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UNIFORM NON-SQUARENESS FOR A-DIRECT SUMS OF
BANACH SPACES WITH A STRICTLY MONOTONE NORM

SOMPONG DHOMPONGSA, MIKIO KATO*, AND TAKAYUKI TAMURA

ABSTRACT. We shall characterize the uniform non-squareness for a 1-direct sum
of finitely many Banach spaces with a strictly monotone norm, where the class
‘IJE\}) of convex functions on a certain convex set, which yields partial ¢;-norms
on CV, plays an essential role. Also we shall show that a more general A-direct
sum, a fortiori a Z-direct sum, is isometrically isomorphic to a i-direct sum. As a
consequence we shall present a sequence of results on the uniform non-squareness
in the general direct sum setting, which will cover some previously known results.

1. INTRODUCTION

Recently direct sums of Banach spaces have been often treated in the context
of geometric properties of Banach spaces as well as the fixed point property (e.g.
[1,4-7,9-13,15,18]). A Z-direct sum (X; @ --- @& Xn)z and a t-direct sum (X; &
- @ Xn)y are direct sums equipped with the norms induced from a Z-norm || - ||z,
and a 1-norm ||-{|,, or equivalently an absolute normalized norm on RY, respcetively
(see Sections 2 and 5 for precise descriptions).

In Kato-Saito-Tamura [10] the following was shown: A i-direct sum X @, Y
1s uniformly non-square if and only if X and Y are uniformly non-square and
U #£ 1,00, where Y1 and Yo, are the convexr functions on the unit interval cor-
responding to the £1- and lo-norms, respectively. They posed a question for the
finitely many Banach spaces case, which turned out to be quite complicated. Dowl-
ing and Saejung [6, Theorem 13] gave a partial answer in the Z-direct sum setting
and hence for ¢-direct sums, where the Z-norm || - ||z is assumed to be strictly
monotone (without this assumption for the case N = 3). On the other hand,
Betiuk-Pilarska and Prus [1] showed that a Z-direct sum is uniformly non-square
if and only if all the underlying Banach spaces and the Z-norm || - ||z on RY are
uniformly non-square, where it remains still unknown when || - || 7 is uniformly non-
square (cf. [14]).

In this paper we shall present a sequence of results on the uniform non-squareness
for more general direct sums of Banach spaces, which we refer to as A-direct sums,
with a strictly monotone norm: An A-direct sum (X7 @ --- @ Xn)4 is the direct
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sum equipped with the norm induced from an arbitrary norm || - |4 on RV (see
Section 5). To do this, as it is enough to do so (Section 5), we shall first discuss
a -direct sum which enables us to use a powerful tool, the convex function . In
particular the class \Ilg\lf) of convex functions introduced in [12], which yields ¢;-like
norms on CV, will play an essential role. As another point to do this the notions
Properties T and T in Dowling and Saejung [6] will be described in terms of the
class \Ifs\l,).

In Section 2 definitions and preliminary results concerning -direct sums will
be mentioned. In Section 3 the uniform non-squareness for -direct sums will
be discussed. We shall first show that, under the condition that || - ||, is strictly

monotone, (X;®---@®Xn)y is uniformly non-square if and only if X;’s are uniformly

non-square and ) ¢ 1115\1,) (Theorem 3.5). In the case the dual norm || - [[7, = [| - ||y

is strictly monotone, the same is true with ¥* ¢ \Il%) in place of ¢ ¢ ‘115\1,), where
¥* is the dual function of ¢ (Theorem 3.7). From these results the following will be
derived: Assume that ||- ||, or |- ||}, is strictly monotone. Then, (X1 @+ @& Xn)y is
)

uniformly non-square if and only if X;’s are uniformly non-square and 1, * ¢ \115\1[
(Theorem 3.11).
(1)

In Section 4 we shall discuss the relation between the class ¥’ and the notions of
Properties T and T. We shall show that Properties 7{¥ and 7% are respectively
equivalent to 1 ¢ \Ifg\l,) and ¥* & \Ilg\lf) (Theorem 4.3).

In the final Section 5 we shall discuss Z-direct sums and A-direct sums. A -
direct sum is a Z-direct sum and a Z-direct sum is an A-direct sum. In Theorem 5.2
we shall show that these three kinds of notions of direct sum are equivalent, more
precisely, for any norm || -|| 4 on R there exists 1) € ¥ such that the A-direct sum
(X1®---®Xn)a is isometrically isomorphic to the i-direct sum (X1 @@ Xn)y.

Combining the results in Section 3 with Theorems 4.3 and 5.2 we shall obtain the
following. Assume that || - || 4 (resp., || - [|%) is strictly monotone. Then, (X; & --- @
XN) 4 is uniformly non-square if and only if X;’s are uniformly non-square and ||-|| 4
has Property iV (resp., TX) (Theorems 5.3, 5.4). In particular, if || - |4 or || - ||%
is strictly monotone, (X; @ -+ @ Xy)4 is uniformly non-square if and only if all
X are uniformly non-square and || - || 4 has Properties 77" and T (Theorem 5.5),
which covers the main result of Dowling and Saejung [6, Theorem 13] for Z-direct
sums.

2. DEFINITIONS AND PRELIMINARY RESULTS

A norm || - || on CV is called absolute if ||(z1,--- ,zn)|| = ||(|z1],- -, |2n])|| for all
(21, ,2n) € CN and normalized if ||(1,0,---,0)|| = --- = ||(0,--- ,0,
)|l = 1. A norm || - || on C¥ is called monotone provided that, if |z;| < |w;| for
1<j<N,|(z1,..,28)] < |l(wr,...,wx)||. Anorm |- || on CV is called strictly
monotone provided that it is monotone and, if |z;| < |wj| for some 1 < j < N,
|(z1,-..,2n)] < |[(w1,...,wn)||. The following is known.
Lemma 2.1 (Bhatia [2], see also [13]). A norm || - || on CV is absolute if and only

if it is monotone.
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Let us recall that for every absolute normalized norm on CV there corresponds
a convex function on a certain convex set in RV~1 ( [3,16]). For any absolute
normalized norm || - || on CV let

N-1
(21)  o(s) = H(l— S s ,sN_1>‘ for s = (s1,-- ,sn-1) € A,
i=1
where
N-1
Ay = {SZ (s1,++,sn—1) € RN Z 5 <1, s 20}
i=1
Then 1) is convex (continuous) on Ay and satisfies the following:
(AO) ¢(07 10) :77/)(1707 7()) = :w(oa 7071) =1,
— s1 SN-1 NZ:I
(Al) ’lﬁ(Sl,...,SN,l) > <Z Sl>’l[)(]v_1, ’N—_1> if 0 < 5 < 17
i=1 D1 Si Dim1 Si i=1
(A2) ¥(s1,-- ,5n-1) > (1—51)¢(0, 2 31“) if 0<s <1,
1-— S1 1-— S1
(An) ¥(s1,-+- ysn-1) > (1—sn-1)¢ L 2 )it o< sy < L
I—sy-1 I—sy-1
In fact the condition (Ap) is equivalent to that the norm || - || is normalized. The

conditions (4;),1 < j < N, are equivalent to the monotonicity in the jth entry of
the norm respectively, which is equivalent to that the norm is absolute by Lemma
2.1.

Conversely, let ¥ denote the class of all convex functions 1 on Ay satisfying
(Ao)—(An). Then, for any ¢ € Uy we can construct an absolute normalized norm

| -]y on C" by the formula
|22] 2w |
Sl o (o
( ’ 2j=11%l 2j=1 7l

(2.2) (21, s 2n)ly = if (21, ,2n) # (0, ,0),

0 if (z1,--+,2n) =(0,---,0),
where || - ||, satisfies (2.1) ([16]; see [3] for the case N = 2). Thus every absolute
normalized norm || - || corresponds to a unique convex function ¢ € ¥y with the
equation (2.1). We refer the norm || - ||, to as ¥-norm. The £,-norms

{lal 4+ lan|P}P i 1< p < oo,

H(zl,-'-,zme—{ |
max{|z1|, -+ ,|zn]|} if p= o0
are basic examples of such norms and the corresponding functions 1), are given by
- P 1/p
{(1—25\;1182‘) +87f+--~+81]’v_1}
wp(sla"'asN—l): 1f1§p<00,

max{l—zi]\;l Siy 81,7 ySN—1} if p = oco.
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In particular, the function ;(¢) = 1 corresponds to the ¢1-norm. For all ¢ € Uy
we have || - [loo < ||+ [ly <[+ [lx ( [16, Lemma 4.1]).

Let X1, ..., X be Banach spaces. The t)-direct sum (X1 @ --- @ Xn)qy, ¥ € ¥y,
is their direct sum equipped with the norm

(@1, an)lly = Izl len DIl for (z1,...,an) € X1 @ & Xy
([9,18]). The dual function ¥* of v is defined by
- s -2t Nt sity
Y*(s1,...,8N-1) = sup (=2 s)(I =20 )+ 3 s 7
(t1,tN—1)EAN ¢(t17 )thl)
(S1,...,8n-1) € An ([15], see also [12]):

Theorem 2.2 ([12, Theorem 4.1, 4.2]; cf. [15]). Let Xi,--- , Xn be Banach spaces
and let Y € Y. Then, ¢* € Uy and

(X1 @D XN)y = (X7 ©--- DXy )y

A Banach space X is called uniformly non-square if there exists a constant € > 0
such that

min{lz + yll, | — yll} < 2(1 — ) for all 2,y € X with ||z = ly]) = 1.
(If min{||lz +y||, ||z —y||} <2 for all z,y € X with ||z| = ||y|| = 1, X is called non-
square.) Throughout the paper let RY = {(ay,...,an) € RV : a; > 0,1 < j < N}.

3. UNIFORM NON-SQUARENESS FOR %-DIRECT SUMS

Lemma 3.1 ([16], [2,p.36, Lemma 3]). Let ¢ € ¥p.

(i) The ¥-norm || - ||y is monotone.
(i) If [zj| < wj| for all1 <j < N, |[(z1,. .., 28)lly < (w1, ..., wn)ly.

Lemma 3.2 ([10]). Let {x,} and {y,} be nonzero bounded sequences in a Banach
space X with lim, o ||zs| > 0 and lim,_ o ||yn]] > 0. Then the following are
equivalent.

0) tim [z + yol = lim {lloall + ynll}
Tn Yn ‘ —9

o]l " Tonl
Definition 3.3 (cf. [12]). Let ¢ € ¥ . Wesay ¢ € \IJS\I,) if there exist (ai,...,an) €
RJX and a nonempty proper subset T of {1,..., N} for which
(3.1) (a1, ...,an)lly = [[(xr(Dar, ..., xo(N)an)lly
+(xre(Da, ..., xre(N)an)|ly,
where (xr(1)ai,...,xr(N)an) and (x7re(1)ai,...,xre(N)ay) are nonzero, xr de-

n—oo

(i) lim ‘

notes the characteristic function of 7. A y-norm with ¢ € \Ilg\lf) is referred to as a
partial £1-norm.

Theorem 3.4 (cf. [12, Theorem 5.8]). Let v € Wy. Then the following are
equivalent.
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(i) veuly.
(ii) There exist (a1, ...,an) € Rf and a nonempty proper subset T of {1,..., N}
for which the formula (3.1) holds true with
IOxr(Way, ..., xr(N)an)[ly = [(xre(D)as, ..., xre(N)an)[ly = 1.
(iii) There exists a nonempty subset S of {1,...,N — 1} and an element
(51,...,5N-1) € Ax with 0 < Zfi}l xs(i)si <1 such that

Y(s1,...85v-1) = My <XS§\?SI,...,XS(N;41)SN_1>

XSC(1)$1 XSC(N — l)SN_l
v an (Sl xe oD,

We refer the reader to [12,13] for a sequence of results on the class \I/S\l,). Now we

shall have the following characterization of uniform non-squareness for a -direct
sum with a strictly monotone norm.

Theorem 3.5. Let X1,..., XN be Banach spaces and let i € ‘115\1]). Assume that
the -norm || - ||y is strictly monotone. Then the following are equivalent.
(i) (X1 @---® Xn)y is uniformly non-square.
(ii) X;’s are uniformly non-square and v ¢ \Ilg\l,).
Proof. (i) = (ii). Let (X1 @ --- ® Xn)y be uniformly non-square. Then all X; are
uniformly non-square as they are embedded into (X ® --- @® Xn)y. Suppose that
Y € \115\1[). Then, by Theorem 3.4 there exist (aj,...,an) € Rf and a nonempty
proper subset T of {1,..., N} for which
(a1,...,an)lly = [(xr(M)ar, ..., x2(N)an)lly + [|(xze(1)ar, . .., xre(N)an) |y,
where
[(xr(L)ay, ... xo(N)an)lly = [[(xre(L)ay, ..., xre(N)an) [y = 1.
Without loss of generality we may assume that T'= {1,...,r} withsome 1 <r < N,
that is,

(3.2)  |[(a1,-..,an)|ly = ll(a1, ... ar,0,...,0)||p +[|(0,...,0,@r41,...,an)|ly
and
(33) H(al, e ,ar,O, e ,O)Hw = ”(0, . ,0,ar+1, . 7G’N)H1/J =1.
Take z; € SXj,l <j <N, and let
u=(a1z1,...,0,2,,0,...,0) € (X1 ® - & XN)y

and

v = (07"'>O7aT+1$T+17"'>aNxN) € (Xl D @XN)¢
Then by (3.2) and (3.3) we have

ully = [lvlly =1 and [lu £ vl = [[(ay,...,an)lly =2,
whence (X1 @ --- @ Xy)y is not uniformly non-square, a contradiction. Thus we
have ¢ ¢ \Il%).
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(ii) = (i). Let all X; be uniformly non-square and let ¢ ¢ \115\1,). Suppose
that (X; @ --- ® Xy)y is not uniformly non-square. Then for every n there exist

(xgn), el xg\?)) and (ygn), . ,yg\?)) in the unit ball of (X; @ --- @ Xn)y such that

n n n n 1
(3.4) 1™ £ 570 ey £ 9 Dl 22— =

By choosing subsequences if necessary, we may assume that for all 1 < j < N

Tim [ 4+ o5 = ay, lim (2" =y = 85,
and
Tim (2" = gy, Tim [y = v,
Then
(35) s )l = T (Il i D e < 1
and in the same way
(36) H(Vl""7VN)H¢ S 1.
By (3.4) we have for any n € N
1 n n n n
2=~ < (et 2517 e £y Dl
< U+ 1012+ 1y
< NS 2SI+ T, - 1S )
< 2.

Letting n — 0o, we have

(3.7) et an)lly = [[(Br - BNy
= l(m+v1,.onn +on)lly =2
Since the norm || - || is strict monotone, we have

aj=Pj=pj+v;foralll <j<N.
Now we shall show that
(3.8) min{yu;,v;} = 0 and hence a; = §; = max{p;,v;} forall 1 < j < N.
Suppose that min{u;,, v, } > 0 with some 1 < jo < N. Then
Tim ) &y | = gy + vy = Tl + Ty,
from which it follows that

(n) (n)
xjo yjo
) )
Jo

lim
n—oo

n
lyss
by Lemma 3.2. Therefore X, is not uniformly non-square, which is a contradiction.

Thus we have (3.8).
Next let

[

T={j: aj=p; >0, 1 <j <N}



UNIFORM NON-SQUARENESS FOR A-DIRECT SUMS 253

Then T is a nonempty proper subset of {1,..., N}. Indeed, if T' is empty, we have
aj=0ora;=vjforalll1 <j <N

and hence
2= |l(a1,..,an)lly < (v, ww)lly <1,
a contradiction. If 7= {1,..., N}, we have

2= |l(ar, - an)lly = (s, pn)lle < 1,

a contradiction. Thus, without loss of generality, we may assume that 7= {1,...,r}
with some 1 <r < N. Then, by (3.7) we have
2 = H(alv s 7aN)||1ZJ

< e, -osar,0,..0,0) | + 110, ..., 0, 0041, ... an) ||y
< H(ul,...,ur,o,...,O)”w + H(O,...,O,I/r_:,_l,...,VN)”¢ <2,
from which it follows that
(a1, san)|ly = [(a1, ... 00,0,...,0) |l + (0, ..., 0, pg1s - .y ) [
and

H(O&l,...,ar,o,...,O)Hw = H(O,...,0,047«4_1,...,0[]\[)”w = 1.

Consequently we have ¢ € \115\1,) by Theorem 3.4, which is a contradiction. This

completes the proof. O

Remark 3.6. The assertion (i) = (ii) in Theorem 3.5 is valid without the assump-
tion on the strict monotonicity of | - ||.

Since (X1 @ ®Xn)y, = (X{ @ © XY )y by Theorem 2.2 and X* is uniformly
non-square if and only if X is ([17]), we shall have the next theorem.
Theorem 3.7. Let Xi,..., Xy be Banach spaces and let ¢y € Uy. Assume that
the Y*-norm || - ||y= is strictly monotone. Then the following are equivalent.

(i) (X1 @---® Xn)y is uniformly non-square.

(ii) All X; are uniformly non-square and ¢* ¢ \Il%).
Remark 3.8. The assertion (i) = (ii) in Theorem 3.7 is valid without the assump-
tion on the strict monotonicity of || - ||y=.

According to Remarks 3.6 and 3.8 we have the following.

Proposition 3.9. Let Xi,..., Xy be Banach spaces and let ¢ € VUy. Let (X ®
- ® XnN)y be uniformly non-square. Then ,* & \Ilg\}).

Remark 3.10. Proposition 3.9 is valid under the assumption “non-squareness”
in place of uniform non-squareness (cf. [6, Theorem 3]). In fact, in the proof of
the implication (i) = (ii) in Theorem 3.5 we proved that, if (X1 @ --- @& Xn)y is

“non-square”, then ¢ ¢ \Ilg\lf .
From Theorems 3.5, 3.7 and Proposition 3.9 the next result follows.

Theorem 3.11. Let X1,..., Xy be Banach spaces and let ¢ € \Ilg\lf). Assume that
|-l or || - ||+ is strictly monotone. Then the following are equivalent.
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(i) (X1 @---® Xn)y is uniformly non-square.
(ii) All X; are uniformly non-square and 1, y* & \115\1[),

4. Tue cLass U\ aND prOPERTIES TN AND T

A similar result to Theorem 3.11 was obtained in Dowling and Saejung [6] in
terms of the notions Properties 77V and T%. We shall see that these results are
equivalent.

Definition 4.1 ([6]). A norm || - || on C¥ is said to have Property T} if for all
a,b e CN with
1

lall = [Ib]] = 5lla + b =1
one has supp a Nsupp b # 0, where supp a = {j : a; # 0}. A norm || - || is said to
have Property T if for all a,b € CV with

lall = [lb]] = [la+ bl =1
one has supp a Nsupp b # (.

These properties for an absolute norm are interpreted in words of partial £1-norms

(1)

or the class Wy’ First we shall see the next result.

Proposition 4.2. Let ) € ¥ and let T' be a nonempty proper subset of {1,..., N}.
Then the following are equivalent.

(i) There ezists (a1,...,an) € RY such that
(a1, an)lly = [(xr(Dar, ..., x2(N)an)lly
= lxre(Ma, ..., xre(Nan)|ly = 1.
(ii) There exists (a1,...,an) € RY such that

v = lxr(Dar, ..., x7(N)an)||y-
+(xre(Va, - -, xre(N)an) [y,
where ||(xr(1)ai, ..., xt(N)an)|lp+ = [[(xre(1)ai, ..., xre(N)an) |y = 1.

H(al,...,aN)|

Proof. (i) = (ii). Assume that there exists (a1,...,an) € RY such that

(a1, an)lly = [[(xr(Dar, ..., xr(N)an)|y
= [[(xre(Ma1, ..., xre(N)an)|ly = 1.
Then there exist (c1,...,cn), (di,...,dy) € RY such that

N
IOcr(Dan, o xr(Nan)lly = > xr(i)aje,
j=1

N
IOcre(Dan, - xre(Nan)ly = > xre(d)ajd;,
j=1

and
[(xr(Ders - xr (N)ew) lys = |(xre(D)da, - . ., xe(N)dn) |ly= = 1.
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Let aj = xr(j)cj + xre(§)d; (1 < j < N). Then, since

oo = xr(Der + xre(L)dy, ..., xr(N)en + xre(N)dn ) ||y

N N
> > xr(i)eja;+ Y xre(i)dja;
=1 j=1

I(al, ..., ay)|

= |xr(Max, ..., xr(N)an)|y
+Hl(xre(Va, ..., xre(N)an) |y = 2,

we have ||(a},...,aly)|ly = 2. Consequently we have
(@i, - - an)llys = [(xe(M)a, ..., xo(N)ay) llys + [[(xre(Day, .., xre(N)ay) |y,

where [|(xr(1)ay, ..., xr(N)ay)lly= = [[Ocre(D)ay, - ., xre(N)ajy) [y = 1.
(ii) = (i). Assume that there exists (a1,...,ay) € RY satisfying the condition
in (ii). Take (af,...,d)y) € RY with ||(a},...,d)y)|ly = 1 so that

N
_ 2 : /
P* = ajaj.
Jj=1

Then, since |[(x7(1)a1, ..., x7(N)an)|lp= = [[(xTe(L)a1, ..., xre(N)an)|lp= = 1, we
have

(a1, .., an)|

2 = |(ar,-..,an)lly-

N N
= Y xr(iajaj + Y xre(f)a;a]
j=1 j=1

N N
= > xr(Dajxrd;+ Y xre(j)ajxred]
Jj=1 Jj=1
< Nxr(Day, -, xr(N)ay) g + 1(xze(Dad, - . ., xre(N)ay) [y <2,
from which it follows that

I(at, .. an)lly = l[Oxr(Day, ... xr(N)ai)lly
IO¢re(Day, .- xre(N)ay) [y = 1.

This completes the proof. O

Now we have the following.

Theorem 4.3. Let ¢ € V. Then:
(i) The v-norm | - ||y has Property T if and only if 1 & \Ifﬁ\l,).
(ii) The v-norm || - ||y has Property TY if and only if 1* & \115\1,).

Proof. (i) We have the following.
The ¢-norm || - || has property T3
<= Foralla = (a1,...,an),b= (by,...,bx) € CV with supp a Nsupp b
= () it does not hold that ||all, = [|blly = %[l + b]|y = 1.
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<= There is no element (ay,...,ay) € Rf such that for some nonempty
proper subset T" of {1,..., N}
1
sltar,-san)lly = [lOcrLa, ... xr(N)an) s

= |I(xre(Dat, ..., xre(N)an)|ly =1

— Y & \115\1,) (by Theorem 3.4).
(ii) We have the following.
The ¢-norm || - || has property T
<= Foralla = (a1,...,an),b= (by,...,bx) € CV with supp a Nsupp b
= it does not hold that ||ally, = [|blly = [la + by =1
<= There is no element (aj,...,ay) € Rf such that for some nonempty
proper subset T of {1,...,N}

(a1, an)lly = [[(xr(Dai,....x7(N)an)ly
= |[(xre(Day,...,xre(N)an)|ly =1

<= There is no element (ay,...,ay) € ]Rﬁ such that

”(alv s 7aN)||1/J*
= [[(xr (a1, ..., xr(N)an)|

where [[(xr(1)a1, ..., xr(N)an)lly= = [[(xre(D)ar, ..., xr(N)ay)|
Proposition 4.2) <= ¢* ¢ \115\1,) (by Theorem 3.4).

This completes the proof. O

o+ [(xre(Day, . .., xre(N)an) [ y+,
p~ = 1 (by

By Theorems 3.5, 3.7 combined with Theorem 4.3 we have the following.

Corollary 4.4. Let X;,..., Xy be Banach spaces and let 1) € \I/g\l,). Assume that
the i-norm || - ||y (resp. *-norm || - ||y=) is strictly monotone. Then the following
are equivalent.

(i) (X1 @---® Xn)y is uniformly non-square.

(ii) All X; are uniformly non-square and || - ||, has property TN (resp. TX).

From Proposition 3.9 and Theorem 4.3 the next result will be immediately de-
rived.

Corollary 4.5. Let X1,..., Xy be Banach spaces and let € . If (X1 B --- &
XN)y is uniformly non-square, the 1-norm || - ||, has properties TY and T .

Combining Theorems 3.11 and 4.3, we have the -direct sum version of Dowling
and Saejung’s result (see Corollary 5.6 below):

Corollary 4.6. Let X;,..., Xy be Banach spaces and let i) € \I'%). Assume that
| - [l or || - |+ is strictly monotone. Then the following are equivalent.

(i) (X1 @---® Xn)y is uniformly non-square.

(ii) All X; are uniformly non-square and | - ||y has both Properties T} and T .
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5. Z-DIRECT SUMS AND GENERAL DIRECT SUMS

As another notion of direct sum of Banach spaces a Z-direct sum is often discussed

(cf. [6] etc.). Let Z be a finite dimensional normed space (RY,| - |lz), where the
Z-norm | - ||z is monotone on RY, that is,
(5.1) ||(a1,. . .,CLN)HZ S H(bl, ,bN)HZ ifO S aj S bj fOI‘ 1 S j S N.

The Z-direct sum (X7 @ --- ® Xn)z of Banach spaces Xi,..., Xy is their direct
sum equipped with the norm

(5.2) [z, - an)llz = [l s len DIz

for (z1,...,zn) € X1®---® Xy. In [6] the Z-norm || - ||z is assumed to be absolute
without loss of generality because of (5.2). On the other hand, according to Lemma
2.1 this is equivalent to the monotonicity of || - || z. Thus in the above definition of
Z-direct sum the condition (5.1) is superfluous and can be dropped.

The Z-direct sum is a more general notion than the t-direct sum; however they
are equivalent as is mentioned in [6]. In fact we shall see that for any Z-direct sum
there exists ¢ € ¥y such that the Z-direct sum is isometrically isomorphic to the
1p-direct sum. This is true for a more general direct sum which are defined from an
arbitrary norm on RY.

Definition 5.1. Let || - || be an arbitrary norm on RY. We define A-direct sum
(X1® - ® Xn)a to be their direct sum equipped with the norm

[@1, - zn)lla=[[(lzall, - lenDI[a for (21, 28) € Xi® - & Xy
We have the following.

Theorem 5.2. Let || - ||4 be an arbitrary norm on RN . Then, there exists ¢ € Uy
such that (X1 @ --- @ Xn)a is isometrically isomorphic to (X1 @ -+ ® Xn)y.

Proof. Take e; € X; with |lej|| =1 for 1 < j < N and define a new norm || - ||z on
CN by

121, -5 2n)llB = [[(21€1, - - 2nven) | a-
Then | - || is absolute. Indeed, for (z1,...,2zy) € CV we have
Iz, 2l = [l(z1e1, - 2ven)|a

(
= |(lzls-- -5 lenlla

[(|z1lexs ... [znlen)|la
= |l(lzal,-- -, [2n]) B

Let

[z, aen)lls == [zl llen Dl for (21, 2n8) € X1 @ -+ ® X

Then we have

[z, an)lla = Qlzlls- - llenlDla
= [lllztller, - -, lznllen)lla
= Nzdlls- -5 llznIDIlB
= |(z1,...,zN)|B-
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Next let a; = [|(0,...,0,1,0...,0)|5 for 1 < j < N. Define the norm | - [|¢ on C¥
by

112l = 1 fans - - 2 fan) |5 for (21, ., 2) € CV.
Then || - ||¢ is absolute and normalized, and
(z1,...,28)|lB = (@121, ..., anzN)|c for (z1,...,2N) € CcN.

Consequently we have

H(xl,... ,xN)HA = ||(a1x1,... ,CLNIN)”C for (xl,. . .,$N) EX19--dXnN.

Thus (X1 & --- @ Xn)4 is isometric to (X1 @ --- & Xn)c. This completes the
proof. O

As we have seen in the above proof, to construct the A-direct sum we may assume
that the original norm || - || 4 is absolute and normalized without loss of generality,
which indicates that the i-direct sum is general enough. Owing to Theorem 5.2
with Theorem 4.3, from the previous Theorems 3.5, 3.7, and 3.11 for the v-direct
sum we shall obtain a sequence of ”general” results:

Theorem 5.3. Let X1,..., Xy be Banach spaces and let ||-|| 4 be an arbitrary norm
on RN . Assume that || - |4 is strictly monotone. Then the following are equivalent.
(i) (X1 ®---® XnN)a is uniformly non-square.

(ii) X;’s are uniformly non-square and the norm || - |4 has Property T}V.

Theorem 5.4. Let X1,..., X be Banach spaces and let ||-|| 4 be an arbitrary norm
on RY. Assume that the dual norm || - || is strictly monotone. Then the following
are equivalent.

(1) (X1 ®---® XnN)a is uniformly non-square.

(ii) X;’s are uniformly non-square and the norm || - ||a has Property Y.
Theorem 5.5. Let X1,..., Xy be Banach spaces and let ||-|| 4 be an arbitrary norm
on RYN. Assume that || - ||a or || - || is strictly monotone. Then the following are
equivalent.

(i) (X1 ®---® Xn)a is uniformly non-square.

(ii) X;’s are uniformly non-square and the norm || - |4 has Properties T{N and

Y.

In particular the next result by Dowling-Saejung [6] is a consequence of Theorem
5.5.

Corollary 5.6 (Dowling and Saejung [6]). Let X1,..., Xn be Banach spaces and let
|||z be an absolute norm on RYN. Assume that || - ||z or ||- |3 is strictly monotone.
Then the following are equivalent.

(i) (X1 @@ XnN)z is uniformly non-square.
(ii) X;’s are uniformly non-square and the Z-norm ||-||z has Properties T} and
Y.
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