o,
Y Linear and Wenlinear \)@aﬁeﬁ& S’ SN 2ieaater Copyriaht 2015

Volume 1, Number 2, 2015, 271-285

%

A COMPOSITE EXTRAGRADIENT-LIKE ALGORITHM FOR
INVERSE-STRONGLY MONOTONE MAPPINGS AND STRICTLY
PSEUDOCONTRACTIVE MAPPINGS
JONG SOO JUNG

This paper is dedicated to Professor A. T. Lau on the occasion of his 70th Birthday.

ABSTRACT. In this paper, we introduce a new composite extragradient-like algo-
rithm for finding a common element of the solution set of variational inequality
problem for an inverse-strongly monotone mapping and the fixed point set of a
strictly pseudocontractive mapping in a Hilbert space. Under suitable control
conditions, we prove the strong convergence of the sequence generated by the
proposed algorithm to a common element of the solution set and the fixed point
set, which is a solution of a certain variational inequality. As a direct conse-
quence, we obtain the unique minimum norm common point of the solution set
and the fixed point set.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||.
Let C' be a nonempty closed convex subset of H and S : C' — C be self-mapping
on C. We denote by Fiz(S) the set of fixed points of S.

Let A be a nonlinear mapping of C into H. The variational inequality problem
is to find a uw € C' such that

(1.1) (v—u,Au) >0, YveC.

We denote the set of solutions of the variational inequality problem (1.1) by VI(C, A).
The variational inequality problem has been extensively studied in the literature;
see [2,3,13,14,22] and the references therein.

We recall that a mapping A of C into H is called inverse-strongly monotone if
there exists a positive real number « such that

(x —y, Av — Ay) > of| Az — Ay|®, V=, y € C;
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see [14]. For such a case, A is called a-inverse-strongly monotone. A mapping
T : C — H is said to be k-strictly pseudocontractive if there exists a constant
k € [0, 1)such that

| T2 = Tyll* < |l =yl + kI(I = T)a — (I = T)y|%, Va, y € C.

Note that the class of k-strictly pseudocontractive mappings includes the class of
nonexpansive mappings as a subclass. That is, T' is nonexpansive (i.e., [|[Tz—Ty|| <
|z —yll, Vz, y € C) if and only if T' is O-strictly pseudocontractive. Recently, many
authors have been devoting the studies on the problems of finding fixed points for k-
stricly pseudocontractive mappings, see, for example, [1,6,9,10], and the references
therein.

Recently, in order to study the variational inequality problem coupled with the
fixed point problem, many authors have introduced some iterative algorithms for
finding a common element of the solution set of the variational inequality problem
for a monotone mapping and the fixed point set of a nonexpansive mapping; see [5,
7,8,16,19] and the references therein. In particular, In 2003, Takahashi and Toyoda
[19] introduced Mann’s type iterative algorithm for finding a common element of the
solution set of the variational inequality problem for an inverse-strongly monotone
mapping and the fixed point set of a nonexpansive mapping, and obtained the
weak convergence of the proposed algorithm. Further, motivated by the idea of
Korpelevich’s extragradient method [12], Nadezhkina and Takahashi [16] proposed
an iterative algorithm for finding a common element of the fixed point set of a
nonexpansive mapping and the solution set of the variational inequality problem
for a monotone, Lipschitz continuous mapping. They proved a weak convergence
theorem for two sequences generated by the proposed algorithm. Here, so-called
extragradient method was first introduced by Korpelevich [12]. In 2005, Tiduka and
Takahashi [7] provided Halpern’s type iterative algorithm for finding a common
element of the solution set of the variational inequality problem for an inverse-
strongly monotone mapping and the fixed point set of a nonexpansive mapping,
and showed the strong convergence of the proposed algorithm. In 2007, Chern et
al. [5] extended the result of liduka and Takahashi [7] to the viscosity approximation
method. In 2010, Jung [8] introduced a new composite extragradient-like algorithm
by the viscosity approximation method, and established the strong convergence of
the proposed algorithm to a common element of the solution set of the variational
inequality problem for an inverse-strongly monotone mapping and the fixed point
set of a nonexpansive mapping.

On the other hand, in 2001, Yamada [22] introduced the hybrid steepest descent
method for the nonexpansive mapping to solve a variational inequality related to a
Lipschitzian and strongly monotone mapping. Since then, by using ideas of Marino
and Xu [15], Tien [20] and Ceng et al. [4] provided the general iterative algorithms for
finding a fixed point of the nonexpansive mapping, which is a solution of a certain
variational inequality related to a Lipschitzian and strongly monotone mapping.
Cho et al. [6] and Jung [9,10] gave the general iterative algorithms for finding a
fixed point of the k-strictly pseudocontractive mapping, which is a solution of a
certain variational inequality.
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In this paper, motivated by the above-mentioned results, we introduce a new com-
posite extragradient-like algorithm based on Yamada’s the hybrid steepest descent
method [22] for finding a common element of the solution set VI(C, A) of the varia-
tional inequality problem for an inverse-strongly monotone mapping A and the fixed
point set Fixz(T') of an k-strictly pseudocontractive mapping 7" for some 0 < k < 1.
Using appropriate control conditions, we prove that the sequence generated by the
proposed algorithm converges strongly to a common point of VI(C, A) N Fix(T),
which is a solution of a certain variational inequality. As a direct consequence,
we obtain the unique minimum norm point of VI(C, A) N Fiz(T). Our results
improve and complement the corresponding results of Chen et al. [5], liduka and
Takahashi [7] and Jung [8], and some recent results in the literature.

2. PRELIMINARIES AND LEMMAS

Let H be a real Hilbert space, and let C' be a nonempty closed convex subset of
H. We write z,, — z to indicate that the sequence {z,} converges weakly to z.
xn — x implies that {x,} converges strongly to x.

For every point x € H, there exists a unique nearest point in C, denoted by
P (x), such that

o — Pe(@)]| < o —yll, VyecC.
Pp is called the metric projection of H onto C. It is well known that Pp is nonex-
pansive and Pp satisfies

(2.1) (& —y, Po(z) = Po(y)) 2 |Pe(z) — Pe(y)|®, Yz, y € H.
Moreover, Po(z) is characterized by the properties:
lz = ylI* > ||z = Po(@)|I” + ly — Po(2)|
and
u=Po(r) <= (x —u,u—y) >0, VexeH, yeC.

In the context of the variational inequality problem for a nonlinear mapping A, this
implies that

(2.2) u€eVI(C,A) <= u= Po(u— AAu), YA >0.
In a Hilbert space H, there holds the following identity:
(2.3) lz = yl* = llz* + lyll* = 2(z,y), Yz, y € H.

It is also well known that H satisfies the Opial condition, that is, for any sequence
{z,} with x,, = z, the inequality
liminf ||z, — z| < liminf ||z, — y||
n—oo n—oo
holds for every y € H with y # «x.

A mapping A of C into H is called strongly monotone if there exists a positive
real number 7 such that

In such a case, we say A is n-strongly monotone. If A is n-strongly monotone and
k-Lipschitz continuous, that is, ||Az — Ay|| < k||l — y|| for all z, y € C, then A is
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“b-inverse-strongly monotone. If A is an a-inverse-strongly monotone mapping of
C into H, then it is obvious that A is é—Lipschitz continuous. We also have that

for all x, y € C and \ > 0,
I = XA — (I = AAWIP = |lo —yl2 — 2\ (@ — y, Az — Ay) + A2[| Az — Ay?
< lz =yl + AN - 20) || Az — Ay|*.
So, if A < 2a, then I — AA is a nonexpansive mapping of C into H.
The following result for the existence of solutions of the variational inequality

problem for inverse-strongly monotone mappings was given in Takahashi and Toy-
oda [19].

Proposition 2.1. Let C be a bounded closed convex subset of a real Hilbert space
and let A be an a-inverse-strongly monotone mapping of C into H. Then, VI(C, A)
18 nonempty.

A set-valued mapping T : H — 29 is called monotoneif for all x, y € H, f € Tx
and g € Ty imply (z —y, f —g) > 0. A monotone mapping T : H — 2 is mazimal
if the graph G(T') of T' is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping 7T is maximal if and only if for
(r,f) € Hx H, (x —y, f —g) >0 for every (y,g9) € G(T) implies f € Tx. Let A
be an inverse-strongly monotone mapping of C' into H and let Ncov be the normal
cone to C at v, that is, Nov ={w € H : (v —wu,w) > 0, for all u € C}, and define

Av + Neow, vel
Tv =
0, v ¢ C.

Then 7' is maximal monotone and 0 € T'w if and only if v € VI(C, A): see [17,18].
We need the following lemmas for the proof of our main results.

Lemma 2.2. In a real Hilbert space H, there holds the following inequality
2+l < llz* + 2(y, x + ), Va, y € H.

Lemma 2.3 (Xu [21]). Let {sn} be a sequence of non-negative real numbers satis-
fying
Snt1 < (L= Ap)Sn + B + 7y, VR >1,

where {\n} and {B,} satisfy the following conditions:

(i) {M\} C[0,1] and 3.7 Ap = 00 or, equivalently, [[721(1 — \,) = 0;

(i) limsup,,_, f—z <0 or Y o2 |Bn| < oo;

(i) 70 >0 (1> 1), 20, 9 < 0.
Then lim,,_,os S, = 0.

Lemma 2.4 ([23]). Let H be a real Hilbert space and let C be a closed convex subset
of H. LetT : C'— H be a k-strictly pseudocontractive mapping on C'. Then the
following hold:

(i) The fived point set Fix(T) is closed conver, so that the projection Ppiyr
s well defined.
(ii) Fizx(PcT) = Fix(T).
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(iii) If we define a mapping S : C — H by Sz = Az + (1 — \)Tz for all x €
C. then, as \ € [k,1), S is a nonexpansive mapping such that Fiz(T) =
Fix(9).

The following lemmas can be easily proven, and therefore, we omit the proofs
(see [22]).

Lemma 2.5. Let H be a real Hilbert space. Let V : H — H be an l-Lipschitzian
mapping with constant | > 0, and let F': H — H be a k-Lipschitzian and n-strongly
monotone mapping with constants k, n > 0. Then for 0 < vyl < un,

(WF = V) — (uF = AV)y,x —y) > (un = Al)llz —y[, vz, yeC.
That is, uF — vV is strongly monotone with constant un — yl.

Lemma 2.6. Let H be a real Hilbert space H. Let F': H — H be a k-Lipschitzian
and n-strongly monotone mapping with constants k, 1 > 0. Let 0 < p < i—g and
0<t<p<1l Then S :=pl —tuF : H — H is a contractive mapping with

constant p — tt, where T =1 — \/1 — pu(2n — px?).

3. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:

e H is a real Hilbert space;

e (' is a nonempty closed subspace of H;

e A:(C — H is an a-inverse-strongly monotone mapping;

o VI(C,A) is the set of solutions of the variational inequality problem (1.1)
for A;

e F': C — (C is a k-Lipschitzian and n-strongly monotone mapping with
constants x, n > 0;

e V :(C — C is a [-Llpschitzian mapping with constant [ > 0

e Constants p > 0 and v > 0 satisfy 0 < p < i—g and 0 < ¢l < 7, where
T =/1—p(2n — pr?);

e T:(C — (C is a k-strictly pseudocontractive mapping for some 0 < k < 1;

e Fix(T) is the set of fixed points of T

e T, : C — C is a mapping defined by T,x = kpx + (1 — kyp)Tx for 0 < k <
ko, <r<1andlim, o k, =7;

e Pr is a metric projection of H onto C

o VI(C,A)N Fix(T) # 0.

Now, we propose a new composite extragradient-like algorithm based on Ya-
mada’s the hybrid steepest descent method [22] for finding a common point of the
solution set of the variational inequality problem for an inverse-strongly monotone
mapping A and the fixed point set of a strictly pseudocontractive mapping 7T'.

Algorithm 3.1. For an arbitrarily chosen z; = x € C, let the iterative sequences
{zn} be generated by

{yn = a YV, + (I — anpuF) T, Po(xn — MAxy),

3.1
( ) In+1 = (1 - 5n)yn + ﬁnTnPC’(yn - )‘?’LAyﬂ)a Vn > 1,
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where {\,} C [0,2q], and {a,,}, {8} are two sequences in [0, 1).

Theorem 3.2. Let {x,} be a sequence generated by Algorithm 3.1. Let {an}, {\n},
{Bn} and {k,} satisfy the conditions:
(i) o =0 (n = 00); D0 | @y = 00;
(ii) Bn C [0,a) for allm >0 and for some a € (0,1);
(iii) Ap € [c,d] for some ¢, d with 0 < ¢ < d < 2a«;
(iv) 220:1 |11 — an| < 00, fo:l |Bns1 — Bn] < o0, 220:1 | Ant1 — An| < 00,
> onet [kna1 — k| < o0
Then {x,,} converges strongly to a point ¢ € VI(C, A)NFix(T), which is the unique
solution of the following variational inequality:

(3.2) (AV —uF)q,q—p) >0, VpeVI(C,A)N Fix(T).

Proof. First, let Q = Pq, where Q := VI(C,A) N Fiz(T). By Lemma 2.6, it
is easy to show that Q(I — uF +~V) : C — C is a contractive mapping with
constant 1 — (7 —~l). Thus, by Banach Contraction Principle, there exists a unique
element ¢ € C such that ¢ = Po(I — pF + vV)q. Equivalently, ¢ is a solution
of the variational inequality (3.2). Also, we can show easily the uniqueness of a
solution of the variational inequality (3.2). In fact, noting that 0 < 4l < 7 and
un > 7 <= Kk > n, it follows from Lemma 2.5 that

(WF = V)& = (uF = yV)y,z = y) > (un — 1)z = y||*.
That is, uF' — ~V is strongly monotone for 0 < vl < 7 < un. Hence the variational
inequality (3.2) has only one solution. Below we use ¢ € VI(C,A) N Fiz(T) to
denote the unique solution of the variational inequality (3.2).
From now, by the condition (i), without loss of generality, we assume that 2a;, (7—
vl) <1land o, < 1— B, —ap for n > 1.
Now, we divide the proof into several steps.

Step 1. We show that {x,} is bounded. To this end, Let z, = Po(x, — A\, Az,) and
wy, = Po(yn — MAyy) for every n > 1. Let p € VI(C, A)N Fix(T) (= VI(C,A)N
Fix(T,) by Lemma 2.4). Since I — A\, A is nonexpansive and p = Po(p — A\, Ap)
from (2.2), we have

(3.3) lzn = pll = [[Po(@n — AnAzn) — Po(p — AnAp)||

' < [[(@n — AnAzy) — (p — A Ap)|| < llzn — pl|-

Similarly, we have

(3.4) lwn — pll < llyn — pl|-

Now, let p € VI(C, A) N Fiz(T). Then, from (3.3), (3.4), and Lemma 2.6, we
obtain

lyn — 2|
= lan(vWan — uFp) + (I — anpF)Thzn — (I — anpl)p||
< (1 =7an)|zn = pll + an¥|[Van = Vpll + anllvVp — pFp|
< (1= 7an)|zn = pll + anll|zn — pll + anllvVp — pFp||

vV — uFpl|
T —9l ’

(3.5)

= (L= (1 =2Daw)|zn = pll + (T =) an
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From (3.4) and (3.5), it follows that

|Zn+1 —pll = [[(1 = Br)(Yn — p) + Ba(Trwy — p)|
< (1= Bu)llyn — pll + Ballwn — pl|
< (1= Bu)llyn — pll + Ballyn — pll
= [lyn — pll

Vp— uF
< maX{Hxn _p”7H’ypupH}

T ="l
By induction, it follows from (3.6) that

—uF
"Vp —p pll}j Vn > 1.

len - pll < max{uxl ol
T =l

Therefore {x,} is bounded. So {yn}, {zn}, {wn}, {Van}, {Fzn}, {Fyn}, FTnzn},
are bounded. Moreover, since ||T,,z, — p|| < ||zn — p|| and ||Thw, — p|| < ||lyn — 2l
{T,zn} and {T,,w,} are also bounded. And by the condition (i), we have

(3.7) |yn — Tnznll = anl|YVan — uFThzn| — 0 (as n — 00).

Step 2. We show that lim, ,« [|[Tn+1 — 2n|| = 0 and limy, 00 [|[Ynt1 — ynl| = 0.
Indeed, since I — A\, A and P¢ are nonexpansive and z, = Po(x, — A\, Ax,), we have

||Zn - Zn—l” < H(xn - Anflxn) - (xn—l - )\n—len—l)H

3.8
(3:8) < wn — a1l + [An — An—1|[| Azp1]].

Similarly, we get

(3.9) [wn — wp—1l] < [lyn — Yn-1ll + [An = An—1[[| Ayn-1]|-
We also note that
”Tnzn - Tn—lzn—lH < ||Tnzn - Tnzn—lH + ||Tnzn—l - Tn—lzn—l”
(3.10)
< ||Zn - Zn—lH + |kn - kn—1|||zn—1 - TZn—lH
and
Hann - Tn—lwn—l”
(3.11) < Hann — ann_lﬂ + Hann_l — Tn—lwn—IH
< Hwn - wn—l” + ‘kn - kn—lmwn—l - Twn—l”-
Now, simple calculations show that
Yn — Yn—-1
= apnYVan, + (I —anuF)Thzy, — an_1YVap—1 — (I — an 1 puF) 121
= (an —an1)(YWap1 — pF T 12n-1) + any(Vae, — Virg_)
+ (I —anuP)Thzy — (I — aquF)Th_12n—1.
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By (3.8), (3,10), and Lemma 2.6, we obtain

1Yn = Yn—1ll
<lay, — an—1|(VIV&n-1| + pl| FTn-12n-1l])
+ apyl||zn — xp—1|| + (1 = 1) || Tnzn — Th—12n-1]]
<lay — an—1|(VIVEn-1| + pl| FTr-12n-11])
+ anyl||zn — x| + (1 — 7o) |2n — Tp—1]|
+ A = Al Az || + kn — kn-1lll2n—1 — T2p-1]]-
Also, observe that
Tng1 — Tn = (1 = Bn)(Yn — Yn—-1) + (Bn — Bn—-1)(Tn—1wWn—1 — Yn—-1)
+ Bn(Thwn — Th—1wn—1).
By (3.9), (3.11), (3.12) and (3.13), we have
[Zn+1 — znl
< (1= B)llyn — yn-1ll + 18n = Ba—a| ([ Tn—1Zn-1l| + [yn-11])
+ Bullwn — wp-a|l + [kn — kn—1llwn—1 = Twn— ||
< (1= B)llyn — yn-1ll + Ballyn — Yn—1ll + BulAn — An—1[|Ayn—1]]
+ 160 = Ba—1|(1Tn-1wn—1]| + [yn-1l])
+ |k — kn—1|lJwpn—1 — Twp—1]]
< Myn = yn—all + [An = An—a[[[ Ayn-1]]
+ 160 = Ba—1|(1Tn-1wn—1]| + [yn-1l])
+ |k — kn—1|l|wn—1 — Twp—1]]
< (A= (r=yDan)|lzn — zn
+ lan = an—1|(YIVap_1ll + pl|[ FT—12n-11])
+ 1A = An—1|([[Ayn—1]| + [ Azn-1]])
+1Bn = Bn-1|(|Th—1wn—1 + [[yn-1ll)
+ kn — kn—1|(llzn—1 — Tzn-1ll + [[wn—1 — Twp—1]])
< (1= (r =Dan)llzn — zp-1| + Mifan — an_1
+ Ma|An — An—1| + M3|Bn — Br—1] + Malkn — kn-1],
where My = sup{7||Vay| +p||FThzn| : n > 1}, My = sup{||Ayn|| + ||Azyn| : n > 1},

Ms = sup{||Swy||+||yn|| : n > 1}, and My = sup{||zn—1—T2n—1|+||wn—1—Twnp_1]| :
n > 1}. From the condition (i) and (iv), it is easy to see that

(3.12)

(3.13)

(3.14)

o0

nli)ngo(T - 7[)04n = 07 Zl(T - fyl)an = 00,
and
Z(Ml‘an - Oén—l‘ + M2‘)\n - /\n—1’ + M3’/8n - 5n—1‘ + M4‘kn - kn—1|) < 00.

n=2
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Applying Lemma 2.3 to (3.14), we obtain
h—>H<}o [#n41 — @al| = 0.
Moreover, by (3.8) and (3.12), we also have

lim [|zp41 = 2,/ = 0 and Tm {Jyni1 =yl = 0.

Step 3. We show that lim,, o ||2n —yn|| = 0 and lim,,—s o || — T 2n|| = 0. Indeed,
[Zn+1 = Ynll = Bul Tawn — ynl|
< Bn(IThwn — Tznll + (| Thzn — ynll)
< a(llwn — 2|l + | Tnzn — ynull)
< alllyn — znll + 1 Thzn — yaull)
< alllyn — o1l + 2ns1 — 2ol + 1 Tnzn — yull)

which implies that

a

21 = 9l € 7= (a1 = 2ol + [Tz = gl

Obviously, by (3.7) and Step 2, we have ||xp+1 — yn| — 0 as n — co. This implies
that that

(3.15) 20 = ynll < l2n = Tniall + [[2nt1 — ynll = 0 as n — oo.
By (3.7) and (3.15), we also have
|20 — Tzl < l2n — yull + [[yn — Thzn| = 0 as n — oco.

Step 4. We show that lim,,_, ||z, — 2,]| = 0 and lim,, 0 ||yn, — 2z5|| = 0. To this
end, let p € VI(C, A) N Fiz(T). Since z, = Po(xy, — AAzy,) and p = Po(p — \up),
from Lemma 2.6, we have
1y = pII* = llan(YWayn — uFp) + (I — anuF)Tnzn — (I — anpF)p||?

< (anllyVan — pFp| + (I = anuF)Thzn — (I — anpF ) Topl|)?

< aplWVan = pFpl? + (1 = Tan)||20 — plf?
+ 20 (1 — 7o) [y Van — pFpll[lzn — p
an |7V (@) = uFp|+(1 = Tag) (|20 — pl*+An(An — 20)[| Az, — Ap]|*)
+ 200 (1 — 7)YV n — pFpl| |20 — p
anlViy — pFp|* + [lzn — pl* + (1 = ran)e(d — 2a) | Az, — Ap|?
+ 2an|[VVan — pFplll|lzn — pl.-

IN

IN

So we obtain
— (1 = Tap)e(d — 2a)||Az,, — Ap|?

anlVWVan — puFp|® + ([|zn — pll + llyn — 2D (|20 — Pl = |y — 2l
+ 20, ||V iz — pFp|||2n — pl|

IN

IN

an|VWVan — pFpll” + (lzn — pll + lyn — pl) |20 — ynl]
+ 200 |[VVzr — pF'pl||| 20 — pl|.



280 JONG SOO JUNG

Since o, — 0 from the condition (i) and ||z, — y,|| — 0 from Step 3, we have
||Az,, — Ap|| — 0 (n — o0). Moreover, from (2.1) and (2.3), we obtain

Jn = pl1? = IPoln — AnAza) — Po(p — AnAp)|?

<A{xp — MAzx, — (p — M AD), z2n — D)

= 2 1len — AnAza) — (0= AuAp)IP + 120 — o
[~ AnAza) — (0~ Andp) ~ (20 ~ DI
I + lzn — I 2 — 2a?

+ 2 (@ — 2, Az — Ap) — )‘%”Axn - APHQ]'

IN

5l

and so
lon = I < om — I — n — 2l + 2\nzn — 2, Azn — Ap) — A2|| Az — Ap|2
Thus
lyn = plI> < anllyVan — uFpl* + (1 = Taw)l|z0 — p|*
+ 20m (1 = 7o) [V Van — pFpll|[2n — p
< aplvVay — pFpl? + |lzn = pl* = (1 = ran)llzn — 20
+2(1 — 7o) AT — 2, Ay — Ap) — (1 — Tan) N2 || Az, — Apl|?
+ 200 [y V@R — pFpl|l|zn — pll.
Then, we have
(1 —7ay)|lzn — Zn||2
< anlvVan = pFpl? + (lzn = pll + lyn — 2l (120 — 2l = g — pl)
+2(1 — 7o) AT — 2, Ay — Ap) — (1 — Tan) N2 || Az, — Apl|?
+ 2an|[VVan — pFpll||zn — p|
< anlvVay = pFpl* + (lzn = pll + lyn — pl)llen — ynl
4 2(1 = 7o) ATy — 2ny Az — Ap) — (1 — Ta)N2|| Az, — Ap)|?
+ 2an|[YVan — pFplll[zn — pl|-

Since ay, — 0, ||zn — yn|| = 0 and [|Ax,, — Ap|| — 0, we get ||z, — 2] — 0. Also by
(3.15)

(3.16) lm = 2nll < lgn — @l + 10 — 2all = 0 (0 = 00).
Step 5. We show that lim,, o |1 2n — 2| = 0. In fact, since
1Tnzn — 2nll < 1 Tnzn — yull + [lyn — 2nll
= an||VVan — pFTpznl + [lyn — 2nll,
from (3.7) and (3.16), we have lim,_, || Tr2n — 2n|| = 0.
Step 6. We show that

limsup((7V = pnF))q, yn — q) = limsup((7V — pF)q, yn — q) <0,

n—oo n—oo
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where ¢ is the unique solution of the variational inequality (3.2).
First we prove that

limsup((7V — pf)gq, Tnzn — q) < 0.

n—oo

Since {z,} is bounded, we can choose a subsequence {z,,} of {z,} such that

limsup((yV — p)q, Tnzn — q) = Hm ((YV — pF)q, Tn,zn, — q)-

n—o0

Without loss of generality, we may assume that {z,,} converges weakly to z € C'.
Now we will show that z € VI(C,A) N Fiz(T). First, let us that z € VI(C, A).
Let
Av+ Nov, wveC
Qu =
0 vé¢C.

Then @ is maximal monotone. Let (v, w) € G(Q). Since w— Av € Newv and z, € C,
we have

(v — zp,w — Av) > 0.

On the other hand, from z,, = Po(x,—ApAxy,), we have (v—zp, zn— (Tn—AnAzy)) >
0 and hence

<v — Zn, zn/\—xn —|—Axn> > 0.
n

Therefore we have
(V= zp;,w) > (v — zp,, Av)
Zn; — Ty
An;
= <v — 2, Av — Az, — @>
n

%

> (v—zm,Av)—<fu—zm, +A$ni>

= (v — 2zpn;, Av — Azp,) + (V — 2p;, Azn, — Azp,) — <v — Zn;, @>
.

%

Zn. — T,
> (v — zp,, Azn, — Axy,) — <v — Zn,, %>
n

Since ||zp, — zn|| — 0 in Step 4 and A is a-inverse-strongly monotone, we have
(v —z,w) >0 as i — oo. Since Q is maximal monotone, we have z € Q!0 and
hence z € VI(C, A).

Next, we show that z € Fix(T). To this end, define S : C — C by Sz =
re+ (1 —r)Tz, Ve € C, for 0 < k <k, <r <1 and lim, o ky, = r. Then S is
nonexpansive with Fiz(S) = Fiz(T) by Lemma 2.4 (iii). Notice that

HSZnZ - Z”z” < HSZM - Tnizni” + HTnizni - anH
= (7’ - kni)Hzni - TZni” + HTniZni - Zm”

r — kn,
= T ene = Tgzn, ||+ [ Tz, — 2
—
14+r—2k

= 77””,117%27% - anH

1= Fn,
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By Step 5 and k,, — r, we have ||Sz,, — zp,|| = 0. Assume that z ¢ Fiz(T)(=
Fiz(S)). Since z,, — z and Sz # z, by the Opial condition, we obtain

liminf ||z,, — z|| < liminf ||z,, — Sz||
11— 00 71— 00
< liminf(|zn, — S2u, | + [Sz0, — S21)
1—00
= liminf ||Sz,, — Sz||
11— 00
< liminf ||z,, — 2|,
1—r 00
which is a contradiction. So, we get z € Fiz(S). By Lemma 2.4 (iii), z € Fiz(T).

Therefore, z € Fiz(T)NVI(C, A).
Now, from Step 5, we obtain

liﬂsotép«’YV —uF)q, Tozn —q) = im (4V = uF)q, T 20, — 4)

(8:17) = lim (VW — pF)q, 20, —q)
=((vV — pF)q,z — q) <0.

By (3.7) and (3.17) , we conclude that

lim sup((vV — uF)q, yn — q)

n—oo

IN

limsup((vV — pF)q, yn — Tnzn) + limsup(u + (YV — pF)q, Tzn — q)
n—o0

n—oo

IN

limsup [|(vV — pF)ql[|yn — Toznll + limsup{(vV — pF)q, Tnzn — q)
0.

IN

Step 7. We show that lim,,_« ||z, —¢|| = 0, where ¢ is a solution of the variational
inequality (3.2). Indeed from (3.1), Lemma 2.2, and Lemma 2.6, we have

|z = gl < llyn — gl?
= llon(YWan — pFq) + (I — anpF)Tnzn — (I — anpF)q|?
< (I = anpF) Tz — (I — cnpiF)g||* + 200 (YVn — pFq, yn — q)
< (1 —71an)?|zn — ql* + 200y (Viy, — Vg, yn — q)
+ 20, (YVq — pFq, yn — q)
< (1= 7an)? |0 — ql* + 2007|120 — qllllyn — gl
+ 20, ((YV = pF)q, Y — )
< (1 —7an)?llzn — qlI* + 20ml|l2n — qll(lyn — zall + llzn — gl])
+ 20, (YV = pF)q, Y — @)
= (1 =2(r = yDow) ||z — ql?
+ an 7 |lzn — gl + 200720 — qlllyn — 0l
+ 200 ((YV — pF)q, yn — q),
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that is,
lzns1 = all* < (1= 2(7 = y)an) |2 — qll* + ap 72 MZ + 20071y — 20| M5
+2an((VV = pF)q, yn — q)
= (1 —ag)|zn — al* + Ba,
where M5 = sup{||z, — ¢|| : n > 1}, @, = 2(7 — yl)a,, and
B = anfonm M + 29lyn — @n|Ms + 2(u+ (W = F)g, yn — @)]-
From (i), [|yn — @n/[ — 0 in Step 3 and Step 6, it is easily seen that @, — 0,

Y ooe @y = 00, and limsup,,_, g:’; < 0. Hence, by Lemma 2.3, we conclude x,, — ¢
as n — 0o. This completes the proof. O

From Theorem 3.2, we deduce the following result.
Corollary 3.3. Let {x,} be a sequence generated by
r1=x¢€C
yn = (1 — ap)Tn Po(xy — M\pAxy,),
Tn1 = (1= Bp)yn + BaTnPo(Yn — AnAyn), Vn>1,

where {\,} C [0,2a], and {an}, {Bn} are two sequences in [0,1). Let {an}, {\n},
{Bn}, and {ky,} satisfy the conditions (i), (ii), (iii) and (iv) in Theorem 3.2. Then
{zn} converges strongly to a point ¢ € VI(C,A) N Fix(T), which is the unique
solution of the following minimum norm problem: find x* € VI(C,A) N Fix(T)
such that

(3.19) ™| = min - z]].
zeVI(C,A)NFix(T)

Proof. Take F = I, u=1,7=1,V =0, and [ = 0 in Theorem 3.2. Then the
variational inequality (3.2) is reduced to the inequality

(g,q—p) <0, VpeVI(C,A)N Fix(T).
This obviously implies that
lall* < (g, p) < llalllpll, Vp € VI(C,A)N Fix(T).

It turns out that ||g|| < ||p|| for all p € VI(C, A) N Fiz(T). Therefore ¢ is minimum
norm point of VI(C, A) N Fiz(T). O

Taking 3, = 0 for n > 1 in Theorem 3.2 and Corollary 3.3, we derive the following
results.

Corollary 3.4. Let {z,,} be a sequence generated by

r1=x¢€C
Tni1 = YV an + (I — anuF)T, Po(x, — \yAzy,), Vn>1,

where {\,} C [0,2a], and {ayn} is a sequence in [0,1). Let {an}, {\n}, and {ky,} sat-
isfy the conditions (i), (iii) and (iv) in Theorem 3.2. Then {zy} converges strongly
to a point q € Fix(T), which is the unique solution of a variational inequality (VI1).
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Corollary 3.5. Let {x,,} be a sequence generated by

r1=x€C
Tpy1 = (1 — apn) T Po(zn — MAzy), Yn>1,

where {\,} C [0,2a] and {a} is a sequence in [0,1). Let {an,}, {\n} and {k,} sat-
isfy the conditions (i), (iii) and (iv) in Theorem 3.2. Then {x,} converges strongly
to a point g € VI(C, A) N Fix(T), which solves the minimum norm problem (3.19).

Remark 3.6. 1) Theorem 3.2 and Corollary 3.4 improve, extend, and develop the
corresponding results in [5,7,8] in following aspects:

(a) The nonexpansive mapping S in [5,7,8] is extended to the case of a k-strictly
pseudocontractive mapping 7.

(b) A k-Lipschitzian and n-strongly monotone mapping F' is used.

(¢) The contractive mapping f with constant £ € (0,1) in [5, 8] is extended to
the case of a Lipschitzian mapping V with constant [ > 0.

2) Corollary 3.5 is also a new result for finding the minimum norm point of
Fiz(T) N VI(C, A).

3) In all our results, we can replace the condition 7 | |apt1 — an| < 0o on
the control parameter {ay,} by the condition lim,,_, a/an+1 = 1 ([21]), or by the
perturbed control condition |ap41 — an| < 0(nt1) + on, D opeyq on < 00 ([11]).
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