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sum equipped with the norm induced from an arbitrary norm ∥ · ∥A on RN (see
Section 5). To do this, as it is enough to do so (Section 5), we shall first discuss
a ψ-direct sum which enables us to use a powerful tool, the convex function ψ. In

particular the class Ψ
(1)
N of convex functions introduced in [12], which yields ℓ1-like

norms on CN , will play an essential role. As another point to do this the notions
Properties TN1 and TN∞ in Dowling and Saejung [6] will be described in terms of the

class Ψ
(1)
N .

In Section 2 definitions and preliminary results concerning ψ-direct sums will
be mentioned. In Section 3 the uniform non-squareness for ψ-direct sums will
be discussed. We shall first show that, under the condition that ∥ · ∥ψ is strictly
monotone, (X1⊕· · ·⊕XN )ψ is uniformly non-square if and only ifXj ’s are uniformly

non-square and ψ ̸∈ Ψ
(1)
N (Theorem 3.5). In the case the dual norm ∥ · ∥∗ψ = ∥ · ∥ψ∗

is strictly monotone, the same is true with ψ∗ ̸∈ Ψ
(1)
N in place of ψ ̸∈ Ψ

(1)
N , where

ψ∗ is the dual function of ψ (Theorem 3.7). From these results the following will be
derived: Assume that ∥ ·∥ψ or ∥ ·∥∗ψ is strictly monotone. Then, (X1⊕· · ·⊕XN )ψ is

uniformly non-square if and only if Xj ’s are uniformly non-square and ψ,ψ∗ ̸∈ Ψ
(1)
N

(Theorem 3.11).

In Section 4 we shall discuss the relation between the class Ψ
(1)
N and the notions of

Properties TN1 and TN∞ . We shall show that Properties TN1 and TN∞ are respectively

equivalent to ψ ̸∈ Ψ
(1)
N and ψ∗ ̸∈ Ψ

(1)
N (Theorem 4.3).

In the final Section 5 we shall discuss Z-direct sums and A-direct sums. A ψ-
direct sum is a Z-direct sum and a Z-direct sum is an A-direct sum. In Theorem 5.2
we shall show that these three kinds of notions of direct sum are equivalent, more
precisely, for any norm ∥·∥A on RN there exists ψ ∈ ΨN such that the A-direct sum
(X1⊕· · ·⊕XN )A is isometrically isomorphic to the ψ-direct sum (X1⊕· · ·⊕XN )ψ.

Combining the results in Section 3 with Theorems 4.3 and 5.2 we shall obtain the
following. Assume that ∥ · ∥A (resp., ∥ · ∥∗A) is strictly monotone. Then, (X1 ⊕ · · · ⊕
XN )A is uniformly non-square if and only if Xj ’s are uniformly non-square and ∥·∥A
has Property TN1 (resp., TN∞) (Theorems 5.3, 5.4). In particular, if ∥ · ∥A or ∥ · ∥∗A
is strictly monotone, (X1 ⊕ · · · ⊕ XN )A is uniformly non-square if and only if all
Xj are uniformly non-square and ∥ · ∥A has Properties TN1 and TN∞ (Theorem 5.5),
which covers the main result of Dowling and Saejung [6, Theorem 13] for Z-direct
sums.

2. Definitions and preliminary results

A norm ∥ · ∥ on CN is called absolute if ∥(z1, · · · , zN )∥ = ∥(|z1|, · · · , |zN |)∥ for all
(z1, · · · , zN ) ∈ CN and normalized if ∥(1, 0, · · · , 0)∥ = · · · = ∥(0, · · · , 0,
1)∥ = 1. A norm ∥ · ∥ on CN is called monotone provided that, if |zj | ≤ |wj | for
1 ≤ j ≤ N , ∥(z1, . . . , zN )∥ ≤ ∥(w1, . . . , wN )∥. A norm ∥ · ∥ on CN is called strictly
monotone provided that it is monotone and, if |zj | < |wj | for some 1 ≤ j ≤ N ,
∥(z1, . . . , zN )∥ < ∥(w1, . . . , wN )∥. The following is known.

Lemma 2.1 (Bhatia [2], see also [13]). A norm ∥ · ∥ on CN is absolute if and only
if it is monotone.
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Let us recall that for every absolute normalized norm on CN there corresponds
a convex function on a certain convex set in RN−1 ( [3, 16]). For any absolute
normalized norm ∥ · ∥ on CN let

(2.1) ψ(s) =

∥∥∥∥(1− N−1∑
i=1

si, s1, · · · , sN−1

)∥∥∥∥ for s = (s1, · · · , sN−1) ∈ ∆N ,

where

∆N =

{
s = (s1, · · · , sN−1) ∈ RN−1 :

N−1∑
i=1

si ≤ 1, si ≥ 0

}
Then ψ is convex (continuous) on ∆N and satisfies the following:

(A0) ψ(0, · · · , 0) = ψ(1, 0, · · · , 0) = · · · = ψ(0, · · · , 0, 1) = 1,

(A1) ψ(s1, . . . , sN−1) ≥
(N−1∑

i=1

si

)
ψ

(
s1∑N−1
i=1 si

, · · · , sN−1∑N−1
i=1 si

)
if 0 <

N−1∑
i=1

si ≤ 1,

(A2) ψ(s1, · · · , sN−1) ≥ (1− s1)ψ

(
0,

s2
1− s1

, · · · , sN−1

1− s1

)
if 0 ≤ s1 < 1,

· · · · · · · · ·
(AN ) ψ(s1, · · · , sN−1) ≥(1−sN−1)ψ

(
s1

1−sN−1
, · · · , sN−2

1−sN−1
, 0

)
if 0 ≤ sN−1< 1.

In fact the condition (A0) is equivalent to that the norm ∥ · ∥ is normalized. The
conditions (Aj), 1 ≤ j ≤ N , are equivalent to the monotonicity in the jth entry of
the norm respectively, which is equivalent to that the norm is absolute by Lemma
2.1.

Conversely, let ΨN denote the class of all convex functions ψ on ∆N satisfying
(A0)–(AN ). Then, for any ψ ∈ ΨN we can construct an absolute normalized norm
∥ · ∥ψ on CN by the formula

∥(z1, · · · , zN )∥ψ =



(∑N
j=1 |zj |

)
ψ

(
|z2|∑N
j=1 |zj |

, · · · , |zN |∑N
j=1 |zj |

)
if (z1, · · · , zN ) ̸= (0, · · · , 0),

0 if (z1, · · · , zN ) = (0, · · · , 0),

(2.2)

where ∥ · ∥ψ satisfies (2.1) ( [16]; see [3] for the case N = 2). Thus every absolute
normalized norm ∥ · ∥ corresponds to a unique convex function ψ ∈ ΨN with the
equation (2.1). We refer the norm ∥ · ∥ψ to as ψ-norm. The ℓp-norms

∥(z1, · · · , zN )∥p =

{
{|z1|p + · · ·+ |zN |p}1/p if 1 ≤ p <∞,

max{|z1|, · · · , |zN |} if p = ∞

are basic examples of such norms and the corresponding functions ψp are given by

ψp(s1, · · · , sN−1) =


{(

1−
∑N−1

i=1 si

)p
+ sp1 + · · ·+ spN−1

}1/p

if 1 ≤ p <∞,

max{1−
∑N−1

i=1 si, s1, · · · , sN−1} if p = ∞.
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In particular, the function ψ1(t) = 1 corresponds to the ℓ1-norm. For all ψ ∈ ΨN

we have ∥ · ∥∞ ≤ ∥ · ∥ψ ≤ ∥ · ∥1 ( [16, Lemma 4.1]).

Let X1, ..., XN be Banach spaces. The ψ-direct sum (X1 ⊕ · · · ⊕XN )ψ, ψ ∈ ΨN ,
is their direct sum equipped with the norm

∥(x1, · · · , xN )∥ψ := ∥(∥x1∥, · · · , ∥xN∥)∥ψ for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕XN

( [9, 18]). The dual function ψ∗ of ψ is defined by

ψ∗(s1, . . . , sN−1) = sup
(t1,...,tN−1)∈∆N

(1−
∑N−1

i=1 si)(1−
∑N−1

i=1 ti) +
∑N−1

i=1 siti
ψ(t1, · · · , tN−1)

,

(s1, . . . , sN−1) ∈ ∆N ( [15], see also [12]):

Theorem 2.2 ([12,Theorem 4.1, 4.2]; cf. [15]). Let X1, · · · , XN be Banach spaces
and let ψ ∈ ΨN . Then, ψ∗ ∈ ΨN and

(X1 ⊕ · · · ⊕XN )
∗
ψ = (X∗

1 ⊕ · · · ⊕X∗
N )ψ∗

A Banach space X is called uniformly non-square if there exists a constant ε > 0
such that

min{∥x+ y∥, ∥x− y∥} ≤ 2(1− ε) for all x, y ∈ X with ∥x∥ = ∥y∥ = 1.

(If min{∥x+ y∥, ∥x− y∥} < 2 for all x, y ∈ X with ∥x∥ = ∥y∥ = 1, X is called non-
square.) Throughout the paper let RN+ = {(a1, . . . , aN ) ∈ RN : aj ≥ 0, 1 ≤ j ≤ N}.

3. Uniform non-squareness for ψ-direct sums

Lemma 3.1 ( [16], [2, p.36,Lemma 3]). Let ψ ∈ ΨN .

(i) The ψ-norm ∥ · ∥ψ is monotone.
(ii) If |zj | < |wj | for all 1 ≤ j ≤ N , ∥(z1, . . . , zN )∥ψ < ∥(w1, . . . , wN )∥ψ.

Lemma 3.2 ( [10]). Let {xn} and {yn} be nonzero bounded sequences in a Banach
space X with limn→∞ ∥xn∥ > 0 and limn→∞ ∥yn∥ > 0. Then the following are
equivalent.

(i) lim
n→∞

∥xn + yn∥ = lim
n→∞

{∥xn∥+ ∥yn∥} .

(ii) lim
n→∞

∥∥∥∥ xn
∥xn∥

+
yn
∥yn∥

∥∥∥∥ = 2.

Definition 3.3 (cf. [12]). Let ψ ∈ ΨN . We say ψ ∈ Ψ
(1)
N if there exist (a1, . . . , aN ) ∈

RN+ and a nonempty proper subset T of {1, . . . , N} for which

∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ(3.1)

+∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ,
where (χT (1)a1, . . . , χT (N)aN ) and (χT c(1)a1, . . . , χT c(N)aN ) are nonzero, χT de-

notes the characteristic function of T . A ψ-norm with ψ ∈ Ψ
(1)
N is referred to as a

partial ℓ1-norm.

Theorem 3.4 (cf. [12, Theorem 5.8]). Let ψ ∈ ΨN . Then the following are
equivalent.



UNIFORM NON-SQUARENESS FOR A-DIRECT SUMS 251

(i) ψ ∈ Ψ
(1)
N .

(ii) There exist (a1, . . . , aN ) ∈ RN+ and a nonempty proper subset T of {1, . . . , N}
for which the formula (3.1) holds true with

∥(χT (1)a1, . . . , χT (N)aN )∥ψ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1.

(iii) There exists a nonempty subset S of {1, . . . , N − 1} and an element

(s1, . . . , sN−1) ∈ ∆N with 0 <
∑N−1

i=1 χS(i)si < 1 such that

ψ(s1, . . . , sN−1) = Mψ

(
χS(1)s1
M

, . . . ,
χS(N − 1)sN−1

M

)
+(1−M)ψ

(
χSc(1)s1
1−M

, . . . ,
χSc(N − 1)sN−1

1−M

)
.

We refer the reader to [12,13] for a sequence of results on the class Ψ
(1)
N . Now we

shall have the following characterization of uniform non-squareness for a ψ-direct
sum with a strictly monotone norm.

Theorem 3.5. Let X1, . . . , XN be Banach spaces and let ψ ∈ Ψ
(1)
N . Assume that

the ψ-norm ∥ · ∥ψ is strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )ψ is uniformly non-square.

(ii) Xj’s are uniformly non-square and ψ ̸∈ Ψ
(1)
N .

Proof. (i) ⇒ (ii). Let (X1 ⊕ · · · ⊕XN )ψ be uniformly non-square. Then all Xj are
uniformly non-square as they are embedded into (X1 ⊕ · · · ⊕XN )ψ. Suppose that

ψ ∈ Ψ
(1)
N . Then, by Theorem 3.4 there exist (a1, . . . , aN ) ∈ RN+ and a nonempty

proper subset T of {1, . . . , N} for which

(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ + ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ,
where

∥(χT (1)a1, . . . , χT (N)aN )∥ψ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1.

Without loss of generality we may assume that T = {1, . . . , r} with some 1 ≤ r < N ,
that is,

(3.2) ∥(a1, . . . , aN )∥ψ = ∥(a1, . . . , ar, 0, . . . , 0)∥ψ + ∥(0, . . . , 0, ar+1, . . . , aN )∥ψ
and

∥(a1, . . . , ar, 0, . . . , 0)∥ψ = ∥(0, . . . , 0, ar+1, . . . , aN )∥ψ = 1.(3.3)

Take xj ∈ SXj , 1 ≤ j ≤ N , and let

u = (a1x1, . . . , arxr, 0, . . . , 0) ∈ (X1 ⊕ · · · ⊕XN )ψ

and
v = (0, . . . , 0, ar+1xr+1, . . . , aNxN ) ∈ (X1 ⊕ · · · ⊕XN )ψ.

Then by (3.2) and (3.3) we have

∥u∥ψ = ∥v∥ψ = 1 and ∥u± v∥ψ = ∥(a1, . . . , aN )∥ψ = 2,

whence (X1 ⊕ · · · ⊕ XN )ψ is not uniformly non-square, a contradiction. Thus we

have ψ ̸∈ Ψ
(1)
N .
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(ii) ⇒ (i). Let all Xj be uniformly non-square and let ψ ̸∈ Ψ
(1)
N . Suppose

that (X1 ⊕ · · · ⊕ XN )ψ is not uniformly non-square. Then for every n there exist

(x
(n)
1 , . . . , x

(n)
N ) and (y

(n)
1 , . . . , y

(n)
N ) in the unit ball of (X1 ⊕ · · · ⊕XN )ψ such that

(3.4) ∥(∥x(n)1 ± y
(n)
1 ∥, . . . , ∥x(n)N ± y

(n)
N ∥)∥ψ ≥ 2− 1

n
.

By choosing subsequences if necessary, we may assume that for all 1 ≤ j ≤ N

lim
n→∞

∥x(n)j + y
(n)
j ∥ = αj , lim

n→∞
∥x(n)j − y

(n)
j ∥ = βj ,

and
lim
n→∞

∥x(n)j ∥ = µj , lim
n→∞

∥y(n)j ∥ = νj .

Then

(3.5) ∥(µ1, . . . , µN )∥ψ = lim
n→∞

∥(∥x(n)1 ∥, . . . , ∥x(n)N ∥)∥ψ ≤ 1

and in the same way

(3.6) ∥(ν1, . . . , νN )∥ψ ≤ 1.

By (3.4) we have for any n ∈ N

2− 1

n
≤ ∥(∥x(n)1 ± y

(n)
1 ∥, . . . , ∥x(n)N ± y

(n)
N ∥)∥ψ

≤ ∥(∥x(n)1 ∥+ ∥y(n)1 ∥, . . . , ∥x(n)N ∥+ ∥y(n)N ∥)∥ψ
≤ ∥(∥x(n)1 ∥, . . . , ∥x(n)N ∥)∥ψ + ∥(∥y(n)1 ∥, . . . , ∥y(n)N ∥)∥ψ
≤ 2.

Letting n→ ∞, we have

∥(α1, . . . , αN )∥ψ = ∥(β1, . . . , βN )∥ψ(3.7)

= ∥(µ1 + ν1, . . . , µN + νN )∥ψ = 2.

Since the norm ∥ · ∥ψ is strict monotone, we have

αj = βj = µj + νj for all 1 ≤ j ≤ N.

Now we shall show that

(3.8) min{µj , νj} = 0 and hence αj = βj = max{µj , νj} for all 1 ≤ j ≤ N.

Suppose that min{µj0 , νj0} > 0 with some 1 ≤ j0 ≤ N . Then

lim
n→∞

∥x(n)j0
± y

(n)
j0

∥ = µj0 + νj0 = lim
n→∞

∥x(n)j0
∥+ lim

n→∞
∥y(n)j0

∥,

from which it follows that

lim
n→∞

∥∥∥∥∥ x
(n)
j0

∥x(n)j0
∥
±

y
(n)
j0

∥y(n)j0
∥

∥∥∥∥∥ = 2

by Lemma 3.2. Therefore Xj0 is not uniformly non-square, which is a contradiction.
Thus we have (3.8).

Next let
T = {j : αj = µj > 0, 1 ≤ j ≤ N}.
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Then T is a nonempty proper subset of {1, . . . , N}. Indeed, if T is empty, we have

αj = 0 or αj = νj for all 1 ≤ j ≤ N

and hence
2 = ∥(α1, . . . , αN )∥ψ ≤ ∥(ν1, . . . , νN )∥ψ ≤ 1,

a contradiction. If T = {1, . . . , N}, we have

2 = ∥(α1, . . . , αN )∥ψ = ∥(µ1, . . . , µN )∥ψ ≤ 1,

a contradiction. Thus, without loss of generality, we may assume that T = {1, . . . , r}
with some 1 ≤ r < N . Then, by (3.7) we have

2 = ∥(α1, . . . , αN )∥ψ
≤ ∥(α1, . . . , αr, 0, . . . , 0)∥ψ + ∥(0, . . . , 0, αr+1, . . . , αN )∥ψ
≤ ∥(µ1, . . . , µr, 0, . . . , 0)∥ψ + ∥(0, . . . , 0, νr+1, . . . , νN )∥ψ ≤ 2,

from which it follows that

∥(α1, . . . , αN )∥ψ = ∥(α1, . . . , αr, 0, . . . , 0)∥ψ + ∥(0, . . . , 0, αr+1, . . . , αN )∥ψ
and

∥(α1, . . . , αr, 0, . . . , 0)∥ψ = ∥(0, . . . , 0, αr+1, . . . , αN )∥ψ = 1.

Consequently we have ψ ∈ Ψ
(1)
N by Theorem 3.4, which is a contradiction. This

completes the proof. □
Remark 3.6. The assertion (i) ⇒ (ii) in Theorem 3.5 is valid without the assump-
tion on the strict monotonicity of ∥ · ∥ψ.

Since (X1⊕· · ·⊕XN )
∗
ψ = (X∗

1 ⊕· · ·⊕X∗
N )ψ∗ by Theorem 2.2 and X∗ is uniformly

non-square if and only if X is ( [17]), we shall have the next theorem.

Theorem 3.7. Let X1, . . . , XN be Banach spaces and let ψ ∈ ΨN . Assume that
the ψ∗-norm ∥ · ∥ψ∗ is strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )ψ is uniformly non-square.

(ii) All Xj are uniformly non-square and ψ∗ ̸∈ Ψ
(1)
N .

Remark 3.8. The assertion (i) ⇒ (ii) in Theorem 3.7 is valid without the assump-
tion on the strict monotonicity of ∥ · ∥ψ∗ .

According to Remarks 3.6 and 3.8 we have the following.

Proposition 3.9. Let X1, . . . , XN be Banach spaces and let ψ ∈ ΨN . Let (X1 ⊕
· · · ⊕XN )ψ be uniformly non-square. Then ψ,ψ∗ ̸∈ Ψ

(1)
N .

Remark 3.10. Proposition 3.9 is valid under the assumption “non-squareness”
in place of uniform non-squareness (cf. [6, Theorem 3]). In fact, in the proof of
the implication (i) ⇒ (ii) in Theorem 3.5 we proved that, if (X1 ⊕ · · · ⊕ XN )ψ is

”non-square”, then ψ ̸∈ Ψ
(1)
N .

From Theorems 3.5, 3.7 and Proposition 3.9 the next result follows.

Theorem 3.11. Let X1, . . . , XN be Banach spaces and let ψ ∈ Ψ
(1)
N . Assume that

∥ · ∥ψ or ∥ · ∥ψ∗ is strictly monotone. Then the following are equivalent.
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(i) (X1 ⊕ · · · ⊕XN )ψ is uniformly non-square.

(ii) All Xj are uniformly non-square and ψ,ψ∗ ̸∈ Ψ
(1)
N .

4. The class Ψ
(1)
N and properties TN1 and TN∞

A similar result to Theorem 3.11 was obtained in Dowling and Saejung [6] in
terms of the notions Properties TN1 and TN∞ . We shall see that these results are
equivalent.

Definition 4.1 ([6]). A norm ∥ · ∥ on CN is said to have Property TN1 if for all
a, b ∈ CN with

∥a∥ = ∥b∥ =
1

2
∥a+ b∥ = 1

one has supp a ∩ supp b ̸= ∅, where supp a = {j : aj ̸= 0}. A norm ∥ · ∥ is said to
have Property TN∞ if for all a, b ∈ CN with

∥a∥ = ∥b∥ = ∥a+ b∥ = 1

one has supp a ∩ supp b ̸= ∅.

These properties for an absolute norm are interpreted in words of partial ℓ1-norms

or the class Ψ
(1)
N . First we shall see the next result.

Proposition 4.2. Let ψ ∈ ΨN and let T be a nonempty proper subset of {1, . . . , N}.
Then the following are equivalent.

(i) There exists (a1, . . . , aN ) ∈ RN+ such that

∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ
= ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1.

(ii) There exists (a1, . . . , aN ) ∈ RN+ such that

∥(a1, . . . , aN )∥ψ∗ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ∗

+∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ∗ ,

where ∥(χT (1)a1, . . . , χT (N)aN )∥ψ∗ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ∗ = 1.

Proof. (i) ⇒ (ii). Assume that there exists (a1, . . . , aN ) ∈ RN+ such that

∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ
= ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1.

Then there exist (c1, . . . , cN ), (d1, . . . , dN ) ∈ RN+ such that

∥(χT (1)a1, . . . , χT (N)aN )∥ψ =

N∑
j=1

χT (j)ajcj ,

∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ =
N∑
j=1

χT c(j)ajdj ,

and

∥(χT (1)c1, . . . , χT (N)cN )∥ψ∗ = ∥(χT c(1)d1, . . . , χT c(N)dN )∥ψ∗ = 1.
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Let a′j = χT (j)cj + χT c(j)dj (1 ≤ j ≤ N). Then, since

∥(a′1, . . . , a′N )∥ψ∗ = ∥(χT (1)c1 + χT c(1)d1, . . . , χT (N)cN + χT c(N)dN )∥ψ∗

≥
N∑
j=1

χT (j)cjaj +

N∑
j=1

χT c(j)djaj

= ∥(χT (1)a1, . . . , χT (N)aN )∥ψ
+∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 2,

we have ∥(a′1, . . . , a′N )∥ψ = 2. Consequently we have

∥(a′1, . . . , a′N )∥ψ∗ = ∥(χT (1)a′1, . . . , χT (N)a′N )∥ψ∗ + ∥(χT c(1)a′1, . . . , χT c(N)a′N )∥ψ∗ ,

where ∥(χT (1)a′1, . . . , χT (N)a′N )∥ψ∗ = ∥(χT c(1)a′1, . . . , χT c(N)a′N )∥ψ∗ = 1.

(ii) ⇒ (i). Assume that there exists (a1, . . . , aN ) ∈ RN+ satisfying the condition

in (ii). Take (a′1, . . . , a
′
N ) ∈ RN+ with ∥(a′1, . . . , a′N )∥ψ = 1 so that

∥(a1, . . . , aN )∥ψ∗ =

N∑
j=1

aja
′
j .

Then, since ∥(χT (1)a1, . . . , χT (N)aN )∥ψ∗ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ∗ = 1, we
have

2 = ∥(a1, . . . , aN )∥ψ∗

=
N∑
j=1

χT (j)aja
′
j +

N∑
j=1

χT c(j)aja
′
j

=

N∑
j=1

χT (j)ajχTa
′
j +

N∑
j=1

χT c(j)ajχT ca
′
j

≤ ∥(χT (1)a′1, . . . , χT (N)a′N )∥ψ + ∥(χT c(1)a′1, . . . , χT c(N)a′N )∥ψ ≤ 2,

from which it follows that

∥(a′1, . . . , a′N )∥ψ = ∥(χT (1)a′1, . . . , χT (N)a′N )∥ψ
= ∥(χT c(1)a′1, . . . , χT c(N)a′N )∥ψ = 1.

This completes the proof. □

Now we have the following.

Theorem 4.3. Let ψ ∈ ΨN . Then:

(i) The ψ-norm ∥ · ∥ψ has Property TN1 if and only if ψ ̸∈ Ψ
(1)
N .

(ii) The ψ-norm ∥ · ∥ψ has Property TN∞ if and only if ψ∗ ̸∈ Ψ
(1)
N .

Proof. (i) We have the following.
The ψ-norm ∥ · ∥ψ has property TN1

⇐⇒ For all a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ CN with supp a ∩ supp b
= ∅ it does not hold that ∥a∥ψ = ∥b∥ψ = 1

2∥a+ b∥ψ = 1.



256 S. DHOMPONGSA, M. KATO, AND T. TAMURA

⇐⇒ There is no element (a1, . . . , aN ) ∈ RN+ such that for some nonempty
proper subset T of {1, . . . , N}

1

2
∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ

= ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1

⇐⇒ ψ ̸∈ Ψ
(1)
N (by Theorem 3.4).

(ii) We have the following.
The ψ-norm ∥ · ∥ψ has property TN∞

⇐⇒ For all a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ CN with supp a ∩ supp b
= ∅ it does not hold that ∥a∥ψ = ∥b∥ψ = ∥a+ b∥ψ = 1

⇐⇒ There is no element (a1, . . . , aN ) ∈ RN+ such that for some nonempty
proper subset T of {1, . . . , N}

∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ
= ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1

⇐⇒ There is no element (a1, . . . , aN ) ∈ RN+ such that

∥(a1, . . . , aN )∥ψ∗

= ∥(χT (1)a1, . . . , χT (N)aN )∥ψ∗ + ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ∗ ,

where ∥(χT (1)a1, . . . , χT (N)aN )∥ψ∗ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ∗ = 1 (by

Proposition 4.2) ⇐⇒ ψ∗ /∈ Ψ
(1)
N (by Theorem 3.4).

This completes the proof. □

By Theorems 3.5, 3.7 combined with Theorem 4.3 we have the following.

Corollary 4.4. Let X1, . . . , XN be Banach spaces and let ψ ∈ Ψ
(1)
N . Assume that

the ψ-norm ∥ · ∥ψ (resp. ψ∗-norm ∥ · ∥ψ∗) is strictly monotone. Then the following
are equivalent.

(i) (X1 ⊕ · · · ⊕XN )ψ is uniformly non-square.

(ii) All Xi are uniformly non-square and ∥ · ∥ψ has property TN1 (resp. TN∞).

From Proposition 3.9 and Theorem 4.3 the next result will be immediately de-
rived.

Corollary 4.5. Let X1, . . . , XN be Banach spaces and let ψ ∈ ΨN . If (X1 ⊕ · · · ⊕
XN )ψ is uniformly non-square, the ψ-norm ∥ · ∥ψ has properties TN1 and TN∞ .

Combining Theorems 3.11 and 4.3, we have the ψ-direct sum version of Dowling
and Saejung’s result (see Corollary 5.6 below):

Corollary 4.6. Let X1, . . . , XN be Banach spaces and let ψ ∈ Ψ
(1)
N . Assume that

∥ · ∥ψ or ∥ · ∥ψ∗ is strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )ψ is uniformly non-square.

(ii) All Xi are uniformly non-square and ∥ · ∥ψ has both Properties TN1 and TN∞ .
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5. Z-direct sums and general direct sums

As another notion of direct sum of Banach spaces a Z-direct sum is often discussed
(cf. [6] etc.). Let Z be a finite dimensional normed space (RN , ∥ · ∥Z), where the
Z-norm ∥ · ∥Z is monotone on RN+ , that is,

(5.1) ∥(a1, . . . , aN )∥Z ≤ ∥(b1, . . . , bN )∥Z if 0 ≤ aj ≤ bj for 1 ≤ j ≤ N.

The Z-direct sum (X1 ⊕ · · · ⊕ XN )Z of Banach spaces X1, . . . , XN is their direct
sum equipped with the norm

(5.2) ∥(x1, · · · , xN )∥Z := ∥(∥x1∥, · · · , ∥xN∥)∥Z
for (x1, . . . , xN ) ∈ X1⊕· · ·⊕XN . In [6] the Z-norm ∥ ·∥Z is assumed to be absolute
without loss of generality because of (5.2). On the other hand, according to Lemma
2.1 this is equivalent to the monotonicity of ∥ · ∥Z . Thus in the above definition of
Z-direct sum the condition (5.1) is superfluous and can be dropped.

The Z-direct sum is a more general notion than the ψ-direct sum; however they
are equivalent as is mentioned in [6]. In fact we shall see that for any Z-direct sum
there exists ψ ∈ ΨN such that the Z-direct sum is isometrically isomorphic to the
ψ-direct sum. This is true for a more general direct sum which are defined from an
arbitrary norm on RN .

Definition 5.1. Let ∥ · ∥A be an arbitrary norm on RN . We define A-direct sum
(X1 ⊕ · · · ⊕XN )A to be their direct sum equipped with the norm

∥(x1, · · · , xN )∥A := ∥(∥x1∥, · · · , ∥xN∥)∥A for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕XN

We have the following.

Theorem 5.2. Let ∥ · ∥A be an arbitrary norm on RN . Then, there exists ψ ∈ ΨN

such that (X1 ⊕ · · · ⊕XN )A is isometrically isomorphic to (X1 ⊕ · · · ⊕XN )ψ.

Proof. Take ej ∈ Xj with ∥ej∥ = 1 for 1 ≤ j ≤ N and define a new norm ∥ · ∥B on
CN by

∥(z1, . . . , zN )∥B = ∥(z1e1, . . . , zNeN )∥A.
Then ∥ · ∥B is absolute. Indeed, for (z1, . . . , zN ) ∈ CN we have

∥(z1, . . . , zN )∥B = ∥(z1e1, . . . , zNeN )∥A
= ∥(|z1|, . . . , |zN |)∥A
= ∥(|z1|e1, . . . , |zN |eN )∥A
= ∥(|z1|, . . . , |zN |)∥B.

Let

∥(x1, · · · , xN )∥B := ∥(∥x1∥, · · · , ∥xN∥)∥B for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕XN .

Then we have

∥(x1, . . . , xN )∥A = ∥(∥x1∥, . . . , ∥xN∥)∥A
= ∥(∥x1∥e1, . . . , ∥xN∥eN )∥A
= ∥(∥x1∥, . . . , ∥xN∥)∥B
= ∥(x1, . . . , xN )∥B.
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Next let aj = ∥(0, . . . , 0,
j
⌣
1 , 0 . . . , 0)∥B for 1 ≤ j ≤ N . Define the norm ∥ · ∥C on CN

by

∥(z1, . . . , zN )∥C = ∥(z1/a1, . . . , zN/aN )∥B for (z1, . . . , zN ) ∈ CN .
Then ∥ · ∥C is absolute and normalized, and

∥(z1, . . . , zN )∥B = ∥(a1z1, . . . , aNzN )∥C for (z1, . . . , zN ) ∈ CN .

Consequently we have

∥(x1, . . . , xN )∥A = ∥(a1x1, . . . , aNxN )∥C for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕XN .

Thus (X1 ⊕ · · · ⊕ XN )A is isometric to (X1 ⊕ · · · ⊕ XN )C . This completes the
proof. □

As we have seen in the above proof, to construct the A-direct sum we may assume
that the original norm ∥ · ∥A is absolute and normalized without loss of generality,
which indicates that the ψ-direct sum is general enough. Owing to Theorem 5.2
with Theorem 4.3, from the previous Theorems 3.5, 3.7, and 3.11 for the ψ-direct
sum we shall obtain a sequence of ”general” results:

Theorem 5.3. Let X1, . . . , XN be Banach spaces and let ∥·∥A be an arbitrary norm
on RN . Assume that ∥ · ∥A is strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )A is uniformly non-square.
(ii) Xj’s are uniformly non-square and the norm ∥ · ∥A has Property TN1 .

Theorem 5.4. Let X1, . . . , XN be Banach spaces and let ∥·∥A be an arbitrary norm
on RN . Assume that the dual norm ∥ · ∥∗A is strictly monotone. Then the following
are equivalent.

(i) (X1 ⊕ · · · ⊕XN )A is uniformly non-square.
(ii) Xj’s are uniformly non-square and the norm ∥ · ∥A has Property TN∞ .

Theorem 5.5. Let X1, . . . , XN be Banach spaces and let ∥·∥A be an arbitrary norm
on RN . Assume that ∥ · ∥A or ∥ · ∥∗A is strictly monotone. Then the following are
equivalent.

(i) (X1 ⊕ · · · ⊕XN )A is uniformly non-square.
(ii) Xi’s are uniformly non-square and the norm ∥ · ∥A has Properties TN1 and

TN∞ .

In particular the next result by Dowling-Saejung [6] is a consequence of Theorem
5.5.

Corollary 5.6 (Dowling and Saejung [6]). Let X1, . . . , XN be Banach spaces and let
∥ · ∥Z be an absolute norm on RN . Assume that ∥ · ∥Z or ∥ · ∥∗Z is strictly monotone.
Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )Z is uniformly non-square.
(ii) Xi’s are uniformly non-square and the Z-norm ∥·∥Z has Properties TN1 and

TN∞ .
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