

UNIQUENESS OF POSITIVE SOLUTIONS OF BREZIS-NIRENBERG PROBLEMS ON \mathbb{H}^n

NAOKI SHIOJI[†] AND KOHTARO WATANABE[‡]

ABSTRACT. We study the uniqueness of positive solutions of

$$\Delta_{\mathbb{H}^n}\varphi + \lambda\varphi + \varphi^p = 0$$

on the *n*-dimensional hyperbolic space \mathbb{H}^n , where $n \ge 2$, $\lambda \le (n-1)^2/4$, and *p* is subcritical or critical. In particular, in the case n = 2, we improve Mancini and Sandeep's uniqueness result.

1. INTRODUCTION

In this paper, we study the uniqueness of a positive solution of

(1.1)
$$\Delta_{\mathbb{H}}\varphi + \lambda\varphi + \varphi^p = 0 \quad \text{on } \mathbb{H}^n.$$

where $\mathbb{H} = \mathbb{H}^n$ is the *n*-dimensional hyperbolic space,

(1.2)
$$n \in \mathbb{N}, \ n \ge 2, \ \lambda \le \frac{(n-1)^2}{4}, \ \begin{cases} 1$$

and $\Delta_{\mathbb{H}}$ is the Laplace-Beltrami operator on \mathbb{H} . Uniqueness of positive solutions for the equations like (1.1) has been studied by many researchers; see [2–8, 10–13] and the references therein. One of such a equation is the scaler field equation

$$\Delta \varphi - \varphi + \varphi^p = 0 \quad \text{in } \mathbb{R}^n, \qquad \varphi(x) \to 0 \quad \text{as } |x| \to \infty,$$

and its uniqueness of a positive solution up to translation was established by Kwong [3]. Recently, the authors [10,11] introduced a generalized Pohožaev identity and gave uniqueness results which are applicable to various equations including the scalar field equation.

For the hyperbolic space \mathbb{H} , it is well known [1] that

$$\inf_{\varphi \in H^1(\mathbb{H}) \setminus \{0\}} \frac{\int_{\mathbb{H}} |\nabla_{\mathbb{H}} \varphi|^2 \, dV_{\mathbb{H}}}{\int_{\mathbb{H}} |\varphi|^2 \, dV_{\mathbb{H}}} = \frac{(n-1)^2}{4},$$

²⁰¹⁰ Mathematics Subject Classification. 35A02, 34B18, 35B09, 35J15.

Key words and phrases. Uniqueness, positive solutions, hyperbolic space, Pohožaev identity.

[†]This work is partially supported by the Grant-in-Aid for Scientific Research (C) (No. 26400160) from Japan Society for the Promotion of Science.

[‡]This work is partially supported by the Grant-in-Aid for Scientific Research (C) (No. 15K04973) from Japan Society for the Promotion of Science.

where $\nabla_{\mathbb{H}}$ is the gradient and $dV_{\mathbb{H}}$ is the volume element with respect to \mathbb{H} . It implies that

$$\|\varphi\|_{\mathbb{H}} = \left(\int_{\mathbb{H}} |\nabla_{\mathbb{H}}\varphi|^2 \, dV_{\mathbb{H}}\right)^{\frac{1}{2}}, \quad \varphi \in H^1(\mathbb{H})$$

is an equivalent norm on $H^1(\mathbb{H})$. We define

$$\|\varphi\|_{\mathcal{H}} = \left(\int_{\mathbb{H}} \left(|\nabla_{\mathbb{H}}\varphi|^2 - \frac{(n-1)^2}{4}\varphi^2\right) \, dV_{\mathbb{H}}\right)^{\frac{1}{2}}$$

for $\varphi \in C_0^{\infty}(\mathbb{H})$, and we denote by \mathcal{H} the completion of $C_0^{\infty}(\mathbb{H})$ with respect to this norm.

Now, we state our results. In the case n = 2, we improve [5, Theorem 1.3] and [5, Proposition 4.4]. More precisely, in the case n = 2, we do not need to assume $\lambda \leq 2(p+1)/(p+3)^2$ in order to show the uniqueness of a positive solution of (1.1).

Theorem 1.1. Assume (1.2). In the case $\lambda < (n-1)^2/4$, problem

(1.3)
$$\varphi \in H^1(\mathbb{H}), \qquad \Delta_{\mathbb{H}}\varphi + \lambda \varphi + \varphi^p = 0$$

has at most one positive solution up to hyperbolic isometries, and in the case $\lambda = (n-1)^2/4$, problem

(1.4)
$$\varphi \in \mathcal{H}, \qquad \Delta_{\mathbb{H}}\varphi + \lambda \varphi + \varphi^p = 0$$

has at most one positive solution up to hyperbolic isometries.

Remark 1.2. Mancini-Sandeep showed that if $n \ge 4$, p = (n+2)/(n-2) and $\lambda \le n(n-2)/4$, or n = 3 and p = 5, then problem (2.6) does not have a positive solution; see [5, Theorems 1.6 and 1.7].

For each $y \in \mathbb{H}$ and r > 0, we define

$$B_{\mathbb{H}}(y,r) = \{ x \in \mathbb{H} : d_{\mathbb{H}}(x,y) < r \},\$$

where $d_{\mathbb{H}}(x, y)$ is the distance of $x, y \in \mathbb{H}$.

Theorem 1.3. Assume (1.2). Let $x_0 \in \mathbb{H}$ and R > 0. Then problem

(1.5)
$$\begin{cases} \Delta_{\mathbb{H}}\varphi + \lambda\varphi + \varphi^p = 0 & in \ B_{\mathbb{H}}(x_0, R), \\ \varphi = 0 & on \ \partial B_{\mathbb{H}}(x_0, R) \end{cases}$$

has at most one positive solution belonging to $C^2(B_{\mathbb{H}}(x_0, R)) \cap C(\overline{B_{\mathbb{H}}(x_0, R)})$.

In order to show Theorem 1.3, we can apply the results in [10,11]; see Section 3. On the other hand, in order to show Theorem 1.1, we can not apply them directly. Indeed, when we consider problem (2.3) below, which is a transformed problem (1.1), the coefficient functions g, h defined by (2.2) diverge as $r \to 1 - 0$ except h in the case $n \ge 3$ and p = (n+2)/(n-2). So we need to treat the problem carefully. Applying the essential part of the proofs in [10,11], we give the proof of Theorem 1.1 in the next section.

2. Proof of Theorem 1.1

Using the Poincare disk model, we consider that

$$\frac{4|dx|^2}{(1-|x|^2)^2}$$

is the Riemannian metric tensor on $B(0,1) = \{x \in \mathbb{R}^n : |x| < 1\}, \Delta_{\mathbb{H}}$ is given by

$$\left(\frac{1-|x|^2}{2}\right)^2 \left(\Delta + \frac{2(n-2)}{1-|x|^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}\right)$$

and (1.1) is represented as

(2.1)
$$\left(\frac{1-|x|^2}{2}\right)^2 \Delta\varphi + \frac{(n-2)(1-|x|^2)}{2}x \cdot \nabla\varphi + \lambda\varphi + \varphi^p = 0 \quad \text{in } B(0,1).$$

Setting $u(x) = (1 - |x|^2)^{(2-n)/2} \varphi(x)$, the equation above is transformed into

$$\Delta u - g(|x|)u + h(|x|)u^p = 0 \quad \text{in } B(0,1),$$

where

(2.2)
$$g(r) = \frac{n(n-2) - 4\lambda}{(1-r^2)^2}$$
 and $h(r) = 4(1-r^2)^{\frac{(n-2)p-(n+2)}{2}}$.

We know from [5, Theorem 2.1] that if φ is a positive solution of (1.1), then there is $x_0 \in \mathbb{H}$ such that φ is constant on any hyperbolic spheres centered at x_0 . So we consider the uniqueness of a positive solution u which satisfies

(2.3)
$$u_r(0) = 0, \quad u_{rr} + \frac{n-1}{r}u_r - g(r)u + h(r)u^p = 0, \quad 0 < r < 1$$

and

(2.4)
$$\begin{cases} (1-r^2)^{\frac{n-2}{2}} u(r) \in H^1(\mathbb{H}) & \text{in the case } \lambda < (n-1)^2/4, \\ (1-r^2)^{\frac{n-2}{2}} u(r) \in \mathcal{H} & \text{in the case } \lambda = (n-1)^2/4. \end{cases}$$

We define the functions a, b, c, G by

$$\begin{split} a(r) &= 16^{-\frac{1}{p+3}} r^{\frac{2(n-1)(p+1)}{p+3}} \left(1-r^2\right)^{\frac{n+2-(n-2)p}{p+3}},\\ b(r) &= -\frac{1}{2} a_r(r) + \frac{n-1}{r} a(r)\\ &= \frac{1}{16^{\frac{1}{p+3}}(p+3)} r^{\frac{2(n-1)(p+1)}{p+3}-1} \left(1-r^2\right)^{\frac{n+2-(n-2)p}{p+3}-1} \\ &\quad \cdot \left(2(n-1)-r^2((n-2)p+n-4)\right),\\ c(r) &= -b_r(r) + \frac{n-1}{r} b(r)\\ &= -\frac{(n+2)-(n-2)p}{16^{\frac{1}{p+3}}(p+3)^2} r^{\frac{2(n-1)(p+1)}{p+3}-2} \left(1-r^2\right)^{\frac{n+2-(n-2)p}{p+3}-2} \\ &\quad \cdot \left(r^4((n-2)p+n-4)+r^2(n(p-1)+4)-2n+2\right),\\ G(r) &= b(r)g(r) + \frac{1}{2}c_r(r) - \frac{1}{2}\left(a(r)g(r)\right)_r(r) \end{split}$$

$$=\frac{2^{\frac{p-1}{p+3}}(n-1)(1+r^2)r^{\frac{2(n-1)(p+1)}{p+3}-3}}{(p+3)^3(1-r^2)^{\frac{(n+1)p-n+7}{p+3}}}(\alpha r^4+\beta r^2+\alpha)$$

$$=\frac{2^{\frac{p-1}{p+3}}(n-1)(1+r^2)r^{\frac{2(n-1)(p+1)}{p+3}-3}}{(p+3)^3(1-r^2)^{\frac{(n+1)p-n+7}{p+3}}}\Big(\alpha(1-r^2)^2+(2\alpha+\beta)r^2\Big),$$

where

$$\alpha = ((n+2) - (n-2)p)((n-2)p + n - 4),$$

$$\beta = 2(\lambda(p-1)(p+3)^2 - n^2(p^2 - 1) - 2n(3p+1) + 2(p+1)(p+5)).$$

We also define

$$D(r) = b(r)^2 - a(r)(c(r) - a(r)g(r))$$

For each positive solution u of (2.3), we define

$$J(r;u) = \frac{1}{2}a(r)u_r(r)^2 + b(r)u_r(u)u(r) + \frac{1}{2}(c(r) - a(r)g(r))u(r)^2 + \frac{1}{p+1}a(r)h(r)u(r)^{p+1} \quad \text{on } (0,1).$$

Then we can show the following Propositions 2.1 and 2.2. For their proofs, see [10, 11].

Proposition 2.1. For each positive solution u of (2.3), there holds

$$\frac{d}{dr}J(r;u) = G(r)u(r)^2$$
 on (0,1).

Proposition 2.2. For each pair of distinct positive solutions u, v of (2.3) such that u(0) < v(0) and $J(r; u) \ge 0$ on (0, 1), there holds

$$\frac{d}{dr}\left(\frac{v(r)}{u(r)}\right) < 0 \quad on \ (0,1).$$

Setting

(2.5)
$$\varphi(t) = (1 - r^2)^{\frac{n-2}{2}} u(r) \text{ for } r \in [0, 1) \text{ with } r = \tanh \frac{t}{2},$$

we can see that problem (2.3) is transformed into

(2.6)
$$\varphi_t(0) = 0, \qquad \varphi_{tt}(t) + \frac{n-1}{\tanh t}\varphi_t(t) + \lambda\varphi(t) + \varphi(t)^p = 0, \quad t > 0.$$

(Of course, (2.6) can be obtained from (2.1) by $r = \tanh t/2$.) By [5, Lemmas 3.4 and 3.6], we also know that each of a positive solution $\varphi \in H^1(\mathbb{H})$ of (2.6) with $\lambda < (n-1)^2/4$ or a positive solution $\varphi \in \mathcal{H}$ of (2.6) with $\lambda = (n-1)^2/4$ satisfies

(2.7)
$$\lim_{t \to \infty} \frac{\log \varphi(t)^2}{t} = \lim_{t \to \infty} \frac{\log \varphi_t(t)^2}{t} = -\left(n - 1 + \sqrt{(n-1)^2 + 4\lambda}\right)$$

and

$$\lim_{t \to \infty} \frac{\varphi_t(t)}{\varphi(t)} = -\frac{n-1+\sqrt{(n-1)^2+4\lambda}}{2},$$

and that each positive solution $\psi \in \mathcal{H}$ of (2.6) with $\lambda = (n-1)^2/4$ has A>0 satisfying

(2.8)
$$\lim_{t \to \infty} e^{\frac{n-1}{2}t} \psi(t) = A \text{ and } \lim_{t \to \infty} e^{\frac{n-1}{2}t} \psi_t(t) = -\frac{n-1}{2}A.$$

Proposition 2.3. Assume (1.2). Let u be a positive solution of (2.3) with (2.4). Then $J(r; u) \ge 0$ for each $r \in (0, 1)$.

In order to show Proposition 2.3, we prepare the following lemma. We note that $n\geq 2$ and p>1 implies

$$\frac{2(n-1)^2(p+1)}{(p+3)^2} < \frac{(n-1)^2}{4}.$$

Lemma 2.4. Assume the assumptions in Proposition 2.3 and let u be as in Proposition 2.3. Assume also

(2.9)
$$\lambda < \frac{2(n-1)^2(p+1)}{(p+3)^2}.$$

Then $J(r; u) \to 0$ as $r \to 1 - 0$.

Proof. Let φ be the function defined by (2.5). From (2.9), we can choose $\varepsilon > 0$ such that

$$\sqrt{(n-1)^2 - 4\lambda} > 1 - \frac{n+2 - (n-2)p}{p+3} + 2\varepsilon$$

From (2.7), (2.8) and (2.5), we have

$$\varphi(t) = O\left(e^{\left(-\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}+\varepsilon\right)t}\right) \text{ and } \varphi_t(t) = O\left(e^{\left(-\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}+\varepsilon\right)t}\right)$$

as $t \to \infty$. So we have

(2.10)
$$u(r) = O\left((1-r)^{\frac{1+\sqrt{(n-1)^2 - 4\lambda}}{2} - \varepsilon}\right) \text{ as } r \to 1-0$$

and

(2.11)
$$u_{r}(r) = \frac{2-n}{2}(1-r^{2})^{-\frac{n}{2}}(-2r)\varphi(t) + (1-r^{2})^{\frac{2-n}{2}}\varphi_{t}(t)\frac{dt}{dr}$$
$$= (1-r^{2})^{-\frac{n}{2}}((n-2)r\varphi(t) + 2\varphi_{t}(t))$$
$$= O\left((1-r)^{\frac{-1+\sqrt{(n-1)^{2}-4\lambda}}{2}-\varepsilon}\right) \quad \text{as } r \to 1-0.$$

Let

$$\gamma = \frac{n+2 - (n-2)p}{p+3} - 1 + \sqrt{(n-1)^2 - 4\lambda} - 2\varepsilon.$$

Then we can see $\gamma > 0$ and

$$\begin{cases} a(r)u_r(r)^2 = O((1-r)^{\gamma}), \\ b(r)u_r(r)u(r) = O((1-r)^{\gamma}), \\ c(r)u(r)^2 = O((1-r)^{\gamma}), \\ a(r)g(r)u(r)^2 = O((1-r)^{\gamma}) \end{cases} \text{ as } r \to 1-0.$$

Moreover, we have

$$a(r)h(r)u(r)^{p+1} = O\left((1-r)^{\gamma+(p-1)(\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}-\varepsilon)}\right)$$
 as $r \to 1-0$.

Hence, we can infer $J(r; u) \to 0$ as $r \to 1 - 0$.

Proof of Proposition 2.3. First, we consider the case $n \ge 3$ and

(2.12)
$$\lambda \ge \frac{2(n-1)^2(p+1)}{(p+3)^2}$$

We have $\alpha \geq 0$. From (2.12) and

$$2\alpha + \beta = 2(p-1) \left(\lambda (p+3)^2 - 2(n-1)^2(p+1) \right),$$

we also have $2\alpha + \beta \ge 0$. So we have $G(r) \ge 0$ on (0, 1). From $n \ge 3$, we can see $J(r; u) \to 0$ as $r \to +0$. Hence, by Proposition 2.1, we obtain $J(r; u) \ge 0$ on (0, 1). Next, we consider the case n = 2 and (2.12). From n = 2, we have

(2.13)
$$D(r) = -\left(\frac{2r}{1-r^2}\right)^{\frac{2(p-1)}{p+3}} \frac{\left((1-r^2)^2 + \left(\lambda(p+3)^2 - 2(p+1)\right)r^2\right)}{(p+3)^2}$$

From (2.12), we can find D(r) < 0 on (0, 1), which yields

$$J(r;u) > \frac{1}{2}a(r)u_r(r)^2 + b(r)u_r(r)u(r) + \frac{1}{2}(c(r) - a(r)g(r))u(r)^2$$
$$= \frac{1}{2}a(r)u(r)^2 \left(\left(\frac{u_r(r)}{u(r)} + \frac{b(r)}{a(r)}\right)^2 - \frac{D(r)}{a(r)^2} \right) > 0$$

for each $r \in (0, 1)$. Hence, in the case (2.12), we have shown our assertion.

Next, we consider the case $n \geq 3$ and (2.9). From $\alpha \geq 0$ and $2\alpha + \beta < 0$, there exists $r_0 \in [0, 1)$ such that G(r) > 0 on $(0, r_0)$ and G(r) < 0 on $(r_0, 1)$. We can easily see $J(r; u) \to 0$ as $r \to +0$. Using Lemma 2.4 and Proposition 2.1, we can infer the assertion. Next, we consider the case n = 2 and (2.9). We have $\alpha = -8$ and $2\alpha + \beta < 0$, which yields G(r) < 0 on (0, 1). Using Lemma 2.4 and Proposition 2.1 again, we can infer the assertion.

Remark 2.5. Although we can not completely cover [5, Theorems 1.6 and 1.7] stated in Remark 1.2, we can easily see that problem (1.3) does not have a positive solution in the case $n \ge 3$, p = (n+2)/(n-2) and $\lambda < n(n-2)/4$. Indeed, if there is a positive solution φ in such a case, by Lemma 2.4, we can see the corresponding function u defined by (2.5) satisfies $J(r; u) \to 0$ as $r \to +0$ and $r \to 1-0$. From $\alpha = 0$ and $2\alpha + \beta < 0$, we have G(r) < 0 on (0, 1). So we can obtain a contradiction by Proposition 2.1.

Now, we prove Theorem 1.1. Assume to the contrary that problem (2.3) has distinct positive solutions u and v such that

$$\begin{cases} (1-r^2)^{\frac{n-2}{2}} u(r), (1-r^2)^{\frac{n-2}{2}} v(r) \in H^1(\mathbb{H}) & \text{in the case } \lambda < (n-1)^2/4, \\ (1-r^2)^{\frac{n-2}{2}} u(r), (1-r^2)^{\frac{n-2}{2}} v(r) \in \mathcal{H} & \text{in the case } \lambda = (n-1)^2/4. \end{cases}$$

266

Let φ and ψ be the functions defined by (2.5) with u and v, respectively. Without loss of generality, we may assume u(0) < v(0). We define

$$\begin{aligned} X(r) &= \left(\frac{v(r)}{u(r)}\right)^2 J(r; u) - J(r; v) \\ &= \frac{1}{2}a(r)v(r)^2 \left(\frac{u_r(r)^2}{u(r)^2} - \frac{v_r(r)^2}{v(r)^2}\right) + b(r)v(r)^2 \left(\frac{u_r(r)}{u(r)} - \frac{v_r(r)}{v(r)}\right) \\ &+ \frac{1}{p+1}a(r)h(r)v(r)^2 \left(u(r)^{p-1} - v(r)^{p-1}\right) \end{aligned}$$

for $r \in (0, 1)$.

Lemma 2.6. $X(r) \rightarrow 0$ as $r \rightarrow +0$ and $X(r) \rightarrow 0$ as $r \rightarrow 1-0$.

Proof. It is easy to see $X(r) \to 0$ as $r \to +0$. We will show $X(r) \to 0$ as $r \to 1-0$. Let $\varepsilon > 0$ arbitrary such that

$$\frac{(n-1)(p^2-1)}{2(p+3)} > (p+5)\varepsilon.$$

From (2.7) and (2.8), we have

$$\lim_{t \to \infty} (\sinh^{n-1} t)(\varphi_t(t)\psi(t) - \varphi(t)\psi_t(t)) = 0,$$

and hence we obtain

1

$$\begin{aligned} \left| (\sinh^{n-1} t)(\varphi_t(t)\psi(t) - \varphi(t)\psi_t(t)) \right| \\ &= \left| \int_t^\infty \sinh^{n-1}(\tau)\varphi(\tau)\psi(\tau)(\varphi(\tau))^{p-1} - \psi(\tau)^{p-1} d\tau \right| \\ &\leq C \int_t^\infty e^{(n-1)\tau} e^{(p+1)(-\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}+\varepsilon)\tau} d\tau \\ &= C e^{((n-1)-(p+1)(\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}-\varepsilon))t}, \end{aligned}$$

where C > 0 is an appropriate constant. So we have

$$\varphi_t(t)\psi(t) - \varphi(t)\psi_t(t) = O\left(e^{-(p+1)(\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}-\varepsilon)t}\right) \quad \text{as } t \to \infty.$$

Since we have

$$\frac{1}{\varphi(t)} = O\left(e^{(\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}+\varepsilon)t}\right) \quad \text{and} \quad \frac{1}{\psi(t)} = O\left(e^{(\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}+\varepsilon)t}\right)$$

as $t \to \infty$, we obtain

$$\frac{\varphi_t(t)}{\varphi(t)} - \frac{\psi_t(t)}{\psi(t)} = \frac{\varphi_t(t)\psi(t) - \varphi(t)\psi_t(t)}{\varphi(t)\psi(t)}$$
$$= O\left(e^{-(p+1)(\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2} - \varepsilon)t - 2(-\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2} - \varepsilon)t}\right)$$
$$= O\left(e^{-(p-1)\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2}t + (p+3)\varepsilon t}\right)$$

$$= O\left((1-r)^{(p-1)\frac{n-1+\sqrt{(n-1)^2-4\lambda}}{2} - (p+3)\varepsilon} \right) \quad \text{as } r \to 1-0.$$

From (2.5) and (2.11), we have

$$\frac{u_r(r)}{u(r)} = \frac{(1-r^2)^{-\frac{n}{2}}((n-2)r\varphi(t)+2\varphi_t(t))}{(1-r^2)^{\frac{2-n}{2}}\varphi(t)}$$
$$= (1-r^2)^{-1}\left((n-2)r+2\frac{\varphi_t(t)}{\varphi(t)}\right).$$

Noting (2.10), we obtain

$$\begin{aligned} a(r)v(r)^{2} \left(\frac{u_{r}(r)^{2}}{u(r)^{2}} - \frac{v_{r}(r)^{2}}{v(r)^{2}}\right) \\ &= 4a(r)v(r)^{2}(1-r^{2})^{-2} \left((n-2)r + \frac{\varphi_{t}(t)}{\varphi(t)} + \frac{\psi_{t}(t)}{\psi(t)}\right) \left(\frac{\varphi_{t}(t)}{\varphi(t)} - \frac{\psi_{t}(t)}{\psi(t)}\right) \\ &= O\left(\left((1-r)^{\frac{n+2-(n-2)p}{p+3}+1+\sqrt{(n-1)^{2}-4\lambda}-2\varepsilon-2+(p-1)\frac{n-1+\sqrt{(n-1)^{2}-4\lambda}}{2}-(p+3)\varepsilon}\right) \\ &= O\left(\left((1-r)^{\frac{(n-1)(p^{2}-1)}{2(p+3)}+\frac{(p+1)\sqrt{(n-1)^{2}-4\lambda}}{2}-(p+5)\varepsilon}\right) \quad \text{as } r \to 1-0, \end{aligned}$$

and

$$\begin{split} b(r)v(r)^2 \left(\frac{u_r(r)}{u(r)} - \frac{v_r(r)}{v(r)}\right) \\ &= O\left(\left(1-r\right)^{\frac{n+2-(n-2)p}{p+3} - 1 + 1 + \sqrt{(n-1)^2 - 4\lambda} - 2\varepsilon - 1 + (p-1)\frac{n-1+\sqrt{(n-1)^2 - 4\lambda}}{2} - (p+3)\varepsilon}\right) \\ &= O\left(\left(1-r\right)^{\frac{(n-1)(p^2-1)}{2(p+3)} + \frac{(p+1)\sqrt{(n-1)^2 - 4\lambda}}{2} - (p+5)\varepsilon}\right) \quad \text{as } r \to 1-0. \end{split}$$

Hence, as $r \to 1 - 0$, we have

$$a(r)v(r)^{2}\left(\frac{u_{r}(r)^{2}}{u(r)^{2}} - \frac{v_{r}(r)^{2}}{v(r)^{2}}\right) \to 0, \qquad b(r)v(r)^{2}\left(\frac{u_{r}(r)}{u(r)} - \frac{v_{r}(r)}{v(r)}\right) \to 0.$$

We also have

$$a(r)h(r)v(r)^{2} \left(u(r)^{p-1} - v(r)^{p-1}\right)$$

= $O\left((1-r)^{\frac{n+2-(n-2)p}{p+3} + \frac{(n-2)p-(n+2)}{2} + (p+1)(\frac{1+\sqrt{(n-1)^{2}-4\lambda}}{2} - \varepsilon)}\right)$
= $O\left((1-r)^{\frac{(n-1)(p^{2}-1)}{2(p+3)} + \frac{(p+1)\sqrt{(n-1)^{2}-4\lambda}}{2} - (p+1)\varepsilon}\right)$

as $r \to 1 - 0$. Therefore we can find $X(r) \to 0$ as $r \to 1 - 0$.

Proof of Theorem 1.1. By Remark 1.2, we do not need to treat the case $n \ge 3$, p = (n+2)/(n-2) and $\lambda \le n(n-2)/4$. We will show (2.14) $G(r) \ne 0$ on (0,1).

First, we consider the case $n \ge 3$. Since we exclude the case p = (n+2)/(n-2) and $\lambda \le n(n-2)/4$, we have $\alpha > 0$ or $2\alpha + \beta > 0$, which yields (2.14). In the case n = 2,

we have $\alpha = -8$, and hence we have (2.14). From (2.14) and Propositions 2.1 and 2.3, we have $J(r; u) \ge 0$ and $J(r; u) \ne 0$ on (0, 1). We also have

$$\frac{d}{dr}X(r) = \left(\frac{d}{dr}\left(\frac{v(r)}{u(r)}\right)^2\right)J(r;u) + \left(\frac{v(r)}{u(r)}\right)^2G(r)u(r)^2 - G(r)v(r)^2$$
$$= \left(\frac{d}{dr}\left(\frac{v(r)}{u(r)}\right)^2\right)J(r;u)$$

for $r \in (0,1)$. Using Proposition 2.2, we have $d/drX(r) \leq 0$ and $d/drX(r) \neq 0$ on (0,1), which contradicts Lemma 2.6. Therefore, we have shown that each of problems (1.3) and (1.4) has at most one positive solution.

3. Proof of Theorem 1.3

We can see that problem (1.5) can be transformed into

(3.1)
$$\begin{cases} \Delta u - g(|x|)u + h(|x|)u^p = 0 & \text{in } B(0, r_0), \\ u = 0 & \text{on } \partial B(0, r_0) \end{cases}$$

with some $r_0 \in (0, 1)$, where g, h are the functions defined by (2.2) and $B(0, r_0) = \{x \in \mathbb{R}^n : |x| < r_0\}$. Putting $u(x) = v(x/r_0)$, problem (3.1) is transformed into

$$\begin{cases} \Delta v - r_0^2 g(r_0|x|)v + r_0^2 h(r_0|x|)v^p = 0 & \text{in } B(0,1) \\ v = 0 & \text{on } \partial B(0,1). \end{cases}$$

Setting $f:(0,1)\times(0,\infty)\to\mathbb{R}$ by $f(r,s)=-r_0^2g(r_0r)s+r_0^2h(r_0r)s^p$, we have

$$(1 - r_0^2 r^2)^{\frac{n+2}{2}} f(r, (1 - r_0^2 r^2)^{-\frac{n-2}{2}} s) = r_0^2 (-(n(n-2) - 4\lambda)s + s^p),$$

which is independent of r. Applying [9, Theorem 1], we can see that each positive solution of problem (3.1) is radially symmetric. Hence, it is enough to show that problem

(3.2)
$$\begin{cases} u_{rr}(r) + \frac{n-1}{r} u_r(r) - g(r)u(r) + h(r)u(r)^p = 0, \quad 0 < r < r_0, \\ u_r(0) = 0, \quad u(r_0) = 0 \end{cases}$$

has at most one positive solution. We define a, b, c, G, D as in the previous section. We can easily see $a(r) \to 0$ and $b(r) \to 0$ as $r \to +0$, and

$$\lim_{r \to +0} c(r) = \begin{cases} 0 & \text{in the case of } n \ge 3, \\ \infty & \text{in the case of } n = 2. \end{cases}$$

In the case $n \ge 3$, noting $\alpha \ge 0$, there is $r_1 \in [0, r_0]$ such that $G(r) \ge 0$ on $(0, r_1)$ and $G(r) \le 0$ on (r_1, r_0) . In the case n = 2, we can see

(3.3)
$$\{r \in (0, r_0) : G(r) = 0, D(r) > 0\} = \emptyset.$$

In fact, in the case $2\alpha + \beta \geq 0$, which is equivalent to (2.12), from (2.13), we find D(r) < 0 on $(0, r_0)$. In the case $2\alpha + \beta < 0$, from $\alpha = -8$, we have G(r) < 0 on $(0, r_0)$. Thus we have (3.3). Hence, we can infer $J(r; u) \geq 0$ on $(0, r_0)$. Therefore, by [11, Theorem 1], we can see that problem (3.2) has at most one positive solution.

References

- I. Chavel, *Eigenvalues in Riemannian Geometry*, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984.
- [2] C. V. Coffman, Uniqueness of the ground state solution for $\Delta u u + u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal. **46** (1972), 81–95.
- [3] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. **105** (1989), 243–266.
- [4] M. K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339–363.
- [5] G. Mancini and K. Sandeep, On a semilinear elliptic equation in Hⁿ, Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (2008), 635–671.
- [6] W.-M. Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations, in: Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 229–241.
- [7] W.-M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u + f(u, r) = 0$, Comm. Pure Appl. Math. **38** (1985), 67–108.
- W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), 1–32.
- [9] N. Shioji and K. Watanabe, Radial symmetry of positive solutions for semilinear elliptic equations in the unit ball via elliptic and hyperbolic geometry, J. Differential Equations 252 (2012), 1392–1402.
- [10] N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$, J. Differential Equations **255** (2013), 4448–4475.
- [11] N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of $\operatorname{div}(\rho \nabla u) + \rho(-gu + hu^p) = 0$, preprint.
- [12] E. Yanagida, Uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. **115** (1991), 257–274.
- [13] E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. **124** (1993), 239–259.

Manuscript received 20 August 2015 revised 3 December 2015

N. Shioji

Department of Mathematics, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

E-mail address: shioji@ynu.ac.jp

K. WATANABE

Department of Computer Science, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan

E-mail address: wata@nda.ac.jp