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2. Fejér monotonicity

We start by recalling some pleasant properties of Fejér monotone sequences.

Fact 2.1. Let (xn)n∈N be a sequence in X that is Fejér monotone with respect to
a nonempty closed convex subset C of X. Then the following hold:

(i) The sequence (xn)n∈N is bounded.
(ii) For every c ∈ C, the sequence (∥xn − c∥)n∈N converges.
(iii) The set of strong cluster points of (xn)n∈N lies in a sphere of X.
(iv) The “shadow sequence” (PCxn)n∈N converges strongly to a point in C.
(v) If intC ̸= ∅, then (xn)n∈N converges strongly to a point in X.
(vi) If C is a closed affine subspace of X, then (∀n ∈ N) PCxn = PCx0.
(vii) Every weak cluster point of (xn)n∈N that belongs to C must be limn→∞ PCxn.
(viii) The sequence (xn)n∈N converges weakly to some point in C if and only if

all weak cluster points of (xn)n∈N lie in C.
(ix) If all weak cluster points of (xn)n∈N lie in C, then (xn)n∈N converges weakly

to limn→∞ PCxn.

Proof. (i)&(ii): [4, Proposition 5.4]. (iii): Clear from (ii). (iv): [4, Proposition 5.7].
(v): [4, Proposition 5.10]. (vi): [4, Proposition 5.9(i)]. (vii): This follows from [4,
Corollary 5.8]. (viii): This follows from [4, Theorem 5.5]. (ix): Combine (viii) with
(vii). □

The following result was first presented in [2, Theorem 6.2.2(ii)]; for completeness,
we include its short proof.

Lemma 2.2. Let (xn)n∈N be a sequence in X that is Fejér monotone with respect
to a nonempty closed convex subset C of X. Let w1 and w2 be weak cluster points
of (xn)n∈N. Then w1 − w2 ∈ (C − C)⊥.

Proof. Let (c1, c2) ∈ C × C. Using Fact 2.1(ii), set Li := limn→∞ ∥xn − ci∥, for
i ∈ {1, 2}. Note that

(2.1) ∥xn − c1∥2 = ∥xn − c2∥2 + ∥c1 − c2∥2 + 2⟨xn − c2, c2 − c1⟩.

Now suppose that xkn ⇀ w1 and xln ⇀ w2. Taking the limit in (2.1) along the two

subsequences (kn)n∈N and (ln)n∈N yields L1 = L2 + ∥c2 − c1∥2 + 2⟨w1 − c2, c2 − c1⟩
and L1 = L2 + ∥c2 − c1∥2 + 2⟨w2 − c2, c2 − c1⟩. Subtracting the last two equations
yields 2 ⟨w1 − w2, c2 − c1⟩ = 0. □

We are now ready for our first result which can be seen as a finite-dimensional
variant of [6, Lemma 2.1] (where A is a closed linear subspace) and Fact 2.1(viii)
(where A = X).

Proposition 2.3. Suppose that X is finite-dimensional, let (xn)n∈N be a sequence
in X that is Fejér monotone with respect to a nonempty closed convex subset C of
X, and let A be a closed convex subset of X such that C ⊆ A. If all cluster points
of (PAxn)n∈N lie in C, then (PAxn)n∈N converges; in fact,

(2.2) lim
n→∞

PAxn = lim
n→∞

PCxn.
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Proof. Set c∗ := limn→∞ PCxn (see Fact 2.1(iv)). By Fact 2.1(i), (xn)n∈N is
bounded, hence so is (PAxn)n∈N because PA is nonexpansive. Now assume that
all cluster points of (PAxn)n∈N lie in C. Let c be an arbitrary cluster point of
(PAxn)n∈N. Then there exist a subsequence (xkn)n∈N of (xn)n∈N and a point x ∈ X
such that xkn → x and PAxkn → PAx = c ∈ C. It follows that c∗ ← PCxkn →
PCc = c. Hence c = c∗ and the result follows. □

Our second result decouples Fejér monotonicity into two properties in the case
when the underlying set can be written as the sum of a set and a cone.

Proposition 2.4. Let (xn)n∈N be a sequence in X, let E be a nonempty subset of
X and let K be a nonempty convex cone of X. Then the following are equivalent:

(i) (xn)n∈N is Fejér monotone with respect to E +K.
(ii) (xn)n∈N is Fejér monotone with respect to E and (∀n ∈ N) xn+1 ∈ xn+K⊕,

where K⊕ :=
{
u ∈ X

∣∣ inf ⟨u,K⟩ ≥ 0
}
.

Proof. Set

(2.3) (∀x ∈ X)(∀n ∈ N) ∆n(x) := ∥xn − x∥2 − ∥xn+1 − x∥2 .

Then for every e ∈ E and k ∈ K, we have

∆n(e+ k) = ∥xn − e∥2 + ∥k∥2 − 2 ⟨xn − e, k⟩(2.4a)

−
(
∥xn+1 − e∥2 + ∥k∥2 − 2 ⟨xn+1 − e, k⟩

)
= ∆n(e) + 2 ⟨xn+1 − xn, k⟩ .(2.4b)

Assume first that (i) holds. Then (xn)n∈N is Fejér monotone with respect to E
because E ⊆ E +K. Let (e, k) ∈ E ×K and n ∈ N. Using (2.3),

(2.5) 0 ≤ ∆n(e+ k) = ∆n(e) + 2 ⟨xn+1 − xn, k⟩ .

Since K is a cone, this shows that 2 inf ⟨xn+1 − xn,R++k⟩ ≥ −∆n(e) > −∞. Hence
⟨xn+1 − xn, k⟩ ≥ 0. It follows that xn+1 − xn ∈ K⊕. Conversely, if (ii) holds, then
(2.4) immediately yields (i). □

The following consequence of Proposition 2.4 shows that Proposition 2.4 is a
generalization of Fact 2.1(vi).

Corollary 2.5. Let (xn)n∈N be a sequence in X, and let C be a closed affine subspace
of X, say C = c + Y , where Y is a closed linear subspace of X. Then (xn)n∈N is
Fejér monotone with respect to Y if and only if (∀n ∈ N) ∥xn+1 − c∥ ≤ ∥xn − c∥
and xn+1 ∈ xn + Y ⊥, in which case (PCxn)n∈N is a constant sequence.

We continue with the following lemma, which is a slight generalization of a the-
orem of Ostrowski (see [15, Theorem 26.1]) whose proof we follow.

Lemma 2.6. Let (Y, d) be a metric space, and let (xn)n∈N be a sequence in a
compact subset C of Y such that d(xn, xn+1)→ 0. Then the set of cluster points of
(xn)n∈N is a compact connected subset of C.
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Proof. Denote the set of cluster points of (xn)n∈N by S and assume to the contrary
that S = A ∪B where A and B are nonempty closed subsets of X and A ∩B = ∅.
Then

(2.6) δ := inf
(a,b)∈A×B

d(a, b) > 0.

By assumption on (xn)n∈N, there exists n0 ∈ N such that (∀n ≥ n0) d(xn, xn+1) ≤
δ/3. Let a ∈ A. Then there exists m > n0 such that d(xm, a) < δ/3. Because
(xn)n>m has a cluster point in B, there exists a smallest integer k > m such that
d(xk, B) < 2δ/3. Then d(xk−1, B) ≥ 2δ/3 and hence d(xk, B) ≥ d(xk−1, B) −
d(xk−1, xk) ≥ 2δ/3 − δ/3 = δ/3. Thus δ/3 ≤ d(xk, B) < 2δ/3. Repeating this
argument yields a subsequence (xkn)n∈N of (xn)n∈N such that (∀n ∈ N) δ/3 ≤
d(xkn , B) < 2δ/3. Let x be a cluster point of (xkn)n∈N. It follows that

(2.7) δ/3 ≤ d(x,B) ≤ 2δ/3

Obviously, x /∈ B. Hence x ∈ A, and therefore (recall (2.6)) δ ≤ δ(x,B) ≤ 2δ/3 < δ,
which is absurd. □

An immediate consequence of Lemma 2.6 is the classical Ostrowski result.

Corollary 2.7 (Ostrowski). Suppose that X is finite-dimensional and let (xn)n∈N
be a bounded sequence in X such that (xn)n∈N is asymptotically regular, i.e., xn −
xn+1 → 0. Then the set of cluster points of (xn)n∈N is compact and connected.

We are now in position to prove the following key result which can be seen as a
variant of Fact 2.1(v).

Theorem 2.8 (a new sufficient condition for convergence). Suppose that X is finite-
dimensional and that C is a nonempty closed convex subset of X of co-dimension
1, i.e.,

(2.8) codimC := codim(aff C − aff C) = 1.

Let (xn)n∈N be a sequence that is Fejér monotone with respect to C and asymptoti-
cally regular, i.e., xn − xn+1 → 0. Then (xn)n∈N is actually convergent.

Proof. By Fact 2.1(i), (xn)n∈N is bounded. Denote by S the set of cluster points of
(xn)n∈N. Since xn−xn+1 → 0, Corollary 2.7 implies that S is connected. Moreover,
S lies in a sphere of X due to Fact 2.1(iii). On the other hand, by combining
Lemma 2.2 and (2.8), S lies in a line of X. Altogether S is a connected subset of a
sphere that lies on a line. We deduce that S is a singleton. □

We conclude with two examples illustrating that the assumptions on asymptotic
regularity and co-dimension 1 are important.

Example 2.9. Suppose that X = R2, set C = {0} × R, and (∀n ∈ N) xn =
((−1)n, 0). Then codimC = 1 and (∀c ∈ C) (∀n ∈ N) ∥xn − c∥ = ∥xn+1 − c∥,
hence (xn)n∈N is Fejér monotone with respect to C. However, (xn)n∈N does not
converge. This does not contradict Theorem 2.8 because ∥xn − xn+1∥ = 2 ̸→ 0.
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Example 2.10. Suppose that X = R2, set C = {(0, 0)} ⊆ X, and (∀n ∈ N) θn =∑n
k=1(1/k) and xn = cos(θn)(1, 0) + sin(θn)(0, 1). Then (xn)n∈N is asymptotically

regular and Fejér monotone with respect to C. However, the set of cluster points of
(xn)n∈N is the unit sphere because the harmonic series diverges. Again, this does
not contradict Theorem 2.8 because codimC = 2 ̸= 1.

3. Asymptotic behaviour of nonexpansive mappings

From now on, we assume that

(3.1) T : X → X is nonexpansive.

Let x and y be in X. It is clear that (∀n ∈ N) ∥Tn+1x− Tn+1y∥ ≤ ∥Tnx− Tny∥ is
bounded. The following question is thus extremely natural:
(3.2)

Under which conditions on T must (Tnx− Tny)n∈N always converge weakly?

We first note that (3.2) will impose some restriction on T :

Example 3.1. Suppose that X = R, that T = − Id, that x ̸= 0 and that y = 0.
Then the sequence (Tnx− Tny)n∈N = ((−1)nx)n∈N is not convergent.

The following two results are well known.

Fact 3.2. (See, e.g., [16, Corollary 6].) Exactly one of the following holds:

(i) Fix(T ) = ∅ and (∀x ∈ X) ∥Tnx∥ → ∞.
(ii) Fix(T ) ̸= ∅ and (∀x ∈ X) (Tnx)n∈N is bounded.

Fact 3.3. (See, e.g., [1, Theorem 1.2].) Suppose that Fix(T ) ̸= ∅ and let x ∈ X.
Then (Tnx)n∈N is weakly convergent if and only if Tnx− Tn+1x ⇀ 0; if this is the
case, then (Tnx)n∈N converges weakly to a point in Fix(T ).

To make further progress, let us recall that ran (Id−T ) is a nonempty closed
convex set, which makes the vector

(3.3) v := Pran(Id−T )0

well defined (see [9], [1] and [16]), and which gives rise to the generalized (possibly
empty) fixed point set

(3.4) Fix(v + T ) =
{
x ∈ X

∣∣ x = v + Tx
}
.

We now recall the following helpful fact.

Fact 3.4. (See [8, Proposition 2.4].) Suppose that Fix(v + T ) ̸= ∅. Then the
following hold:

(i) Fix(v + T )− R+v ⊆ Fix(v + T ).
(ii) (∀y ∈ Fix(v + T ))(∀n ∈ N) Tny = y − nv.
(iii) For every x ∈ X, the sequence (Tnx + nv)n∈N is Fejér monotone with

respect to Fix(v + T ).
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Remark 3.5. Suppose that Fix(v + T ) ̸= ∅. Then

(3.5a) (∀x ∈ X)(∀y ∈ X) (Tnx− Tny)n∈N is weakly convergent

if and only if

(3.5b) (∀x ∈ X) (Tnx+ nv)n∈N is weakly convergent.

Indeed, if (3.5a) holds, then (3.5b) follows by choosing y ∈ Fix(v+T ) and recalling
Fact 3.4(ii). Conversely, assume that (3.5b) holds. Then (Tnx+nv)n∈N and (Tny+
nv)n∈N are weakly convergent, and so is their difference which yields (3.5a).

We can now give a mild sufficient condition for (3.2):

Theorem 3.6. Suppose that X = R, that v ̸= 0, and that Fix(v + T ) ̸= ∅. Then
the sequence (Tnx+ nv)n∈N is convergent.

Proof. By Fact 3.4(i)&(iii), the sequence (Tnx + nv)n∈N is Fejér monotone with
respect to C := Fix(v + T ), and C contains a ray. Therefore, intC ̸= ∅ and
Fact 2.1(v) yields the convergence of (Tnx+ nv)n∈N. □

Remark 3.7. Example 3.1 shows that the assumption that v ̸= 0 in Theorem 3.6
is important.

Theorem 3.8. Suppose that T is affine, say T : x→ Lx+ b, where L is linear and
nonexpansive, and b ∈ X. Suppose furthermore that L is asymptotically regular1,
and let x and y be points in X. Then

(3.6) Tnx− Tny = Ln(x− y)→ PFix(L)(x− y).

Proof. Using [8, Theorem 3.2(ii)], we have (∀n ∈ N) Tnx − Tny = Lnx − Lny =
Ln(x−y). The asymptotic regularity assumption yields Ln(x−y)−Ln+1(x−y)→ 0.
Using [4, Proposition 5.27], we see that altogether Tnx − Tny = Ln(x − y) →
PFix(L)(x− y) □

To make further progress we impose now additional assumptions on T . Recall
that our nonexpansive T is averaged if there exist a nonexpansive operator R :
X → X and a constant α ∈ ]0, 1[ such that T = (1− α) Id+αR; equivalently, (see,
e.g., [4, Proposition 4.25])

(3.7) (∀x ∈ X)(∀y ∈ X) ∥Tx− Ty∥2+ 1−α
α ∥(Id−T )x− (Id−T )y∥2 ≤ ∥x− y∥2 .

If α = 1/2, then T is said to be firmly nonexpansive. Averaged operators have
proven to be a useful class in fixed point theory and optimization; see [1] and [12].

The following result yields a generalized asymptotic regularity for averaged non-
expansive operators.

Lemma 3.9. Suppose that T is averaged and that Fix(v+ T ) ̸= ∅. Then for every
x ∈ X, Tnx− Tn+1x→ v; equivalently, (Tnx+ nv)n∈N is asymptotically regular.

1Recall that T is asymptotically regular at x if Tnx− Tn+1x → 0 and that T is asymptotically
regular if it is asymptotically regular at every point.
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Proof. Let x ∈ X and y ∈ Fix(v+T ). Since T is averaged, it follows from (3.7) and
Fact 3.4(ii) that there exists α ∈ ]0, 1[ such that

(3.8) (∀n ∈ N) ∥Tn+1x− Tn+1y∥2 ≤ ∥Tnx− Tny∥2 − 1−α
α ∥T

nx− Tn+1x− v∥2.

Telescoping yields
∑∞

n=0

∥∥Tnx− Tn+1x− v
∥∥2 < +∞ and consequently Tnx−Tn+1x

→ v. □

Amazingly, on the real line, averagedness is a sufficient condition for (3.2):

Theorem 3.10. Suppose that X = R and that T is averaged. Let x and y be in R.
Then the sequence (Tnx− Tny)n∈N is convergent.

Proof. Set (∀n ∈ N) an := Tnx − Tny. We must show that (an)n∈N is convergent.
From (3.7), there exists α ∈ ]0, 1[ such that

(3.9) (∀n ∈ N) a2n+1 +
1−α
α (an − an+1)

2 ≤ a2n.

Set β := 1−2α and note that 0 ≤ |β| < 1. By viewing (3.9) as a quadratic inequality
in an+1, we learn that

(3.10) (∀n ∈ N) |an+1| ≤ |an| and an+1 lies between an and βan.

If some an0 = 0, then an → 0 and we are done. So assume that an ̸= 0 for every
n ∈ N. If (an)n∈N changes sign only finitely many times, then (an)n∈N is eventually
always positive or negative. Since (|an|)n∈N is decreasing, we deduce that (an)n∈N
is convergent. Finally, we assume that (an)n∈N changes signs frequently. If n ∈ N
and sgn(an+1) = − sgn(an), then |an+1| ≤ |β||an|; since this occurs infinitely many
times, it follows that an → 0. □

Theorem 3.11. Suppose that X is finite-dimensional, that T is averaged, that
Fix(v+T ) ̸= ∅, and that that codimFix(v+T ) ≤ 1. Then for every (x, y) ∈ X×X,
the sequence (Tnx− Tny)n∈N is convergent.

Proof. In view of Remark 3.5, we let x ∈ X and must show that (Tnx+ nv)n∈N is
convergent. Set C := Fix(v + T ) and (∀n ∈ N) xn := Tnx + nv. By Fact 3.4(iii),
(xn)n∈N is Fejér monotone with respect to C. Suppose first that codimC = 0.
Then intC ̸= ∅ and we are done by Fact 2.1(v). Now assume that codimC = 1.
By Lemma 3.9, (xn)n∈N is asymptotically regular. Altogether, by Theorem 2.8,
(xn)n∈N is convergent. □

Corollary 3.12. Let x ∈ X. Suppose that X = R2, that T is averaged, that
v ̸= 0, and that Fix(v + T ) ̸= ∅. Then for every (x, y) ∈ X × X, the sequence
(Tnx− Tny)n∈N is convergent.

Proof. Because v ̸= 0, Fact 3.4(i) implies that dimFix(v+T ) ≥ 1, i.e., codimFix(v+
T ) ≤ dim(X)− 1 = 1. The result now follows from Theorem 3.11. □

4. Open problems

We now present a list of open problems that may be easier than the general
question (3.2). Let x and y be in X.

P1: Suppose thatX = R, v = 0 but Fix(T ) = ∅. Is (Tnx−Tny)n∈N convergent?
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P2: Suppose that X = R, v ̸= 0 but Fix(v + T ) = ∅. Is (Tnx − Tny)n∈N
convergent?

P3: Does Corollary 3.12 remain true if dim(X) ≥ 3?
P4: What can be said for (3.2) if we replace “weakly” by “strongly”?

Let us conclude with an example which numerically illustrates that the answer
to P3 may be positive.

Example 4.1. Suppose that X = R3 and let A and B be two closed balls in X.
Set2 T = 1

2(Id+RBRA). Then T is firmly nonexpansive and hence averaged. (In
fact, T is the Douglas–Rachford operator [14] associated with the sets A and B.) It
follows from [5, Theorem 3.5] that A ∩ (B + v) +NA−Bv ⊆ Fix(v + T ) ⊆ v + A ∩
(B+v)+NA−Bv. Furthermore, [7, Example 5.7] implies that NA−Bv is a ray, hence
Fix(v+T ) is ray and therefore dimFix(v+T ) = 1 and so codimFix(v+T ) = 2. Even
though Theorem 3.11 is not applicable here, we still conjecture that (Tnx+nv)n∈N
converges (see Figure 1 below).

Figure 1. A GeoGebra [13] snapshot that illustrates Example 4.1.
The first few terms of the sequence (Tnx+ nv)n∈N (blue points) are
depicted.
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