.
n—oo
Since {z,} converges strongly to zp, we have from lim,_,« ||z, — 25| = 0 that

{zn} converges strongly to zp. We also have from (3.6) that {.J, z,} converges
strongly to zp. Since J,, is the metric resolvent of A, we have that

JE(Zn - J/\nzn)
An
for all n € N. From the monotonicity of A we have that
JE(Zn - J)\nzn)>
An
for all (s,t*) € A. We have from ||Jg(zn — Jx,zn)|l = ll2n — Jr,2nll — 0 and
0 < c < A, that 0 < (s — 29,t* — 0) for all (s,t*) € A. Since A is maximal
monotone, we have that zy € A~10. Furtermore, since T is bounded and linear, we

also have that {7z, } converges strongly to T'zp. From (3.5) we have that {Q,,, Tz, }

converges strongly to T'zp. Since @, is the metric resolvent of B, we have that
JF(TxanunTxn)
Hn

that

S AJ)\nzn

0 < <S - J)\nzn,t* -

€ BQu, Tz, for all n € N. From the monotonicity of B we have

Jp(Txy, — QunTxn)>
Hn
for all (u,v*) € B. We have from ||Jp(T2ni — Qu,Txyn)|| = |Txn — Qu,Txyn| — 0
and 0 < ¢ < py, that 0 < (u — T'zg,v* — 0) for all (u,v*) € B. Since B is maximal
monotone, we have that Tzy € B~10. Therefore, 29 € A~10NT~1(B~10).
From w1 = Py-19n7-1(B-10)Z1, 20 € A~toNnT~1(B710) and (3.3), we have that

0< <u - Qu, Ty, v" —

[z1 —wi]| < [lz1 — 20l = lim [lz1 — 2| < [l — wi]]-
n—oo
Then we get that
|21 = 20| = [lz1 — wi]
and hence zy = wy. Therefore, we have x,, — z9 = wy. This completes the proof. [
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