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UNIQUENESS OF POSITIVE SOLUTIONS OF
BREZIS-NIRENBERG PROBLEMS ON H"

NAOKI SHIOJIT AND KOHTARO WATANABE?

ABSTRACT. We study the uniqueness of positive solutions of
Apnp+ Ao+ ¢" =0

on the n-dimensional hyperbolic space H", where n > 2, A < (n—1)?/4, and p is
subcritical or critical. In particular, in the case n = 2, we improve Mancini and
Sandeep’s uniqueness result.

1. INTRODUCTION
In this paper, we study the uniqueness of a positive solution of
(1.1) Agp+Ap+¢? =0 on H",

where H = H"” is the n-dimensional hyperbolic space,

n+2
-1)? J1<p<——= inth >3
(1.2) neN,nzz,)\g(”4)7 ps_—— inthecasen 23,

l<p<oo in the case n = 2,

and Ag is the Laplace-Beltrami operator on H. Uniqueness of positive solutions for
the equations like (1.1) has been studied by many researchers; see [2-8,10-13] and
the references therein. One of such a equation is the scaler field equation

Ap—p+ P = in R™, o(xr) =0 as |z| — oo,

and its uniqueness of a positive solution up to translation was established by
Kwong [3]. Recently, the authors [10,11] introduced a generalized Pohozaev identity
and gave uniqueness results which are applicable to various equations including the
scalar field equation.
For the hyperbolic space H, it is well known [1] that
f]HI |VH(p|2 dVi B (n — 1)2

inf = ,

e HIEN{0}  [i |¢? dVa 4
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where Vy is the gradient and dVy is the volume element with respect to H. It
implies that

1
2
||so|H=(/H |va2de> . e H'(H)

is an equivalent norm on H!(H). We define

ol = ([ (19met? - 22 2) def

for ¢ € C§°(H), and we denote by H the completion of C§°(H) with respect to this
norm.

Now, we state our results. In the case n = 2, we improve [5, Theorem 1.3] and
[5, Proposition 4.4]. More precisely, in the case n = 2, we do not need to assume
A < 2(p+1)/(p+3)? in order to show the uniqueness of a positive solution of (1.1).

Theorem 1.1. Assume (1.2). In the case A\ < (n — 1)%/4, problem
(1.3) peH'(H), Amp+io+¢’ =

has at most one positive solution up to hyperbolic isometries, and in the case A =
(n —1)2/4, problem

(1.4) pEH, Agp + Ao+ ¢? =0
has at most one positive solution up to hyperbolic isometries.

Remark 1.2. Mancini-Sandeep showed that if n > 4, p = (n 4+ 2)/(n — 2) and
A <n(n—2)/4, or n =3 and p = 5, then problem (2.6) does not have a positive
solution; see [5, Theorems 1.6 and 1.7].

For each y € H and r > 0, we define
By (y,r) ={x € H: dy(z,y) < r},
where dy(z,y) is the distance of z,y € H.
Theorem 1.3. Assume (1.2). Let zo € H and R > 0. Then problem

Ls Agp + Ao+ ¢P =0 in Bu(zo, R),
(1.5) ©=0 on dBg(xg, R)

has at most one positive solution belonging to C?(By(zo, R)) N C(Bu(zo, R)).

In order to show Theorem 1.3, we can apply the results in [10,11]; see Section 3.
On the other hand, in order to show Theorem 1.1, we can not apply them directly.
Indeed, when we consider problem (2.3) below, which is a transformed problem (1.1),
the coefficient functions g, h defined by (2.2) diverge as r — 1 — 0 except h in the
case n > 3 and p = (n+2)/(n — 2). So we need to treat the problem carefully.
Applying the essential part of the proofs in [10,11], we give the proof of Theorem 1.1
in the next section.
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2. PROOF OF THEOREM 1.1
Using the Poincare disk model, we consider that
4|dx|?
(1= |zf?)?
is the Riemannian metric tensor on B(0,1) = {z € R" : |z| < 1}, Ap is given by

1—|z2\? 2n—2) o~ 8
( 2 ) <A+1—\x|22$iaxi>

i=1

and (1.1) is represented as

1—[z2\? —2)(1 — |=|?
(2.1) < Q’x‘>A¢+<n )(2 ) Vot At P =0 in BO,1).

Setting u(z) = (1 — |z|?)?~™/2¢(z), the equation above is transformed into

Au — g(|z|)u + h(|z])uP =0 in B(0,1),

where
n(n —2) — 4\
en ="

We know from [5, Theorem 2.1] that if ¢ is a positive solution of (1.1), then there
is g € H such that ¢ is constant on any hyperbolic spheres centered at xg. So we
consider the uniqueness of a positive solution u which satisfies

(n=2)p—(n+2)
2 .

and h(r) = 4(1 —r?)

(2.3) u,(0) =0, Upy + n- 1ur —g(r)u+h(r)uP =0, 0<r<l1
and
(2.4) (1- 7“2)”T_2u(7‘) € HY(H) in the case A < (n —1)?/4,

' (1- 7‘2)%211(7“) eH in the case A = (n — 1)?/4.

We define the functions a, b, ¢, G by

(n=1)(p+1) nt2-(n-2)p
a(r) = 1671?%7‘2;% (1- 7“2) .
1 n—1
b(r) = —§ar(7“) + a(r)
_ %TQ(n—pligp-H)_l (1 B 7«2) n+2;in:.3—2)p71
167+3 (p + 3)

. (2(n —1)—7r*((n—2)p+n— 4)) ,
ofr) = by (r) + " o(r)

_ n+2)—(n— 2)pr2(nfp1+);p+l>_2

1673 (p + 3)?
S =2p+n—4) +r¥(nlp —1) +4) — 2n+2),
1 1

G(r) =b(r)g(r) + 5er(r) = 5 (a(r)g(r)),.(r)

(1= ) e
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2n=1)(pt1) g

p—1
20%3 (n — 1)(1 +72)r »+3
= ( ) )(n+1)p — (ar4 + Br? + a)
(p 37 (1—r2) " 5
p=1 2An=1)(p+1) 4
2058 (n — 1)(1 +r2)r  »t3
= ( )( )(n+1)p — (Oé(]. o T2)2 + (20{ +ﬁ)7”2>,
(p+37(1—r2) " 05

where
a=((n+2)—(n—=2)p)((n—2)p+n—4),
B=2Ap—-1)(p+3)?-n*(p*—1) —2n(8p+1) +2(p+ 1)(p +5)).
We also define
D(r) = b(r)* = a(r)(c(r) — a(r)g(r)).
For each positive solution u of (2.3), we define
1 1
J(ryu) = §a(r)ur('r’)2 +b(r)ur (wu(r) + 5 (e(r) - a(r)g(r))u(r)®
1
e 1a(r)h(r)u(r)p+1 on (0,1).
Then we can show the following Propositions 2.1 and 2.2. For their proofs, see
[10,11].

Proposition 2.1. For each positive solution u of (2.3), there holds
d
%J(r; u) = G(ryu(r)®> on (0,1).

Proposition 2.2. For each pair of distinct positive solutions u,v of (2.3) such that
u(0) < v(0) and J(r;u) >0 on (0,1), there holds

CZ(ZEZ;) <0 on(0,1).

Setting
(2.5) o(t) =(1— r2)nT_2u(r) for r € [0,1) with » = tanh %,

we can see that problem (2.3) is transformed into

(2.6)  @(0)=0,  ou() Z;r:hltcpt(t) + Ap(t) + (t)P =0, t>0.

(Of course, (2.6) can be obtained from (2.1) by r» = tanht¢/2.) By [5, Lemmas 3.4
and 3.6], we also know that each of a positive solution p € H(H) of (2.6) with
A < (n—1)%/4 or a positive solution ¢ € H of (2.6) with A\ = (n — 1)?/4 satisfies

(2.7) hmw_hmw__(n_H\/m)

t—o00 t—o00

and

Ao

pi(t)  n—1+/(n—1)>+4)
2 J
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and that each positive solution ¢ € H of (2.6) with A = (n — 1)2/4 has A > 0
satisfying
(2.8) lim enT_ltqb(t) =A and lim enT_ltwt(t) S 1A.

t—00 t—00 2
Proposition 2.3. Assume (1.2). Let u be a positive solution of (2.3) with (2.4).
Then J(r;u) > 0 for each r € (0,1).

In order to show Proposition 2.3, we prepare the following lemma. We note that
n > 2 and p > 1 implies
2(n—1)%(p+1) _ (- 1)2
(p+3)? 4

Lemma 2.4. Assume the assumptions in Proposition 2.3 and let u be as in Propo-
sition 2.8. Assume also

2(n —1)2(p+1)
(2.9) A< 0 +3)? .

Then J(r;u) — 0 asr — 1 —0.

Proof. Let ¢ be the function defined by (2.5). From (2.9), we can choose € > 0 such

that
n+2—(n—2)p

p+3

(n—1)2—-4x>1 + 2e.

From (2.7), (2.8) and (2.5), we have

p(t) =0 (e“’”””é‘”iz‘“%)t) and @(t) = O <e(—n—1+¢<g—1>72—%+e>t)
as t — 0o0. So we have
(2.10) u(r) =0<(1—7”)W_5> asr—1—0
and
up(r) = 2 ; n(l — 7“2)_%(—27’)90(25) +(1- 7"2)2_Tn<,0t(t)%
211 = (1= )73 ((n — 2)rp(t) + 204(0)
:O<(1_7’)WE> asrT — 1—0.
Let

2 — (n—2
Il () S RNy sy GUD

p+3
Then we can see v > 0 and
a(r)ur(r)? = O((1 —r)),

b(r;ur(riu(r) =oa-mm.
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Moreover, we have

asr —1-—0.

a(r)h(r)u(r)?t' = 0 <<1 _ r)w(p—l)(nm/w_a))

Hence, we can infer J(r;u) — 0 asr — 1 —0. O

Proof of Proposition 2.3. First, we consider the case n > 3 and

n — 2
(2.12) a2 (le)r g; D
We have a > 0. From (2.12) and
20+ 8=2(p—1)(Ap+3)*-2(n—1)>*(p+1)),

we also have 2o + 5 > 0. So we have G(r) > 0 on (0,1). From n > 3, we can see
J(r;u) — 0 as 7 — +0. Hence, by Proposition 2.1, we obtain J(r;u) > 0 on (0,1).
Next, we consider the case n = 2 and (2.12). From n = 2, we have

ro\ e (1= 22 2 _ 2
e - B
From (2.12), we can find D(r) < 0 on (0, 1), which yields

Trsw) > sa(r)ur(r)? +b(r)ur(ryu(r) + 5 (e(r) — a(rig(r)u(r)?

1o (((m) b)) D)
2 (r)u(r) ((u(r) +a,(r)> a(r)2> >0

for each r € (0,1). Hence, in the case (2.12), we have shown our assertion.

Next, we consider the case n > 3 and (2.9). From a > 0 and 2a + 5 < 0, there
exists o € [0, 1) such that G(r) > 0 on (0, r9) and G(r) < 0 on (9, 1). We can easily
see J(r;u) — 0 as r — +0. Using Lemma 2.4 and Proposition 2.1, we can infer

the assertion. Next, we consider the case n = 2 and (2.9). We have a = —8 and
2a+ B < 0, which yields G(r) < 0 on (0,1). Using Lemma 2.4 and Proposition 2.1
again, we can infer the assertion. O

Remark 2.5. Although we can not completely cover [5, Theorems 1.6 and 1.7]
stated in Remark 1.2, we can easily see that problem (1.3) does not have a positive
solution in the case n > 3, p = (n+2)/(n—2) and A < n(n —2)/4. Indeed, if there
is a positive solution ¢ in such a case, by Lemma 2.4, we can see the corresponding
function u defined by (2.5) satisfies J(r;u) — 0 as r — +0 and » — 1 — 0. From
a =0 and 2a+ 3 < 0, we have G(r) < 0 on (0,1). So we can obtain a contradiction
by Proposition 2.1.

Now, we prove Theorem 1.1. Assume to the contrary that problem (2.3) has
distinct positive solutions u and v such that

n—2

{u_ﬂ>mma—w>zwmeﬂwm in the case A < (n = 1)?/4,

N

n—s

1= 2 ulr),(1-r}) "2 v(r)eH in the case A = (n — 1)?/4.
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Let ¢ and v be the functions defined by (2.5) with u and v, respectively. Without
loss of generality, we may assume u(0) < v(0). We define

2
X(r)= (ZE:;) J(r;u) — J(r;v)
_ la Por)2 UT(T)z . Ur("")2 Po(r)2 ur("") - ’UT(’P)
= 5elur) <u<r>2 v<r>2>“’< Joir) <u<r> v<r>>
£ amhE ) (ulrP — o)

p+1
for r € (0,1).

Lemma 2.6. X(r) - 0 asr — +0 and X(r) -0 asr —1—0.

Proof. 1t is easy to see X (r) — 0 as r — +0. We will show X (r) - 0asr — 1—0.
Let € > 0 arbitrary such that

n— 2
CDD

From (2.7) and (2.8), we have
lim (sinh™ ™" £) (e (£)(t) — (t)3he(t)) = 0,

t—o00

and hence we obtain

(sinh™" £) (pu (£)(8) — so(twt(t))'

o0
/ sinh™ ™ (1) (1) (7) (@(T)P ™ = p(r)P~ ) dr
t
<C / 7 Dy (o) PR )
t

n—14+4/(n—1)2—4x
f*t‘))t

)

— Celn=D)=+1)

where C' > 0 is an appropriate constant. So we have

PE0) = (O] = O e IV o)

as t — oo.

Since we have

o(t)

as t — oo, we obtain

pi(t) _ i(t) _ pe(t)(t) — p(t)u(t)
e(t)  ¥() p(t)y(t)
o (6—<p+1><"1+“%”—2“—e)t—2<—"1*\/“;”—2“ —a)t)

1
and ——=
t

n—14+/(n—1)2—4x
=0 6(f-‘re)t
5= )

19 <e(pl)"1+ v (gl>24*t+(p+3)st>
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gy n—1+/ (7L71)274>\7
=0 <(1 — )1 2 (p+3)5> asr —1—0.

From (2.5) and (2.11), we have
ur(r) _ (L=r*) "2 ((n— 2)rolt) + 2¢4(t))
u(r) (1—12)" 7" o(t)

- (- 228

Noting (2.10), we obtain

ve(r)?

Sa(ryo(r)2(1 1) ((n P ﬁ((f)) n Zit((f))) <<Pt(t) B %bt(t))

e(t) Y1)
_ o( (1 — ) 52 TP ah 2o (p ) <p+3)a>
n—1)(p%-1) @+1)V(n 120
:0(1_7» = (p+5)€> asr —1—0,

bm“*(ﬁ?‘ﬁ@)

n42—(n-2)p _ T2 4 9e _yr=ltV(n=12—ax

_0 <(1_T) (201414 fn 1P —aA—2e—14(p-1) Y (p+3)8)
(n=1)(p?~1) <p+w<n DZ—4x

_O<(1—7") W T (p+5)6> asr — 1—0.

Hence, as r — 1 — 0, we have
2

a(r)u(r)? <“’“(7") _ ulr) > 0, b(r)u(r)? <“T(T> - 7;”((:))) 0.

u(r)*  w(r)

[\

We also have

a(r)h(r)o(r)? (u(r)P~" —o(r)"™")
~0 <(1_r)”+2p$§ s SN RN (EUEE )>

(n=1)(p%-1) (p+1>\/(n H2—4x
=0 <(1 —7) 20+m —( “)5>

as r — 1 — 0. Therefore we can find X(r) - 0asr —1—0. O

Proof of Theorem 1.1. By Remark 1.2, we do not need to treat the case n > 3,
p=(n+2)/(n—2)and A <n(n—2)/4. We will show
(2.14) G(r)#0 on (0,1).

First, we consider the case n > 3. Since we exclude the case p = (n+2)/(n—2) and
A <n(n—2)/4, we have o > 0 or 2a+ 3 > 0, which yields (2.14). In the case n = 2,
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we have a = —8, and hence we have (2.14). From (2.14) and Propositions 2.1 and
2.3, we have J(r;u) > 0 and J(r;u) # 0 on (0,1). We also have

X = (j (uﬁi)) Jriu) + (ZEZ;)QGWW G’
("

) (j (%))2) T

for r € (0,1). Using Proposition 2.2, we have d/drX(r) < 0 and d/drX(r) # 0
on (0,1), which contradicts Lemma 2.6. Therefore, we have shown that each of
problems (1.3) and (1.4) has at most one positive solution. O

3. PROOF OF THEOREM 1.3
We can see that problem (1.5) can be transformed into
o) {Au — glalyu+ h(al)w? =0 in B(O,ro),
u=0 on 9dB(0,79)

with some rg € (0,1), where g, h are the functions defined by (2.2) and B(0,7¢) =
{zx € R" : |z| < ro}. Putting u(z) = v(xz/rg), problem (3.1) is transformed into

Av — r2g(ro|z|)v + r2h(ro|z)vP =0 in B(0,1)
v=0 on0B(0,1).
Setting f: (0,1) x (0,00) = R by f(r,s) = —rgg(ror)s + r3h(ror)sP, we have
(1= r2r2) 2" f(r, (1 —1202) "2 5) = 12(—(n(n — 2) — 4\)s + ),

which is independent of r. Applying [9, Theorem 1|, we can see that each positive
solution of problem (3.1) is radially symmetric. Hence, it is enough to show that
problem

(1) 4 L () — g(r)u(r) + (PP =0, 0 < 7 < 7o,
u,(0) =0, u(rg) =0

(3.2)

has at most one positive solution. We define a, b, ¢, G, D as in the previous section.
We can easily see a(r) — 0 and b(r) — 0 as r — +0, and

oo in the case of n = 2.

. {0 in the case of n > 3,
lim c(r) =
r——+0

In the case n > 3, noting o > 0, there is r; € [0,7¢] such that G(r) > 0 on (0,r;)
and G(r) <0 on (r1,r0). In the case n = 2, we can see
(3.3) {re (0,r0) : G(r) =0, D(r) > 0} = 0.

In fact, in the case 2a + 8 > 0, which is equivalent to (2.12), from (2.13), we find
D(r) < 0 on (0,79). In the case 2a + 5 < 0, from o = —8, we have G(r) < 0 on
(0,79). Thus we have (3.3). Hence, we can infer J(r;u) > 0 on (0,r9). Therefore,
by [11, Theorem 1], we can see that problem (3.2) has at most one positive solution.
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