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262 N. SHIOJI AND K. WATANABE

where ∇H is the gradient and dVH is the volume element with respect to H. It
implies that

∥φ∥H =

(∫
H
|∇Hφ|2 dVH

) 1
2

, φ ∈ H1(H)

is an equivalent norm on H1(H). We define

∥φ∥H =

(∫
H

(
|∇Hφ|2 −

(n− 1)2

4
φ2

)
dVH

) 1
2

for φ ∈ C∞
0 (H), and we denote by H the completion of C∞

0 (H) with respect to this
norm.

Now, we state our results. In the case n = 2, we improve [5, Theorem 1.3] and
[5, Proposition 4.4]. More precisely, in the case n = 2, we do not need to assume
λ ≤ 2(p+1)/(p+3)2 in order to show the uniqueness of a positive solution of (1.1).

Theorem 1.1. Assume (1.2). In the case λ < (n− 1)2/4, problem

(1.3) φ ∈ H1(H), ∆Hφ+ λφ+ φp = 0

has at most one positive solution up to hyperbolic isometries, and in the case λ =
(n− 1)2/4, problem

(1.4) φ ∈ H, ∆Hφ+ λφ+ φp = 0

has at most one positive solution up to hyperbolic isometries.

Remark 1.2. Mancini-Sandeep showed that if n ≥ 4, p = (n + 2)/(n − 2) and
λ ≤ n(n − 2)/4, or n = 3 and p = 5, then problem (2.6) does not have a positive
solution; see [5, Theorems 1.6 and 1.7].

For each y ∈ H and r > 0, we define

BH(y, r) = {x ∈ H : dH(x, y) < r},

where dH(x, y) is the distance of x, y ∈ H.

Theorem 1.3. Assume (1.2). Let x0 ∈ H and R > 0. Then problem

(1.5)

{
∆Hφ+ λφ+ φp = 0 in BH(x0, R),

φ = 0 on ∂BH(x0, R)

has at most one positive solution belonging to C2(BH(x0, R)) ∩ C(BH(x0, R)).

In order to show Theorem 1.3, we can apply the results in [10,11]; see Section 3.
On the other hand, in order to show Theorem 1.1, we can not apply them directly.
Indeed, when we consider problem (2.3) below, which is a transformed problem (1.1),
the coefficient functions g, h defined by (2.2) diverge as r → 1 − 0 except h in the
case n ≥ 3 and p = (n + 2)/(n − 2). So we need to treat the problem carefully.
Applying the essential part of the proofs in [10,11], we give the proof of Theorem 1.1
in the next section.
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2. Proof of Theorem 1.1

Using the Poincare disk model, we consider that

4|dx|2

(1− |x|2)2

is the Riemannian metric tensor on B(0, 1) = {x ∈ Rn : |x| < 1}, ∆H is given by(
1− |x|2

2

)2
(
∆+

2(n− 2)

1− |x|2
n∑

i=1

xi
∂

∂xi

)
and (1.1) is represented as

(2.1)

(
1− |x|2

2

)2

∆φ+
(n− 2)(1− |x|2)

2
x · ∇φ+ λφ+ φp = 0 in B(0, 1).

Setting u(x) = (1− |x|2)(2−n)/2φ(x), the equation above is transformed into

∆u− g(|x|)u+ h(|x|)up = 0 in B(0, 1),

where

(2.2) g(r) =
n(n− 2)− 4λ

(1− r2)2
and h(r) = 4(1− r2)

(n−2)p−(n+2)
2 .

We know from [5, Theorem 2.1] that if φ is a positive solution of (1.1), then there
is x0 ∈ H such that φ is constant on any hyperbolic spheres centered at x0. So we
consider the uniqueness of a positive solution u which satisfies

(2.3) ur(0) = 0, urr +
n− 1

r
ur − g(r)u+ h(r)up = 0, 0 < r < 1

and

(2.4)

{
(1− r2)

n−2
2 u(r) ∈ H1(H) in the case λ < (n− 1)2/4,

(1− r2)
n−2
2 u(r) ∈ H in the case λ = (n− 1)2/4.

We define the functions a, b, c,G by

a(r) = 16
− 1

p+3 r
2(n−1)(p+1)

p+3
(
1− r2

)n+2−(n−2)p
p+3 ,

b(r) = −1

2
ar(r) +

n− 1

r
a(r)

=
1

16
1

p+3 (p+ 3)
r

2(n−1)(p+1)
p+3

−1 (
1− r2

)n+2−(n−2)p
p+3

−1

·
(
2(n− 1)− r2((n− 2)p+ n− 4)

)
,

c(r) = −br(r) +
n− 1

r
b(r)

= −(n+ 2)− (n− 2)p

16
1

p+3 (p+ 3)2
r

2(n−1)(p+1)
p+3

−2 (
1− r2

)n+2−(n−2)p
p+3

−2

·
(
r4((n− 2)p+ n− 4) + r2(n(p− 1) + 4)− 2n+ 2

)
,

G(r) = b(r)g(r) +
1

2
cr(r)−

1

2

(
a(r)g(r)

)
r
(r)
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=
2

p−1
p+3 (n− 1)(1 + r2)r

2(n−1)(p+1)
p+3

−3

(p+ 3)3 (1− r2)
(n+1)p−n+7

p+3

(αr4 + βr2 + α)

=
2

p−1
p+3 (n− 1)(1 + r2)r

2(n−1)(p+1)
p+3

−3

(p+ 3)3 (1− r2)
(n+1)p−n+7

p+3

(
α(1− r2)2 + (2α+ β)r2

)
,

where

α = ((n+ 2)− (n− 2)p)((n− 2)p+ n− 4),

β = 2
(
λ(p− 1)(p+ 3)2 − n2(p2 − 1)− 2n(3p+ 1) + 2(p+ 1)(p+ 5)

)
.

We also define

D(r) = b(r)2 − a(r)(c(r)− a(r)g(r)).

For each positive solution u of (2.3), we define

J(r;u) =
1

2
a(r)ur(r)

2 + b(r)ur(u)u(r) +
1

2
(c(r)− a(r)g(r))u(r)2

+
1

p+ 1
a(r)h(r)u(r)p+1 on (0, 1).

Then we can show the following Propositions 2.1 and 2.2. For their proofs, see
[10,11].

Proposition 2.1. For each positive solution u of (2.3), there holds

d

dr
J(r;u) = G(r)u(r)2 on (0, 1).

Proposition 2.2. For each pair of distinct positive solutions u, v of (2.3) such that
u(0) < v(0) and J(r;u) ≥ 0 on (0, 1), there holds

d

dr

(
v(r)

u(r)

)
< 0 on (0, 1).

Setting

(2.5) φ(t) = (1− r2)
n−2
2 u(r) for r ∈ [0, 1) with r = tanh

t

2
,

we can see that problem (2.3) is transformed into

(2.6) φt(0) = 0, φtt(t) +
n− 1

tanh t
φt(t) + λφ(t) + φ(t)p = 0, t > 0.

(Of course, (2.6) can be obtained from (2.1) by r = tanh t/2.) By [5, Lemmas 3.4
and 3.6], we also know that each of a positive solution φ ∈ H1(H) of (2.6) with
λ < (n− 1)2/4 or a positive solution φ ∈ H of (2.6) with λ = (n− 1)2/4 satisfies

(2.7) lim
t→∞

logφ(t)2

t
= lim

t→∞

logφt(t)
2

t
= −

(
n− 1 +

√
(n− 1)2 + 4λ

)
and

lim
t→∞

φt(t)

φ(t)
= −

n− 1 +
√

(n− 1)2 + 4λ

2
,
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and that each positive solution ψ ∈ H of (2.6) with λ = (n − 1)2/4 has A > 0
satisfying

(2.8) lim
t→∞

e
n−1
2

tψ(t) = A and lim
t→∞

e
n−1
2

tψt(t) = −n− 1

2
A.

Proposition 2.3. Assume (1.2). Let u be a positive solution of (2.3) with (2.4).
Then J(r;u) ≥ 0 for each r ∈ (0, 1).

In order to show Proposition 2.3, we prepare the following lemma. We note that
n ≥ 2 and p > 1 implies

2(n− 1)2(p+ 1)

(p+ 3)2
<

(n− 1)2

4
.

Lemma 2.4. Assume the assumptions in Proposition 2.3 and let u be as in Propo-
sition 2.3. Assume also

(2.9) λ <
2(n− 1)2(p+ 1)

(p+ 3)2
.

Then J(r;u) → 0 as r → 1− 0.

Proof. Let φ be the function defined by (2.5). From (2.9), we can choose ε > 0 such
that √

(n− 1)2 − 4λ > 1− n+ 2− (n− 2)p

p+ 3
+ 2ε.

From (2.7), (2.8) and (2.5), we have

φ(t) = O

(
e(−

n−1+
√

(n−1)2−4λ
2

+ε)t

)
and φt(t) = O

(
e(−

n−1+
√

(n−1)2−4λ
2

+ε)t

)
as t→ ∞. So we have

(2.10) u(r) = O

(
(1− r)

1+
√

(n−1)2−4λ
2

−ε

)
as r → 1− 0

and

ur(r) =
2− n

2
(1− r2)−

n
2 (−2r)φ(t) + (1− r2)

2−n
2 φt(t)

dt

dr

= (1− r2)−
n
2 ((n− 2)rφ(t) + 2φt(t))(2.11)

= O

(
(1− r)

−1+
√

(n−1)2−4λ
2

−ε

)
as r → 1− 0.

Let

γ =
n+ 2− (n− 2)p

p+ 3
− 1 +

√
(n− 1)2 − 4λ− 2ε.

Then we can see γ > 0 and
a(r)ur(r)

2 = O((1− r)γ),

b(r)ur(r)u(r) = O((1− r)γ),

c(r)u(r)2 = O((1− r)γ),

a(r)g(r)u(r)2 = O((1− r)γ)

as r → 1− 0.
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Moreover, we have

a(r)h(r)u(r)p+1 = O

(
(1− r)γ+(p−1)(

n−1+
√

(n−1)2−4λ
2

−ε)

)
as r → 1− 0.

Hence, we can infer J(r;u) → 0 as r → 1− 0. □

Proof of Proposition 2.3. First, we consider the case n ≥ 3 and

(2.12) λ ≥ 2(n− 1)2(p+ 1)

(p+ 3)2
.

We have α ≥ 0. From (2.12) and

2α+ β = 2(p− 1)
(
λ(p+ 3)2 − 2(n− 1)2(p+ 1)

)
,

we also have 2α + β ≥ 0. So we have G(r) ≥ 0 on (0, 1). From n ≥ 3, we can see
J(r;u) → 0 as r → +0. Hence, by Proposition 2.1, we obtain J(r;u) ≥ 0 on (0, 1).
Next, we consider the case n = 2 and (2.12). From n = 2, we have

(2.13) D(r) = −
(

2r

1− r2

) 2(p−1)
p+3

(
(1− r2)2 +

(
λ(p+ 3)2 − 2(p+ 1)

)
r2
)

(p+ 3)2
.

From (2.12), we can find D(r) < 0 on (0, 1), which yields

J(r;u) >
1

2
a(r)ur(r)

2 + b(r)ur(r)u(r) +
1

2
(c(r)− a(r)g(r))u(r)2

=
1

2
a(r)u(r)2

((
ur(r)

u(r)
+
b(r)

a(r)

)2

− D(r)

a(r)2

)
> 0

for each r ∈ (0, 1). Hence, in the case (2.12), we have shown our assertion.
Next, we consider the case n ≥ 3 and (2.9). From α ≥ 0 and 2α + β < 0, there

exists r0 ∈ [0, 1) such that G(r) > 0 on (0, r0) and G(r) < 0 on (r0, 1). We can easily
see J(r;u) → 0 as r → +0. Using Lemma 2.4 and Proposition 2.1, we can infer
the assertion. Next, we consider the case n = 2 and (2.9). We have α = −8 and
2α+ β < 0, which yields G(r) < 0 on (0, 1). Using Lemma 2.4 and Proposition 2.1
again, we can infer the assertion. □

Remark 2.5. Although we can not completely cover [5, Theorems 1.6 and 1.7]
stated in Remark 1.2, we can easily see that problem (1.3) does not have a positive
solution in the case n ≥ 3, p = (n+2)/(n− 2) and λ < n(n− 2)/4. Indeed, if there
is a positive solution φ in such a case, by Lemma 2.4, we can see the corresponding
function u defined by (2.5) satisfies J(r;u) → 0 as r → +0 and r → 1 − 0. From
α = 0 and 2α+β < 0, we have G(r) < 0 on (0, 1). So we can obtain a contradiction
by Proposition 2.1.

Now, we prove Theorem 1.1. Assume to the contrary that problem (2.3) has
distinct positive solutions u and v such that{

(1− r2)
n−2
2 u(r), (1− r2)

n−2
2 v(r) ∈ H1(H) in the case λ < (n− 1)2/4,

(1− r2)
n−2
2 u(r), (1− r2)

n−2
2 v(r) ∈ H in the case λ = (n− 1)2/4.
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Let φ and ψ be the functions defined by (2.5) with u and v, respectively. Without
loss of generality, we may assume u(0) < v(0). We define

X(r) =

(
v(r)

u(r)

)2

J(r;u)− J(r; v)

=
1

2
a(r)v(r)2

(
ur(r)

2

u(r)2
− vr(r)

2

v(r)2

)
+ b(r)v(r)2

(
ur(r)

u(r)
− vr(r)

v(r)

)
+

1

p+ 1
a(r)h(r)v(r)2

(
u(r)p−1 − v(r)p−1

)
for r ∈ (0, 1).

Lemma 2.6. X(r) → 0 as r → +0 and X(r) → 0 as r → 1− 0.

Proof. It is easy to see X(r) → 0 as r → +0. We will show X(r) → 0 as r → 1− 0.
Let ε > 0 arbitrary such that

(n− 1)(p2 − 1)

2(p+ 3)
> (p+ 5)ε.

From (2.7) and (2.8), we have

lim
t→∞

(sinhn−1 t)(φt(t)ψ(t)− φ(t)ψt(t)) = 0,

and hence we obtain∣∣∣∣(sinhn−1 t)(φt(t)ψ(t)− φ(t)ψt(t))

∣∣∣∣
=

∣∣∣∣∫ ∞

t
sinhn−1(τ)φ(τ)ψ(τ)(φ(τ)p−1 − ψ(τ)p−1) dτ

∣∣∣∣
≤ C

∫ ∞

t
e(n−1)τe(p+1)(−n−1+

√
(n−1)2−4λ
2

+ε)τ dτ

= Ce((n−1)−(p+1)(
n−1+

√
(n−1)2−4λ
2

−ε))t,

where C > 0 is an appropriate constant. So we have

φt(t)ψ(t)− φ(t)ψt(t) = O

(
e−(p+1)(

n−1+
√

(n−1)2−4λ
2

−ε)t

)
as t→ ∞.

Since we have

1

φ(t)
= O

(
e(

n−1+
√

(n−1)2−4λ
2

+ε)t

)
and

1

ψ(t)
= O

(
e(

n−1+
√

(n−1)2−4λ
2

+ε)t

)
as t→ ∞, we obtain

φt(t)

φ(t)
− ψt(t)

ψ(t)
=
φt(t)ψ(t)− φ(t)ψt(t)

φ(t)ψ(t)

= O

(
e−(p+1)(

n−1+
√

(n−1)2−4λ
2

−ε)t−2(−n−1+
√

(n−1)2−4λ
2

−ε)t

)
= O

(
e−(p−1)

n−1+
√

(n−1)2−4λ
2

t+(p+3)εt

)
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= O

(
(1− r)(p−1)

n−1+
√

(n−1)2−4λ
2

−(p+3)ε

)
as r → 1− 0.

From (2.5) and (2.11), we have

ur(r)

u(r)
=

(1− r2)−
n
2 ((n− 2)rφ(t) + 2φt(t))

(1− r2)
2−n
2 φ(t)

= (1− r2)−1

(
(n− 2)r + 2

φt(t)

φ(t)

)
.

Noting (2.10), we obtain

a(r)v(r)2
(
ur(r)

2

u(r)2
− vr(r)

2

v(r)2

)
= 4a(r)v(r)2(1− r2)−2

(
(n− 2)r +

φt(t)

φ(t)
+
ψt(t)

ψ(t)

)(
φt(t)

φ(t)
− ψt(t)

ψ(t)

)
= O

(
(1− r)

n+2−(n−2)p
p+3

+1+
√

(n−1)2−4λ−2ε−2+(p−1)
n−1+

√
(n−1)2−4λ
2

−(p+3)ε
)

= O

(
(1− r)

(n−1)(p2−1)
2(p+3)

+
(p+1)

√
(n−1)2−4λ
2

−(p+5)ε
)

as r → 1− 0,

and

b(r)v(r)2
(
ur(r)

u(r)
− vr(r)

v(r)

)
= O

(
(1− r)

n+2−(n−2)p
p+3

−1+1+
√

(n−1)2−4λ−2ε−1+(p−1)
n−1+

√
(n−1)2−4λ
2

−(p+3)ε
)

= O

(
(1− r)

(n−1)(p2−1)
2(p+3)

+
(p+1)

√
(n−1)2−4λ
2

−(p+5)ε
)

as r → 1− 0.

Hence, as r → 1− 0, we have

a(r)v(r)2
(
ur(r)

2

u(r)2
− vr(r)

2

v(r)2

)
→ 0, b(r)v(r)2

(
ur(r)

u(r)
− vr(r)

v(r)

)
→ 0.

We also have

a(r)h(r)v(r)2
(
u(r)p−1 − v(r)p−1

)
= O

(
(1− r)

n+2−(n−2)p
p+3

+
(n−2)p−(n+2)

2
+(p+1)(

1+
√

(n−1)2−4λ
2

−ε)
)

= O

(
(1− r)

(n−1)(p2−1)
2(p+3)

+
(p+1)

√
(n−1)2−4λ
2

−(p+1)ε
)

as r → 1− 0. Therefore we can find X(r) → 0 as r → 1− 0. □
Proof of Theorem 1.1. By Remark 1.2, we do not need to treat the case n ≥ 3,
p = (n+ 2)/(n− 2) and λ ≤ n(n− 2)/4. We will show

(2.14) G(r) ̸≡ 0 on (0, 1).

First, we consider the case n ≥ 3. Since we exclude the case p = (n+2)/(n−2) and
λ ≤ n(n−2)/4, we have α > 0 or 2α+β > 0, which yields (2.14). In the case n = 2,
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we have α = −8, and hence we have (2.14). From (2.14) and Propositions 2.1 and
2.3, we have J(r;u) ≥ 0 and J(r;u) ̸≡ 0 on (0, 1). We also have

d

dr
X(r) =

(
d

dr

(
v(r)

u(r)

)2
)
J(r;u) +

(
v(r)

u(r)

)2

G(r)u(r)2 −G(r)v(r)2

=

(
d

dr

(
v(r)

u(r)

)2
)
J(r;u)

for r ∈ (0, 1). Using Proposition 2.2, we have d/drX(r) ≤ 0 and d/drX(r) ̸≡ 0
on (0, 1), which contradicts Lemma 2.6. Therefore, we have shown that each of
problems (1.3) and (1.4) has at most one positive solution. □

3. Proof of Theorem 1.3

We can see that problem (1.5) can be transformed into

(3.1)

{
∆u− g(|x|)u+ h(|x|)up = 0 in B(0, r0),

u = 0 on ∂B(0, r0)

with some r0 ∈ (0, 1), where g, h are the functions defined by (2.2) and B(0, r0) =
{x ∈ Rn : |x| < r0}. Putting u(x) = v(x/r0), problem (3.1) is transformed into{

∆v − r20g(r0|x|)v + r20h(r0|x|)vp = 0 in B(0, 1)

v = 0 on ∂B(0, 1).

Setting f : (0, 1)× (0,∞) → R by f(r, s) = −r20g(r0r)s+ r20h(r0r)s
p, we have

(1− r20r
2)

n+2
2 f(r, (1− r20r

2)−
n−2
2 s) = r20(−(n(n− 2)− 4λ)s+ sp),

which is independent of r. Applying [9, Theorem 1], we can see that each positive
solution of problem (3.1) is radially symmetric. Hence, it is enough to show that
problem

(3.2)

urr(r) +
n− 1

r
ur(r)− g(r)u(r) + h(r)u(r)p = 0, 0 < r < r0,

ur(0) = 0, u(r0) = 0

has at most one positive solution. We define a, b, c,G,D as in the previous section.
We can easily see a(r) → 0 and b(r) → 0 as r → +0, and

lim
r→+0

c(r) =

{
0 in the case of n ≥ 3,

∞ in the case of n = 2.

In the case n ≥ 3, noting α ≥ 0, there is r1 ∈ [0, r0] such that G(r) ≥ 0 on (0, r1)
and G(r) ≤ 0 on (r1, r0). In the case n = 2, we can see

(3.3) {r ∈ (0, r0) : G(r) = 0, D(r) > 0} = ∅.
In fact, in the case 2α + β ≥ 0, which is equivalent to (2.12), from (2.13), we find
D(r) < 0 on (0, r0). In the case 2α + β < 0, from α = −8, we have G(r) < 0 on
(0, r0). Thus we have (3.3). Hence, we can infer J(r;u) ≥ 0 on (0, r0). Therefore,
by [11, Theorem 1], we can see that problem (3.2) has at most one positive solution.
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